Tong W, Giussani DA. Preeclampsia link to gestational hypoxia. J Dev Orig Health Dis. 2019;10(3):322–33. https://doi.org/10.1017/S204017441900014X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almendros I, Martinez-Ros P, Farre N, Rubio-Zaragoza M, Torres M, Gutierrez-Bautista AJ, et al. Placental oxygen transfer reduces hypoxia-reoxygenation swings in fetal blood in a sheep model of gestational sleep apnea. J Appl Physiol (1985). 2019;127(3):745–52. https://doi.org/10.1152/japplphysiol.00303.2019.
Article
CAS
Google Scholar
Jang EA, Longo LD, Goyal R. Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents. Front Physiol. 2015;6:176. https://doi.org/10.3389/fphys.2015.00176.
Article
PubMed
PubMed Central
Google Scholar
Ravishankar S, Bourjeily G, Lambert-Messerlian G, He M, De Paepe ME, Gundogan F. Evidence of placental hypoxia in maternal sleep disordered breathing. Pediatr Dev Pathol. 2015;18(5):380–6. https://doi.org/10.2350/15-06-1647-OA.1.
Article
PubMed
Google Scholar
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front Neurosci. 2018;12:825. https://doi.org/10.3389/fnins.2018.00825.
Article
PubMed
PubMed Central
Google Scholar
Facco FL, Parker CB, Reddy UM, Silver RM, Koch MA, Louis JM, et al. Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus. Obstet Gynecol. 2017;129(1):31–41. https://doi.org/10.1097/aog.0000000000001805.
Article
PubMed
PubMed Central
Google Scholar
Pien GW, Pack AI, Jackson N, Maislin G, Macones GA, Schwab RJ. Risk factors for sleep-disordered breathing in pregnancy. Thorax. 2014;69(4):371–7. https://doi.org/10.1136/thoraxjnl-2012-202718.
Article
PubMed
Google Scholar
Azevedo PN, Zanirati G, Venturin GT, Schu GG, Duran-Carabali LE, Odorcyk FK, et al. Long-term changes in metabolic brain network drive memory impairments in rats following neonatal hypoxia-ischemia. Neurobiol Learn Mem. 2020;171:1095–9564 (Electronic):107207; https://doi.org/10.1016/j.nlm.2020.107207.
Zhuravin IA, Dubrovskaya NM, Vasilev DS, Postnikova TY, Zaitsev AV. Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiol Learn Mem. 2019;164:1095–9564 (Electronic):107066; doi:https://doi.org/10.1016/j.nlm.2019.107066.
Yang SN, Huang CB, Yang CH, Lai MC, Chen WF, Wang CL, et al. Impaired SynGAP expression and long-term spatial learning and memory in hippocampal CA1 area from rats previously exposed to perinatal hypoxia-induced insults: beneficial effects of A68930. Neurosci Lett. 2004;371(1):73–8. https://doi.org/10.1016/j.neulet.2004.08.044.
Article
CAS
PubMed
Google Scholar
Sailaja K, Gopinath G. Developing substantia nigra in human: a qualitative study. Dev Neurosci. 1994;16(1–2):44–52. https://doi.org/10.1159/000112087.
Article
CAS
PubMed
Google Scholar
Aubert I, Brana C, Pellevoisin C, Giros B, Caille I, Carles D, et al. Molecular anatomy of the development of the human substantia nigra. J Comp Neurol. 1997;379(1):72–87. https://doi.org/10.1002/(sici)1096-9861(19970303)379:1<72::aid-cne5>3.0.co;2-f.
Almqvist PM, Åkesson E, Wahlberg LU, Pschera H, Seiger Å, Sundström E. First trimester development of the human nigrostriatal dopamine system. Exp Neurol. 1996;139(2):227–37. https://doi.org/10.1006/exnr.1996.0096.
Article
CAS
PubMed
Google Scholar
Chevassus-au-Louis N, Baraban SC, Gaiarsa JL, Ben-Ari Y. Cortical malformations and epilepsy: new insights from animal models. Epilepsia. 1999;40(7):811–21. https://doi.org/10.1111/j.1528-1157.1999.tb00786.x.
Article
CAS
PubMed
Google Scholar
Kim EH, Yum MS, Lee M, Kim EJ, Shim WH, Ko TS. A new rat model of epileptic spasms based on methylazoxymethanol-induced malformations of cortical development. Front Neurol. 2017;8:271. https://doi.org/10.3389/fneur.2017.00271.
Article
PubMed
PubMed Central
Google Scholar
Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33. https://doi.org/10.1289/ehp.00108s3511.
Article
PubMed
PubMed Central
Google Scholar
Jung AB, Bennett JP Jr. Development of striatal dopaminergic function. I. Pre- and postnatal development of mRNAs and binding sites for striatal D1 (D1a) and D2 (D2a) receptors. Brain Res Dev Brain Res. 1996;94(2):109–20. https://doi.org/10.1016/0165-3806(96)00033-8.
Article
CAS
PubMed
Google Scholar
Kortheuer KH. A study of development stages of the corpus striatum of the human brain. Los Angeles, California: University of Southern California; 1929.
Google Scholar
Rickmann M, Wolff JR. Prenatal gliogenesis in the neopallium of the rat. Adv Anat Embryol Cell Biol. 1985;93(1):104. https://doi.org/10.1007/978-3-642-70081-1.
Article
Google Scholar
Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology. 2016;86(1):340–8. https://doi.org/10.1016/j.theriogenology.2016.04.047.
Article
CAS
PubMed
Google Scholar
Hodes GE, Epperson CN. Sex differences in vulnerability and resilience to stress across the life span. Biol Psychiatry. 2019;86(6):421–32. https://doi.org/10.1016/j.biopsych.2019.04.028.
Article
PubMed
PubMed Central
Google Scholar
Perez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutierrez-Adan A. Early sex-dependent differences in response to environmental stress. Reproduction. 2018;155(1):R39–51. https://doi.org/10.1530/REP-17-0466.
Article
CAS
PubMed
Google Scholar
Howerton CL, Bale TL. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2014;111(26):9639–44. https://doi.org/10.1073/pnas.1401203111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28(36):9055–65. https://doi.org/10.1523/JNEUROSCI.1424-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carpentier PA, Haditsch U, Braun AE, Cantu AV, Moon HM, Price RO, et al. Stereotypical alterations in cortical patterning are associated with maternal illness-induced placental dysfunction. J Neurosci. 2013;33(43):16874–88. https://doi.org/10.1523/JNEUROSCI.4654-12.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braun AE, Carpentier PA, Babineau BA, Narayan AR, Kielhold ML, Moon HM, et al. “Females are not just ‘protected’ males”: sex-specific vulnerabilities in placenta and brain after prenatal immune disruption. eNeuro. 2019;6:6. https://doi.org/10.1523/ENEURO.0358-19.2019.
Article
Google Scholar
Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010;22(3):330–5. https://doi.org/10.1002/ajhb.20995.
Article
PubMed
PubMed Central
Google Scholar
Sandman CA, Glynn LM, Davis EP. Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. J Psychosom Res. 2013;75(4):327–35. https://doi.org/10.1016/j.jpsychores.2013.07.009.
Article
PubMed
PubMed Central
Google Scholar
Behlen JC, Lau CH, Li Y, Dhagat P, Stanley JA, Rodrigues Hoffman A, et al. Gestational exposure to ultrafine particles reveals sex- and dose-specific changes in offspring birth outcomes, placental morphology, and gene networks. Toxicol Sci. 2021;184(2):204–13. https://doi.org/10.1093/toxsci/kfab118.
Article
CAS
PubMed
Google Scholar
Gumusoglu SB, Chilukuri ASS, Hing BWQ, Scroggins SM, Kundu S, Sandgren JA, et al. Altered offspring neurodevelopment in an arginine vasopressin preeclampsia model. Transl Psychiatry. 2021;11(1):79. https://doi.org/10.1038/s41398-021-01205-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35(3):565–72. https://doi.org/10.1016/j.neubiorev.2010.07.002.
Article
PubMed
Google Scholar
Shansky RM, Woolley CS. Considering sex as a biological variable will be valuable for neuroscience research. J Neurosci. 2016;36(47):11817–22. https://doi.org/10.1523/JNEUROSCI.1390-16.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coiro P, Pollak DD. Sex and gender bias in the experimental neurosciences: the case of the maternal immune activation model. Transl Psychiatry. 2019;9:1–90. https://doi.org/10.1038/s41398-019-0423-8.
Article
Google Scholar
Ciucci MR, Ahrens AM, Ma ST, Kane JR, Windham EB, Woodlee MT, et al. Reduction of dopamine synaptic activity: degradation of 50-kHz ultrasonic vocalization in rats. Behav Neurosci. 2009;123(2):328–36. https://doi.org/10.1037/a0014593.
Article
PubMed
PubMed Central
Google Scholar
Ciucci MR, Ma ST, Fox C, Kane JR, Ramig LO, Schallert T. Qualitative changes in ultrasonic vocalization in rats after unilateral dopamine depletion or haloperidol: a preliminary study. Behav Brain Res. 2007;182(2):284–9. https://doi.org/10.1016/j.bbr.2007.02.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant LM, Kelm-Nelson CA, Hilby BL, Blue KV, Paul Rajamanickam ES, Pultorak JD, et al. Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 gene knockout rat model of Parkinson’s disease. J Neurosci Res. 2015;93(11):1713–27. https://doi.org/10.1002/jnr.23625.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olszynski KH, Polowy R, Wardak AD, Grymanowska AW, Filipkowski RK. Increased vocalization of rats in response to ultrasonic playback as a sign of hypervigilance following fear conditioning. Brain Sci. 2021;11:8. https://doi.org/10.3390/brainsci11080970.
Article
Google Scholar
Panksepp J. Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn. 2005;14(1):30–80. https://doi.org/10.1016/j.concog.2004.10.004.
Article
PubMed
Google Scholar
Berz AC, Wohr M, Schwarting RKW. Response calls evoked by playback of natural 50-kHz ultrasonic vocalizations in rats. Front Behav Neurosci. 2021;15: 812142. https://doi.org/10.3389/fnbeh.2021.812142.
Article
CAS
PubMed
Google Scholar
Mahrt EJ, Perkel DJ, Tong L, Rubel EW, Portfors CV. Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience. J Neurosci. 2013;33(13):5573–83. https://doi.org/10.1523/jneurosci.5054-12.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright JM, Gourdon JC, Clarke PB. Identification of multiple call categories within the rich repertoire of adult rat 50-kHz ultrasonic vocalizations: effects of amphetamine and social context. Psychopharmacology. 2010;211(1):1–13. https://doi.org/10.1007/s00213-010-1859-y.
Article
CAS
PubMed
Google Scholar
Sewell GDS. Ultrasound and mating behaviour in rodents with some observations on other behavioural situations. J Zool. 2009;168(2):149–64. https://doi.org/10.1111/j.1469-7998.1972.tb01345.x.
Article
Google Scholar
Burgdorf J, Kroes RA, Moskal JR, Pfaus JG, Brudzynski SM, Panksepp J. Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: behavioral concomitants, relationship to reward, and self-administration of playback. J Comp Psychol. 2008;122(4):357–67. https://doi.org/10.1037/a0012889.
Article
PubMed
Google Scholar
McGinnis MY, Vakulenko M. Characterization of 50-kHz ultrasonic vocalizations in male and female rats. Physiol Behav. 2003;80(1):81–8. https://doi.org/10.1016/s0031-9384(03)00227-0.
Article
CAS
PubMed
Google Scholar
Chabout J, Serreau P, Ey E, Bellier L, Aubin T, Bourgeron T, et al. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS ONE. 2012;7(1): e29401. https://doi.org/10.1371/journal.pone.0029401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portfors CV. Types and functions of ultrasonic vocalizations in laboratory rats and mice. J Am Assoc Lab Anim Sci. 2007;46(1):28–34.
CAS
PubMed
Google Scholar
Wohr M, Schwarting RK. Ultrasonic communication in rats: can playback of 50-kHz calls induce approach behavior? PLoS ONE. 2007;2(12): e1365. https://doi.org/10.1371/journal.pone.0001365.
Article
PubMed
PubMed Central
Google Scholar
Knutson B, Burgdorf J, Panksepp J. Anticipation of play elicits high-frequency ultrasonic vocalizations in young rats. J Comp Psychol. 1998;112(1):65–73. https://doi.org/10.1037/0735-7036.112.1.65.
Article
CAS
PubMed
Google Scholar
Wohr M, Houx B, Schwarting RK, Spruijt B. Effects of experience and context on 50-kHz vocalizations in rats. Physiol Behav. 2008;93(4–5):766–76. https://doi.org/10.1016/j.physbeh.2007.11.031.
Article
CAS
PubMed
Google Scholar
Wang H, Liang S, Burgdorf J, Wess J, Yeomans J. Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. PLoS ONE. 2008;3(4): e1893. https://doi.org/10.1371/journal.pone.0001893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanson JL, Hurley LM. Female presence and estrous state influence mouse ultrasonic courtship vocalizations. PLoS ONE. 2012;7(7): e40782. https://doi.org/10.1371/journal.pone.0040782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumoto YK, Okanoya K. Phase-specific vocalizations of male mice at the initial encounter during the courtship sequence. PLoS ONE. 2016;11(2): e0147102. https://doi.org/10.1371/journal.pone.0147102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarting RKW. Ultrasonic vocalization in juvenile and adult male rats: a comparison among stocks. Physiol Behav. 2018;191:1–11. https://doi.org/10.1016/j.physbeh.2018.03.023.
Article
CAS
PubMed
Google Scholar
Brudzynski SM, Pniak A. Social contacts and production of 50-kHz short ultrasonic calls in adult rats. J Comp Psychol. 2002;116(1):73–82. https://doi.org/10.1037/0735-7036.116.1.73.
Article
PubMed
Google Scholar
Newar SL, Bowman J. Think before they squeak: vocalizations of the squirrel family. Front Ecol Evol. 2020;8:193. https://doi.org/10.3389/fevo.2020.00193.
Article
Google Scholar
Blanchard RJ, Blanchard DC, Agullana R, Weiss SM. Twenty-two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol Behav. 1991;50(5):967–72. https://doi.org/10.1016/0031-9384(91)90423-l.
Article
CAS
PubMed
Google Scholar
Fendt M, Brosch M, Wernecke KEA, Willadsen M, Wohr M. Predator odour but not TMT induces 22-kHz ultrasonic vocalizations in rats that lead to defensive behaviours in conspecifics upon replay. Sci Rep. 2018;8(1):11041. https://doi.org/10.1038/s41598-018-28927-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. “Rejuvenation” protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447(7148):1081–6.
Article
CAS
Google Scholar
Osikoya O, Jaini PA, Nguyen A, Valdes M, Goulopoulou S. Effects of low-dose aspirin on maternal blood pressure and vascular function in an experimental model of gestational hypertension. Pharmacol Res. 2017;120:267–78. https://doi.org/10.1016/j.phrs.2017.04.012.
Article
CAS
PubMed
Google Scholar
Snyder B, Shell B, Cunningham JT, Cunningham RL. Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol Rep. 2017;5:9. https://doi.org/10.14814/phy2.13258.
Article
CAS
Google Scholar
Snyder B, Duong P, Tenkorang M, Wilson EN, Cunningham RL. Rat strain and housing conditions alter oxidative stress and hormone responses to chronic intermittent hypoxia. Front Physiol. 2018;9:1554. https://doi.org/10.3389/fphys.2018.01554.
Article
PubMed
PubMed Central
Google Scholar
Snyder B, Duong P, Trieu J, Cunningham RL. Androgens modulate chronic intermittent hypoxia effects on brain and behavior. Horm Behav. 2018;106:62–73. https://doi.org/10.1016/j.yhbeh.2018.09.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson EN, Anderson M, Snyder B, Duong P, Trieu J, Schreihofer DA, et al. Chronic intermittent hypoxia induces hormonal and male sexual behavioral changes: hypoxia as an advancer of aging. Physiol Behav. 2018;189:64–73. https://doi.org/10.1016/j.physbeh.2018.03.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson AM, Doll EJ, Grant LM, Ringel L, Shier JN, Ciucci MR. Targeted training of ultrasonic vocalizations in aged and Parkinsonian rats. J Vis Exp. 2011:54. https://doi.org/10.3791/2835.
Neunuebel JP, Taylor AL, Arthur BJ, Egnor SE. Female mice ultrasonically interact with males during courtship displays. Elife. 2015;4. https://doi.org/10.7554/eLife.06203.
Matochik JA, White NR, Barfield RJ. Variations in scent marking and ultrasonic vocalizations by Long-Evans rats across the estrous cycle. Physiol Behav. 1992;51(4):783–6. https://doi.org/10.1016/0031-9384(92)90116-j.
Article
CAS
PubMed
Google Scholar
Warren MR, Spurrier MS, Roth ED, Neunuebel JP. Sex differences in vocal communication of freely interacting adult mice depend upon behavioral context. PLoS ONE. 2018;13(9): e0204527. https://doi.org/10.1371/journal.pone.0204527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Academic Press; 1998.
Google Scholar
Garza-Contreras J, Duong P, Snyder BD, Schreihofer DA, Cunningham RL. Presence of androgen receptor variant in neuronal lipid rafts. eNeuro. 2017;4:4. https://doi.org/10.1523/ENEURO.0109-17.2017.
Article
Google Scholar
Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK. Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis. 2009;14(11):1289–98. https://doi.org/10.1007/s10495-009-0405-z.
Article
CAS
PubMed
Google Scholar
Czogalla A, Sikorski AF. Spectrin and calpain: a “target” and a “sniper” in the pathology of neuronal cells. Cell Mol Life Sci. 2005;62(17):1913–24. https://doi.org/10.1007/s00018-005-5097-0.
Article
CAS
PubMed
Google Scholar
Kelm-Nelson CA, Brauer AFL, Barth KJ, Lake JM, Sinnen MLK, Stehula FJ, et al. Characterization of early-onset motor deficits in the Pink1-/- mouse model of Parkinson disease. Brain Res. 2018;1680:1–12. https://doi.org/10.1016/j.brainres.2017.12.002.
Article
CAS
PubMed
Google Scholar
Grant LM, Barnett DG, Doll EJ, Leverson G, Ciucci M. Relationships among rat ultrasonic vocalizations, behavioral measures of striatal dopamine loss, and striatal tyrosine hydroxylase immunoreactivity at acute and chronic time points following unilateral 6-hydroxydopamine-induced dopamine depletion. Behav Brain Res. 2015;291:361–71. https://doi.org/10.1016/j.bbr.2015.05.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931–7. https://doi.org/10.1016/j.neuro.2007.01.014.
Article
PubMed
Google Scholar
Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30.
PubMed
PubMed Central
Google Scholar
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001.
Article
PubMed
Google Scholar
Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993;14(1):83–144.
CAS
PubMed
Google Scholar
Ferriero DM. Neonatal brain injury. N Engl J Med. 2004;351(19):1985–95. https://doi.org/10.1056/NEJMra041996.
Article
CAS
PubMed
Google Scholar
Mandic-Maravic V, Grujicic R, Milutinovic L, Munjiza-Jovanovic A, Pejovic-Milovancevic M. Dopamine in autism spectrum disorders-focus on D2/D3 partial agonists and their possible use in treatment. Front Psychiatry. 2021;12: 787097. https://doi.org/10.3389/fpsyt.2021.787097.
Article
PubMed
Google Scholar
Romanos M, Weise D, Schliesser M, Schecklmann M, Loffler J, Warnke A, et al. Structural abnormality of the substantia nigra in children with attention-deficit hyperactivity disorder. J Psychiatry Neurosci. 2010;35(1):55–8. https://doi.org/10.1503/jpn.090044.
Article
PubMed
PubMed Central
Google Scholar
Bouchet CA, Miner MA, Loetz EC, Rosberg AJ, Hake HS, Farmer CE, et al. Activation of nigrostriatal dopamine neurons during fear extinction prevents the renewal of fear. Neuropsychopharmacology. 2018;43(3):665–72. https://doi.org/10.1038/npp.2017.235.
Article
CAS
PubMed
Google Scholar
Ugrumov M. Development of early diagnosis of Parkinson’s disease: Illusion or reality? CNS Neurosci Ther. 2020;26(10):997–1009. https://doi.org/10.1111/cns.13429.
Article
PubMed
PubMed Central
Google Scholar
Gumusoglu SB, Chilukuri ASS, Santillan DA, Santillan MK, Stevens HE. Neurodevelopmental outcomes of prenatal preeclampsia exposure. Trends Neurosci. 2020;43(4):253–68. https://doi.org/10.1016/j.tins.2020.02.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korzeniewski SJ, Slaughter J, Lenski M, Haak P, Paneth N. The complex aetiology of cerebral palsy. Nat Rev Neurol. 2018;14(9):528–43. https://doi.org/10.1038/s41582-018-0043-6.
Article
PubMed
Google Scholar
Dachew BA, Mamun A, Maravilla JC, Alati R. Association between hypertensive disorders of pregnancy and the development of offspring mental and behavioural problems: a systematic review and meta-analysis. Psychiatry Res. 2018;260:458–67. https://doi.org/10.1016/j.psychres.2017.12.027.
Article
PubMed
Google Scholar
Dachew BA, Mamun A, Maravilla JC, Alati R. Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. Br J Psychiatry. 2018;212(3):142–7. https://doi.org/10.1192/bjp.2017.27.
Article
PubMed
Google Scholar
Maher GM, O’Keeffe GW, Kearney PM, Kenny LC, Dinan TG, Mattsson M, et al. Association of hypertensive disorders of pregnancy with risk of neurodevelopmental disorders in offspring: a systematic review and meta-analysis. JAMA Psychiat. 2018;75(8):809–19. https://doi.org/10.1001/jamapsychiatry.2018.0854.
Article
Google Scholar
Dachew BA, Scott JG, Mamun A, Alati R. Pre-eclampsia and the risk of attention-deficit/hyperactivity disorder in offspring: findings from the ALSPAC birth cohort study. Psychiatry Res. 2019;272:392–7. https://doi.org/10.1016/j.psychres.2018.12.123.
Article
PubMed
Google Scholar
Walker CK, Krakowiak P, Baker A, Hansen RL, Ozonoff S, Hertz-Picciotto I. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015;169(2):154–62. https://doi.org/10.1001/jamapediatrics.2014.2645.
Article
PubMed
PubMed Central
Google Scholar
Dachew BA, Scott JG, Mamun A, Alati R. Hypertensive disorders of pregnancy and the risk of anxiety disorders in adolescence: findings from the Avon longitudinal study of parents and children. J Psychiatr Res. 2019;110:159–65. https://doi.org/10.1016/j.jpsychires.2019.01.001.
Article
PubMed
Google Scholar
Nahum Sacks K, Friger M, Shoham-Vardi I, Sergienko R, Spiegel E, Landau D, et al. Long-term neuropsychiatric morbidity in children exposed prenatally to preeclampsia. Early Hum Dev. 2019;130:96–100. https://doi.org/10.1016/j.earlhumdev.2019.01.016.
Article
PubMed
Google Scholar
Lahti-Pulkkinen M, Girchenko P, Tuovinen S, Sammallahti S, Reynolds RM, Lahti J, et al. Maternal hypertensive pregnancy disorders and mental disorders in children. Hypertension. 2020;75(6):1429–38. https://doi.org/10.1161/HYPERTENSIONAHA.119.14140.
Article
CAS
PubMed
Google Scholar
Sun BZ, Moster D, Harmon QE, Wilcox AJ. Association of preeclampsia in term births with neurodevelopmental disorders in offspring. JAMA Psychiat. 2020;77(8):823–9. https://doi.org/10.1001/jamapsychiatry.2020.0306.
Article
Google Scholar
Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61. https://doi.org/10.1542/peds.2011-3093.
Article
PubMed
Google Scholar
Tauman R, Zuk L, Uliel-Sibony S, Ascher-Landsberg J, Katsav S, Farber M, et al. The effect of maternal sleep-disordered breathing on the infant’s neurodevelopment. Am J Obstet Gynecol. 2015;212(5):656 e1-657. https://doi.org/10.1016/j.ajog.2015.01.001.
Article
Google Scholar
Bin YS, Cistulli PA, Roberts CL, Ford JB. Childhood health and educational outcomes associated with maternal sleep apnea: a population record-linkage study. Sleep. 2017;40:11. https://doi.org/10.1093/sleep/zsx158.
Article
Google Scholar
Kanno K, Kikusui T. Effect of sociosexual experience and aging on number of courtship ultrasonic vocalizations in male mice. Zoolog Sci. 2018;35(3):208–14. https://doi.org/10.2108/zs170175.
Article
PubMed
Google Scholar
Heckman JJ, Proville R, Heckman GJ, Azarfar A, Celikel T, Englitz B. High-precision spatial localization of mouse vocalizations during social interaction. Sci Rep. 2017;7(1):3017. https://doi.org/10.1038/s41598-017-02954-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zala SM, Reitschmidt D, Noll A, Balazs P, Penn DJ. Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus). PLoS ONE. 2017;12(12): e0188647. https://doi.org/10.1371/journal.pone.0188647.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J. The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS ONE. 2012;7(7): e41133. https://doi.org/10.1371/journal.pone.0041133.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Amato FR, Moles A. Ultrasonic vocalizations as an index of social memory in female mice. Behav Neurosci. 2001;115(4):834–40. https://doi.org/10.1037//0735-7044.115.4.834.
Article
CAS
PubMed
Google Scholar
Bishnoi IR, Ossenkopp KP, Kavaliers M. Sex and age differences in locomotor and anxiety-like behaviors in rats: from adolescence to adulthood. Dev Psychobiol. 2021;63(3):496–511. https://doi.org/10.1002/dev.22037.
Article
CAS
PubMed
Google Scholar
Archer J. Rodent sex differences in emotional and related behavior. Behav Biol. 1975;14(4):451–79. https://doi.org/10.1016/s0091-6773(75)90636-7.
Article
CAS
PubMed
Google Scholar
Beatty WW, Fessler RG. Ontogeny of sex differences in open-field behavior and sensitivity to electric shock in the rat. Physiol Behav. 1976;16(4):413–7. https://doi.org/10.1016/0031-9384(76)90319-x.
Article
CAS
PubMed
Google Scholar
Masur J, Schutz MT, Boerngen R. Gender differences in open-field behavior as a function of age. Dev Psychobiol. 1980;13(2):107–10. https://doi.org/10.1002/dev.420130202.
Article
CAS
PubMed
Google Scholar
Acevedo MB, Pautassi RM, Spear NE, Spear LP. Age-dependent effects of stress on ethanol-induced motor activity in rats. Psychopharmacology. 2013;230(3):389–98. https://doi.org/10.1007/s00213-013-3163-0.
Article
CAS
PubMed
Google Scholar
Candland DK, Campbell BA. Development of fear in the rat as measured by behavior in the open field. J Comp Physiol Psychol. 1962;55(4):593–6. https://doi.org/10.1037/h0047206.
Article
Google Scholar
Marin MT, Zancheta R, Paro AH, Possi AP, Cruz FC, Planeta CS. Comparison of caffeine-induced locomotor activity between adolescent and adult rats. Eur J Pharmacol. 2011;660(2–3):363–7. https://doi.org/10.1016/j.ejphar.2011.03.052.
Article
CAS
PubMed
Google Scholar
Lynn DA, Brown GR. The ontogeny of exploratory behavior in male and female adolescent rats (Rattus norvegicus). Dev Psychobiol. 2009;51(6):513–20. https://doi.org/10.1002/dev.20386.
Article
PubMed
PubMed Central
Google Scholar
McDougall SA, Park GI, Ramirez GI, Gomez V, Adame BC, Crawford CA. Sex-dependent changes in ketamine-induced locomotor activity and ketamine pharmacokinetics in preweaning, adolescent, and adult rats. Eur Neuropsychopharmacol. 2019;29(6):740–55. https://doi.org/10.1016/j.euroneuro.2019.03.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford CA, Moran AE, Baum TJ, Apodaca MG, Montejano NR, Park GI, et al. Effects of monoamine depletion on the ketamine-induced locomotor activity of preweaning, adolescent, and adult rats: Sex and age differences. Behav Brain Res. 2020;379: 112267. https://doi.org/10.1016/j.bbr.2019.112267.
Article
CAS
PubMed
Google Scholar
Knight P, Chellian R, Wilson R, Behnood-Rod A, Panunzio S, Bruijnzeel AW. Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav. 2021;204: 173168. https://doi.org/10.1016/j.pbb.2021.173168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gogokhia N, Japaridze N, Tizabi Y, Pataraya L, Zhvania MG. Gender differences in anxiety response to high intensity white noise in rats. Neurosci Lett. 2021;742: 135543. https://doi.org/10.1016/j.neulet.2020.135543.
Article
CAS
PubMed
Google Scholar
Scholl JL, Afzal A, Fox LC, Watt MJ, Forster GL. Sex differences in anxiety-like behaviors in rats. Physiol Behav. 2019;211: 112670. https://doi.org/10.1016/j.physbeh.2019.112670.
Article
CAS
PubMed
Google Scholar
Gozal D, Reeves SR, Row BW, Neville JJ, Guo SZ, Lipton AJ. Respiratory effects of gestational intermittent hypoxia in the developing rat. Am J Respir Crit Care Med. 2003;167(11):1540–7. https://doi.org/10.1164/rccm.200208-963OC.
Article
PubMed
Google Scholar
Chen L, Zadi ZH, Zhang J, Scharf SM, Pae EK. Intermittent hypoxia in utero damages postnatal growth and cardiovascular function in rats. J Appl Physiol (1985). 2018;124(4):821–30. https://doi.org/10.1152/japplphysiol.01066.2016.
Article
CAS
Google Scholar
Vanderplow AM, Kermath BA, Bernhardt CR, Gums KT, Seablom EN, Radcliff AB, et al. A feature of maternal sleep apnea during gestation causes autism-relevant neuronal and behavioral phenotypes in offspring. PLoS Biol. 2022;20(2): e3001502. https://doi.org/10.1371/journal.pbio.3001502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su YM, Lv GR, Xie JX, Wang ZH, Lin HT. Maternal hypoxia increases the susceptibility of adult rat male offspring to high-fat diet-induced nonalcoholic fatty liver disease. Endocrinology. 2013;154(11):4377–87. https://doi.org/10.1210/en.2012-1683.
Article
CAS
PubMed
Google Scholar
Wang Z, Huang Z, Lu G, Lin L, Ferrari M. Hypoxia during pregnancy in rats leads to early morphological changes of atherosclerosis in adult offspring. Am J Physiol Heart Circ Physiol. 2009;296(5):H1321–8. https://doi.org/10.1152/ajpheart.00440.2008.
Article
CAS
PubMed
Google Scholar
Nuzzo AM, Camm EJ, Sferruzzi-Perri AN, Ashmore TJ, Yung HW, Cindrova-Davies T, et al. Placental adaptation to early-onset hypoxic pregnancy and mitochondria-targeted antioxidant therapy in a rodent model. Am J Pathol. 2018;188(12):2704–16. https://doi.org/10.1016/j.ajpath.2018.07.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hellgren KT, Premanandhan H, Quinn CJ, Trafford AW, Galli GLJ. Sex-dependent effects of developmental hypoxia on cardiac mitochondria from adult murine offspring. Free Radic Biol Med. 2021;162:490–9. https://doi.org/10.1016/j.freeradbiomed.2020.11.004.
Article
CAS
PubMed
Google Scholar
Hula N, Spaans F, Vu J, Quon A, Kirschenman R, Cooke CM, et al. Placental treatment improves cardiac tolerance to ischemia/reperfusion insult in adult male and female offspring exposed to prenatal hypoxia. Pharmacol Res. 2021;165: 105461. https://doi.org/10.1016/j.phrs.2021.105461.
Article
CAS
PubMed
Google Scholar
Rueda-Clausen CF, Stanley JL, Thambiraj DF, Poudel R, Davidge ST, Baker PN. Effect of prenatal hypoxia in transgenic mouse models of preeclampsia and fetal growth restriction. Reprod Sci. 2014;21(4):492–502. https://doi.org/10.1177/1933719113503401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cahill LS, Hoggarth J, Lerch JP, Seed M, Macgowan CK, Sled JG. Fetal brain sparing in a mouse model of chronic maternal hypoxia. J Cereb Blood Flow Metab. 2019;39(6):1172–84. https://doi.org/10.1177/0271678X17750324.
Article
PubMed
Google Scholar
Golan H, Kashtutsky I, Hallak M, Sorokin Y, Huleihel M. Maternal hypoxia during pregnancy delays the development of motor reflexes in newborn mice. Dev Neurosci. 2004;26(1):24–9. https://doi.org/10.1159/000080708.
Article
CAS
PubMed
Google Scholar
Cristancho AG, Gadra EC, Samba IM, Zhao C, Ouyang M, Magnitsky S, et al. Deficits in seizure threshold and other behaviors in adult mice without gross neuroanatomic injury after late gestation transient prenatal hypoxia. Dev Neurosci. 2022. https://doi.org/10.1159/000524045.
Article
PubMed
Google Scholar