Grissom N, Bhatnagar S. Habituation to repeated stress: get used to it. Neurobiol Learn Mem. 2009;92(2):215–24. https://doi.org/10.1016/j.nlm.2008.07.001 (Epub 2008/08/01).
Article
PubMed
Google Scholar
Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney FK, Wilson DA, Wu CF, Thompson RF. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009;92(2):135–8. https://doi.org/10.1016/j.nlm.2008.09.012 (Epub 2008/10/16).
Article
PubMed
Google Scholar
Gerra G, Zaimovic A, Mascetti GG, Gardini S, Zambelli U, Timpano M, Raggi MA, Brambilla F. Neuroendocrine responses to experimentally-induced psychological stress in healthy humans. Psychoneuroendocrinology. 2001;26(1):91–107 (Epub 2000/11/09).
Article
CAS
Google Scholar
Grissom N, Kerr W, Bhatnagar S. Struggling behavior during restraint is regulated by stress experience. Behav Brain Res. 2008;191(2):219–26. https://doi.org/10.1016/j.bbr.2008.03.030 (Epub 2008/05/10).
Article
PubMed
PubMed Central
Google Scholar
Herman JP. Neural control of chronic stress adaptation. Front Behav Neurosci. 2013;7:61. https://doi.org/10.3389/fnbeh.2013.00061 (Epub 2013/08/22).
Article
PubMed
PubMed Central
Google Scholar
Wust S, Federenko IS, van Rossum EF, Koper JW, Hellhammer DH. Habituation of cortisol responses to repeated psychosocial stress-further characterization and impact of genetic factors. Psychoneuroendocrinology. 2005;30(2):199–211. https://doi.org/10.1016/j.psyneuen.2004.07.002 (Epub 2004/10/09).
Article
CAS
PubMed
Google Scholar
Bhatnagar S, Huber R, Nowak N, Trotter P. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic–pituitary–adrenal responses to repeated restraint. J Neuroendocrinol. 2002;14(5):403–10 (Epub 2002/05/10).
Article
CAS
Google Scholar
Peters A, McEwen BS, Friston K. Uncertainty and stress: why it causes diseases and how it is mastered by the brain. Prog Neurobiol. 2017;156:164–88. https://doi.org/10.1016/j.pneurobio.2017.05.004 (Epub 2017/06/04).
Article
PubMed
Google Scholar
Lissek S, van Meurs B. Learning models of PTSD: theoretical accounts and psychobiological evidence. Int J Psychophysiol. 2015;98(3 Pt 2):594–605. https://doi.org/10.1016/j.ijpsycho.2014.11.006 (Epub 2014/12/03).
Article
PubMed
Google Scholar
van Minnen A, Foa EB. The effect of imaginal exposure length on outcome of treatment for PTSD. J Trauma Stress. 2006;19(4):427–38. https://doi.org/10.1002/jts.20146 (Epub 2006/08/25).
Article
PubMed
Google Scholar
Yehuda R, Teicher MH, Trestman RL, Levengood RA, Siever LJ. Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis. Biol Psychiatry. 1996;40(2):79–88. https://doi.org/10.1016/0006-3223(95)00451-3 (Epub 1996/07/15).
Article
CAS
PubMed
Google Scholar
van Minnen A, Hagenaars M. Fear activation and habituation patterns as early process predictors of response to prolonged exposure treatment in PTSD. J Trauma Stress. 2002;15(5):359–67. https://doi.org/10.1023/A:1020177023209 (Epub 2002/10/24).
Article
PubMed
Google Scholar
Nacasch N, Huppert JD, Su YJ, Kivity Y, Dinshtein Y, Yeh R, Foa EB. Are 60-minute prolonged exposure sessions with 20-minute imaginal exposure to traumatic memories sufficient to successfully treat PTSD? A randomized noninferiority clinical trial. Behav Ther. 2015;46(3):328–41. https://doi.org/10.1016/j.beth.2014.12.002 (Epub 2015/04/22).
Article
PubMed
Google Scholar
Tolin DF, Foa EB. Sex differences in trauma and posttraumatic stress disorder: a quantitative review of 25 years of research. Psychol Bull. 2006;132(6):959–92. https://doi.org/10.1037/0033-2909.132.6.959 (Epub 2006/11/01).
Article
PubMed
Google Scholar
Albert PR. Why is depression more prevalent in women? J Psychiatry Neurosci. 2015;40(4):219–21. https://doi.org/10.1503/jpn.150205 (Epub 2015/06/25).
Article
PubMed
PubMed Central
Google Scholar
Rotermann M, Sanmartin C, Hennessy D, Arthur M. Prescription medication use by Canadians aged 6 to 79. Health Rep. 2014;25(6):3–9 (Epub 2014/06/19).
PubMed
Google Scholar
Corbett BF, Luz S, Arner J, Vigderman A, Urban K, Bhatnagar S. Arc-mediated plasticity in the paraventricular thalamic nucleus promotes habituation to stress. Biol Psychiatry. 2022;92(2):116–26. https://doi.org/10.1016/j.biopsych.2022.02.012 (Epub 2022/05/09).
Article
PubMed
Google Scholar
Phillipson OT, Bohn MC. C1-3 adrenergic medullary neurones project to the paraventricular thalamic nucleus in the rat. Neurosci Lett. 1994;176(1):67–70. https://doi.org/10.1016/0304-3940(94)90873-7 (Epub 1994/07/18).
Article
CAS
PubMed
Google Scholar
Peng ZC, Bentivoglio M. The thalamic paraventricular nucleus relays information from the suprachiasmatic nucleus to the amygdala: a combined anterograde and retrograde tracing study in the rat at the light and electron microscopic levels. J Neurocytol. 2004;33(1):101–16. https://doi.org/10.1023/B:NEUR.0000029651.51195.f9 (Epub 2004/06/03).
Article
CAS
PubMed
Google Scholar
Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, Darvas M, Parada LF, Palmiter RD, He M, Huang ZJ, Li B. The paraventricular thalamus controls a central amygdala fear circuit. Nature. 2015;519(7544):455–9. https://doi.org/10.1038/nature13978 (Epub 2015/01/21).
Article
CAS
PubMed
PubMed Central
Google Scholar
Su HS, Bentivoglio M. Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat. J Comp Neurol. 1990;297(4):582–93. https://doi.org/10.1002/cne.902970410 (Epub 1990/07/22).
Article
CAS
PubMed
Google Scholar
Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci. 2014;8:73. https://doi.org/10.3389/fnbeh.2014.00073 (Epub 2014/03/22).
Article
PubMed
PubMed Central
Google Scholar
Freedman LJ, Cassell MD. Relationship of thalamic basal forebrain projection neurons to the peptidergic innervation of the midline thalamus. J Comp Neurol. 1994;348(3):321–42. https://doi.org/10.1002/cne.903480302 (Epub 1994/10/15).
Article
CAS
PubMed
Google Scholar
Otake K, Ruggiero DA, Nakamura Y. Adrenergic innervation of forebrain neurons that project to the paraventricular thalamic nucleus in the rat. Brain Res. 1995;697(1–2):17–26. https://doi.org/10.1016/0006-8993(95)00749-g (Epub 1995/10/30).
Article
CAS
PubMed
Google Scholar
Arluison M, Derer P. Forebrain connections of the rat paraventricular thalamic nucleus as demonstrated using the carbocyanide dye DiI. Neurobiology (Bp). 1993;1(4):337–50 (Epub 1993/01/01).
CAS
Google Scholar
Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. 1984;319(3):229–59. https://doi.org/10.1016/0165-0173(84)90012-2 (Epub 1984/08/01).
Article
CAS
PubMed
Google Scholar
Berendse HW, Groenewegen HJ. Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience. 1991;42(1):73–102. https://doi.org/10.1016/0306-4522(91)90151-d (Epub 1991/01/01).
Article
CAS
PubMed
Google Scholar
Conde F, Audinat E, Maire-Lepoivre E, Crepel F. Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents. Brain Res Bull. 1990;24(3):341–54. https://doi.org/10.1016/0361-9230(90)90088-h (Epub 1990/03/01).
Article
CAS
PubMed
Google Scholar
Berendse HW, Voorn P, te Kortschot A, Groenewegen HJ. Nuclear origin of thalamic afferents of the ventral striatum determines their relation to patch/matrix configurations in enkephalin-immunoreactivity in the rat. J Chem Neuroanat. 1988;1(1):3–10 (Epub 1988/01/01).
CAS
PubMed
Google Scholar
Ferguson AV, Day TA, Renaud LP. Connections of hypothalamic paraventricular neurons with the dorsal medial thalamus and neurohypophysis: an electrophysiological study in the rat. Brain Res. 1984;299(2):376–9. https://doi.org/10.1016/0006-8993(84)90723-6 (Epub 1984/05/14).
Article
CAS
PubMed
Google Scholar
Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev. 2002;39(2–3):107–40. https://doi.org/10.1016/s0165-0173(02)00181-9 (Epub 2002/11/09).
Article
PubMed
Google Scholar
Do-Monte FH, Minier-Toribio A, Quinones-Laracuente K, Medina-Colon EM, Quirk GJ. Thalamic regulation of sucrose seeking during unexpected reward omission. Neuron. 2017;94(2):388-400.e4. https://doi.org/10.1016/j.neuron.2017.03.036 (Epub 2017/04/21).
Article
CAS
PubMed
PubMed Central
Google Scholar
Grafe LA, Cornfeld A, Luz S, Valentino R, Bhatnagar S. Orexins mediate sex differences in the stress response and in cognitive flexibility. Biol Psychiatry. 2017;81(8):683–92. https://doi.org/10.1016/j.biopsych.2016.10.013 (Epub 2016/12/14).
Article
CAS
PubMed
Google Scholar
Lunga P, Herbert J. 17Beta-oestradiol modulates glucocorticoid, neural and behavioural adaptations to repeated restraint stress in female rats. J Neuroendocrinol. 2004;16(9):776–85. https://doi.org/10.1111/j.1365-2826.2004.01234.x (Epub 2004/09/04).
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueiredo HF, Ulrich-Lai YM, Choi DC, Herman JP. Estrogen potentiates adrenocortical responses to stress in female rats. Am J Physiol Endocrinol Metab. 2007;292(4):E1173–82. https://doi.org/10.1152/ajpendo.00102.2006 (Epub 2006/12/21).
Article
CAS
PubMed
Google Scholar
Viau V, Meaney MJ. Variations in the hypothalamic–pituitary–adrenal response to stress during the estrous cycle in the rat. Endocrinology. 1991;129:2503–11.
Article
CAS
Google Scholar
Atkinson HC, Waddell BJ. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology. 1997;138(9):3842–8. https://doi.org/10.1210/endo.138.9.5395 (Epub 1997/09/01).
Article
CAS
PubMed
Google Scholar
Lund TD, Munson DJ, Haldy ME, Handa RJ. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurones in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol. 2004;16(3):272–8. https://doi.org/10.1111/j.0953-8194.2004.01167.x (Epub 2004/03/31).
Article
CAS
PubMed
Google Scholar
Corbett BF, Luz S, Arner J, Pearson-Leary J, Sengupta A, Taylor D, Gehrman P, Ross R, Bhatnagar S. Sphingosine-1-phosphate receptor 3 in the medial prefrontal cortex promotes stress resilience by reducing inflammatory processes. Nat Commun. 2019;10(1):3146. https://doi.org/10.1038/s41467-019-10904-8 (Epub 2019/07/19).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleppe IC, Robinson HP. Determining the activation time course of synaptic AMPA receptors from openings of colocalized NMDA receptors. Biophys J. 1999;77(3):1418–27. https://doi.org/10.1016/S0006-3495(99)76990-0 (Epub 1999/08/31).
Article
CAS
PubMed
PubMed Central
Google Scholar
Forsythe ID, Westbrook GL. Slow excitatory postsynaptic currents mediated by N-methyl-d-aspartate receptors on cultured mouse central neurones. J Physiol. 1988;396:515–33. https://doi.org/10.1113/jphysiol.1988.sp016975 (Epub 1988/02/01).
Article
CAS
PubMed
PubMed Central
Google Scholar
Stern P, Edwards FA, Sakmann B. Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. J Physiol. 1992;449:247–78. https://doi.org/10.1113/jphysiol.1992.sp019085 (Epub 1992/04/01).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bannister NJ, Benke TA, Mellor J, Scott H, Gurdal E, Crabtree JW, Isaac JT. Developmental changes in AMPA and kainate receptor-mediated quantal transmission at thalamocortical synapses in the barrel cortex. J Neurosci. 2005;25(21):5259–71. https://doi.org/10.1523/JNEUROSCI.0827-05.2005 (Epub 2005/05/27).
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature. 1997;388(6638):182–6. https://doi.org/10.1038/40645 (Epub 1997/07/10).
Article
CAS
PubMed
Google Scholar
Kidd FL, Isaac JT. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses. Nature. 1999;400(6744):569–73. https://doi.org/10.1038/23040 (Epub 1999/08/17).
Article
CAS
PubMed
Google Scholar
Olofsson L, Felekyan S, Doumazane E, Scholler P, Fabre L, Zwier JM, Rondard P, Seidel CA, Pin JP, Margeat E. Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat Commun. 2014;5:5206. https://doi.org/10.1038/ncomms6206 (Epub 2014/10/18).
Article
CAS
PubMed
Google Scholar
Savtchouk I, Liu SJ. Remodeling of synaptic AMPA receptor subtype alters the probability and pattern of action potential firing. J Neurosci. 2011;31(2):501–11. https://doi.org/10.1523/JNEUROSCI.2608-10.2011 (Epub 2011/01/14).
Article
CAS
PubMed
PubMed Central
Google Scholar
Diamond JS, Jahr CE. Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC. Neuron. 1995;15(5):1097–107. https://doi.org/10.1016/0896-6273(95)90098-5 (Epub 1995/11/01).
Article
CAS
PubMed
Google Scholar
Takahashi M, Kovalchuk Y, Attwell D. Pre- and postsynaptic determinants of EPSC waveform at cerebellar climbing fiber and parallel fiber to Purkinje cell synapses. J Neurosci. 1995;15(8):5693–702 (Epub 1995/08/01).
Article
CAS
Google Scholar
Ivashkina OI, Toropova KA, Ivanov AA, Chekhov SA, Anokhin KV. Waves of c-Fos and Arc proteins expression in neuronal populations of the hippocampus in response to a single episode of new experience. Bull Exp Biol Med. 2016;160(6):729–32. https://doi.org/10.1007/s10517-016-3296-3 (Epub 2016/05/11).
Article
CAS
PubMed
Google Scholar
Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 2011;34(11):591–8. https://doi.org/10.1016/j.tins.2011.08.007 (Epub 2011/10/04).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K. The Arc of synaptic memory. Exp Brain Res. 2010;200(2):125–40. https://doi.org/10.1007/s00221-009-1959-2 (Epub 2009/08/20).
Article
PubMed
Google Scholar
Rao VR, Pintchovski SA, Chin J, Peebles CL, Mitra S, Finkbeiner S. AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat Neurosci. 2006;9(7):887–95. https://doi.org/10.1038/nn1708 (Epub 2006/05/30).
Article
CAS
PubMed
Google Scholar
Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron. 2006;52(3):475–84. https://doi.org/10.1016/j.neuron.2006.08.034 (Epub 2006/11/08).
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldman DE. Potential, impedance, and rectification in membranes. J Gen Physiol. 1943;27(1):37–60. https://doi.org/10.1085/jgp.27.1.37 (Epub 1943/09/20).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodgkin AL, Katz B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949;108(1):37–77. https://doi.org/10.1113/jphysiol.1949.sp004310 (Epub 1949/03/03).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolaj M, Zhang L, Hermes ML, Renaud LP. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci. 2014;8:132. https://doi.org/10.3389/fnbeh.2014.00132 (Epub 2014/05/27).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolaj M, Zhang L, Ronnekleiv OK, Renaud LP. Midline thalamic paraventricular nucleus neurons display diurnal variation in resting membrane potentials, conductances, and firing patterns in vitro. J Neurophysiol. 2012;107(7):1835–44. https://doi.org/10.1152/jn.00974.2011 (Epub 2012/01/06).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuzhikandathil EV, Yu W, Oxford GS. Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cell Neurosci. 1998;12(6):390–402. https://doi.org/10.1006/mcne.1998.0722 (Epub 1999/01/16).
Article
CAS
PubMed
Google Scholar
Nicoll RA. The coupling of neurotransmitter receptors to ion channels in the brain. Science. 1988;241(4865):545–51. https://doi.org/10.1126/science.2456612 (Epub 1988/07/29).
Article
CAS
PubMed
Google Scholar
Werner P, Hussy N, Buell G, Jones KA, North RA. D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes. Mol Pharmacol. 1996;49(4):656–61 (Epub 1996/04/01).
CAS
PubMed
Google Scholar
Clarke TK, Laucht M, Ridinger M, Wodarz N, Rietschel M, Maier W, Lathrop M, Lourdusamy A, Zimmermann US, Desrivieres S, Schumann G. KCNJ6 is associated with adult alcohol dependence and involved in gene x early life stress interactions in adolescent alcohol drinking. Neuropsychopharmacology. 2011;36(6):1142–8. https://doi.org/10.1038/npp.2010.247 (Epub 2011/02/11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziegler GC, Roser C, Renner T, Hahn T, Ehlis AC, Weber H, Dempfle A, Walitza S, Jacob C, Romanos M, Fallgatter AJ, Reif A, Lesch KP. KCNJ6 variants modulate reward-related brain processes and impact executive functions in attention–deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2020;183(5):247–57. https://doi.org/10.1002/ajmg.b.32734 Epub 2019/05/18.
Article
CAS
PubMed
Google Scholar
Robbins TW, Everitt BJ. Drug addiction: bad habits add up. Nature. 1999;398(6728):567–70. https://doi.org/10.1038/19208 (Epub 1999/04/27).
Article
CAS
PubMed
Google Scholar
Tupala E, Tiihonen J. Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(8):1221–47. https://doi.org/10.1016/j.pnpbp.2004.06.022 (Epub 2004/12/14).
Article
CAS
PubMed
Google Scholar
Blum K, Chen AL, Braverman ER, Comings DE, Chen TJ, Arcuri V, Blum SH, Downs BW, Waite RL, Notaro A, Lubar J, Williams L, Prihoda TJ, Palomo T, Oscar-Berman M. Attention–deficit–hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr Dis Treat. 2008;4(5):893–918. https://doi.org/10.2147/ndt.s2627 Epub 2009/02/03.
Article
PubMed
PubMed Central
Google Scholar
Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA. The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism. Nat Neurosci. 2018;21(7):963–73. https://doi.org/10.1038/s41593-018-0167-4 (Epub 2018/06/20).
Article
CAS
PubMed
PubMed Central
Google Scholar
James MH, Dayas CV. What about me…? The PVT: a role for the paraventricular thalamus (PVT) in drug-seeking behavior. Front Behav Neurosci. 2013;7:18. https://doi.org/10.3389/fnbeh.2013.00018 (Epub 2013/03/20).
Article
PubMed
PubMed Central
Google Scholar
Haight JL, Flagel SB. A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses. Front Behav Neurosci. 2014;8:79. https://doi.org/10.3389/fnbeh.2014.00079 (Epub 2014/03/29).
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Bertaso F, Yoo JW, Baumgartel K, Clancy SM, Lee V, Cienfuegos C, Wilmot C, Avis J, Hunyh T, Daguia C, Schmedt C, Noebels J, Jegla T. Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat Neurosci. 2010;13(9):1056–8. https://doi.org/10.1038/nn.2610 (Epub 2010/08/03).
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyake A, Takahashi S, Nakamura Y, Inamura K, Matsumoto S, Mochizuki S, Katou M. Disruption of the ether-a-go-go K+ channel gene BEC1/KCNH3 enhances cognitive function. J Neurosci. 2009;29(46):14637–45. https://doi.org/10.1523/JNEUROSCI.0901-09.2009 (Epub 2009/11/20).
Article
CAS
PubMed
PubMed Central
Google Scholar
Christensen AH, Chatelain FC, Huttner IG, Olesen MS, Soka M, Feliciangeli S, Horvat C, Santiago CF, Vandenberg JI, Schmitt N, Olesen SP, Lesage F, Fatkin D. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. J Mol Cell Cardiol. 2016;97:24–35. https://doi.org/10.1016/j.yjmcc.2016.04.006 (Epub 2016/04/23).
Article
CAS
PubMed
Google Scholar
Liu PW, Bean BP. Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci. 2014;34(14):4991–5002. https://doi.org/10.1523/JNEUROSCI.1925-13.2014 (Epub 2014/04/04).
Article
CAS
PubMed
PubMed Central
Google Scholar
Willis M, Trieb M, Leitner I, Wietzorrek G, Marksteiner J, Knaus HG. Small-conductance calcium-activated potassium type 2 channels (SK2, KCa2.2) in human brain. Brain Struct Funct. 2017;222(2):973–9. https://doi.org/10.1007/s00429-016-1258-1 (Epub 2016/07/01).
Article
CAS
PubMed
Google Scholar
Madison DV, Nicoll RA. Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol. 1984;354:319–31. https://doi.org/10.1113/jphysiol.1984.sp015378 (Epub 1984/09/01).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitra R, Ferguson D, Sapolsky RM. SK2 potassium channel overexpression in basolateral amygdala reduces anxiety, stress-induced corticosterone secretion and dendritic arborization. Mol Psychiatry. 2009;14(9):847–55. https://doi.org/10.1038/mp.2009.9 (Epub 2009/02/11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Seda M, Pinto FM, Wray S, Cintado CG, Noheda P, Buschmann H, Candenas L. Functional and molecular characterization of voltage-gated sodium channels in uteri from nonpregnant rats. Biol Reprod. 2007;77(5):855–63. https://doi.org/10.1095/biolreprod.107.063016 (Epub 2007/08/03).
Article
CAS
PubMed
Google Scholar
Schmidt JW, Catterall WA. Biosynthesis and processing of the alpha subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell. 1986;46(3):437–44. https://doi.org/10.1016/0092-8674(86)90664-1 (Epub 1986/08/01).
Article
CAS
PubMed
Google Scholar
Corbett BF, Leiser SC, Ling HP, Nagy R, Breysse N, Zhang X, Hazra A, Brown JT, Randall AD, Wood A, Pangalos MN, Reinhart PH, Chin J. Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci. 2013;33(16):7020–6. https://doi.org/10.1523/JNEUROSCI.2325-12.2013 (Epub 2013/04/19).
Article
CAS
PubMed
PubMed Central
Google Scholar
Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell. 1995;83(3):433–42. https://doi.org/10.1016/0092-8674(95)90121-3 (Epub 1995/11/03).
Article
CAS
PubMed
Google Scholar
Spoljaric I, Spoljaric A, Mavrovic M, Seja P, Puskarjov M, Kaila K. KCC2-mediated Cl(−) extrusion modulates spontaneous hippocampal network events in perinatal rats and mice. Cell Rep. 2019;26(5):1073-1081.e3. https://doi.org/10.1016/j.celrep.2019.01.011 (Epub 2019/01/31).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Chen X, Eaton M, Wu J, Ma Z, Lai S, Park A, Ahmad TS, Que Z, Lee JH, Xiao T, Li Y, Wang Y, Olivero-Acosta MI, Schaber JA, Jayant K, Yuan C, Huang Z, Lanman NA, Skarnes WC, Yang Y. Severe deficiency of the voltage-gated sodium channel NaV1.2 elevates neuronal excitability in adult mice. Cell Rep. 2021;36(5): 109495. https://doi.org/10.1016/j.celrep.2021.109495.
Article
CAS
PubMed
PubMed Central
Google Scholar