Monika S, Rutherford John D. Cardiovascular physiology of pregnancy. Circulation. 2014;130(12):1003–8.
Article
Google Scholar
Mogos MF, Piano MR, McFarlin BL, Salemi JL, Liese KL, Briller JE. Heart failure in pregnant women. Circulation. 2018;11(1):e004005.
PubMed
Google Scholar
Graves CR, Davis SF. Cardiovascular complications in pregnancy. Circulation. 2018;137(12):1213–5.
Article
PubMed
Google Scholar
Anthony J, Sliwa K. Decompensated heart failure in pregnancy. Card Fail Rev. 2016;2(1):20–6.
Article
PubMed
PubMed Central
Google Scholar
Appiah D, Schreiner PJ, Gunderson EP, Konety SH, Jacobs DR Jr, Nwabuo CC, et al. Association of gestational diabetes mellitus with left ventricular structure and function: the CARDIA Study. Diabetes Care. 2016;39(3):400–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melchiorre K, Thilaganathan B. Maternal cardiac function in preeclampsia. Curr Opin Obstet Gynecol. 2011;23(6):440–7.
Article
PubMed
Google Scholar
Castleman JS, Ramesh G, Fatima T, Lip Gregory YH, Steeds Richard P, Dipak K. Echocardiographic structure and function in hypertensive disorders of pregnancy. Circulation. 2016;9(9):e004888.
PubMed
Google Scholar
Arany Z. Understanding peripartum cardiomyopathy. Annu Rev Med. 2018;69(1):165–76.
Article
CAS
PubMed
Google Scholar
Creanga A, Berg C, Syverson C, Seed K, Bruce F, Callaghan W. Pregnancy-related mortality in the United States, 2006–2010. Obstet Gynecol. 2015;125(1):5–12.
Article
PubMed
Google Scholar
Ng AT, Duan L, Win T, Spencer HT, Lee M-S. Maternal and fetal outcomes in pregnant women with heart failure. Heart. 2018;104(23):1949–54.
Article
PubMed
Google Scholar
Wu P, Randula H, Shing KC, Aswin B, Kotronias Rafail A, Claire R, et al. Preeclampsia and future cardiovascular health. Circulation. 2017;10(2):e003497.
PubMed
Google Scholar
Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396–9.
Article
CAS
PubMed
Google Scholar
Liu LX, Arany Z. Maternal cardiac metabolism in pregnancy. Cardiovasc Res. 2014;101(4):545–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012;21(5):365–71.
Article
CAS
PubMed
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCreight JC, Schneider SE, Wilburn DB, Swanson WJ. Evolution of microRNA in primates. PLoS One. 2017;12(6):e0176596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97(1):51–61.
Article
CAS
PubMed
Google Scholar
Cai M, Kolluru GK, Ahmed A. Small molecule, big prospects: microRNA in pregnancy and its complications. J Pregnancy. 2017;2017:6972732.
Article
PubMed
PubMed Central
CAS
Google Scholar
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y-M, Huang Y-M, Li W-W, Li W-W, Wu J, Wu J, et al. The diagnostic value of circulating microRNAs in heart failure (Review). Exp Ther Med. 2019;17(3):1985–2003.
CAS
PubMed
PubMed Central
Google Scholar
Hall ME, George EM, Granger JP. The heart during pregnancy. Rev Esp Cardiol. 2011;64(11):1045–50.
Article
PubMed
PubMed Central
Google Scholar
Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016;27(2):89–94.
Article
PubMed
PubMed Central
Google Scholar
Li J, Umar S, Amjedi M, Iorga A, Sharma S, Nadadur RD, et al. New frontiers in heart hypertrophy during pregnancy. Am J Cardiovasc Dis. 2012;2(3):192–207.
PubMed
PubMed Central
Google Scholar
Chung E, Leinwand LA. Pregnancy as a cardiac stress model. Cardiovasc Res. 2014;101(4):561–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62.
Article
CAS
PubMed
Google Scholar
Umar S, Nadadur R, Iorga A, Amjedi M, Matori H, Eghbali M. Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J Appl Physiol (1985). 2012;113(8):1253–9.
Article
Google Scholar
Maack C, Lehrke M, Backs J, Heinzel FR, Hulot J-S, Marx N, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. Eur Heart J. 2018;39(48):4243–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu LX, Rowe GC, Yang S, Li J, Damilano F, Chan MC, et al. PDK4 inhibits cardiac pyruvate oxidation in late pregnancy. Circ Res. 2017;121(12):1370–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redondo-Angulo I, Mas-Stachurska A, Sitges M, Tinahones FJ, Giralt M, Villarroya F, et al. Fgf21 is required for cardiac remodeling in pregnancy. Cardiovasc Res. 2017;113(13):1574–84.
Article
CAS
PubMed
Google Scholar
Williams JG, Ojaimi C, Qanud K, Zhang S, Xu X, Recchia FA, et al. Coronary nitric oxide production controls cardiac substrate metabolism during pregnancy in the dog. Am J Physiol Heart Circ Physiol. 2008;294(6):H2516–23.
Article
CAS
PubMed
Google Scholar
Rimbaud S, Sanchez H, Garnier A, Fortin D, Bigard X, Veksler V, et al. Stimulus specific changes of energy metabolism in hypertrophied heart. J Mol Cell Cardiol. 2009;46(6):952–9.
Article
CAS
PubMed
Google Scholar
Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012;125(23):2844–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garnier A, Fortin D, Deloménie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol Lond. 2003;551(Pt 2):491–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung E, Yeung F, Leinwand LA. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation. J Appl Physiol (1985). 2012;112(9):1564–75.
Article
CAS
Google Scholar
Haghikia A, Stapel B, Hoch M, Hilfiker-Kleiner D. STAT3 and cardiac remodeling. Heart Fail Rev. 2011;16(1):35–47.
Article
CAS
PubMed
Google Scholar
Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002;99(2):907–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000;19(11):2537–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003;100(21):12355–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brian DB, Iya T, Lupu TS, Carla W, Attila K, Michael C, et al. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097–104.
Article
CAS
Google Scholar
Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A. 2002;99(19):12333–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, et al. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem. 2005;280(21):20814–23.
Article
CAS
PubMed
Google Scholar
Lemmens K, Doggen K, De Keulenaer GW. Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. Am J Physiol Heart Circ Physiol. 2010;300(3):H931–42.
Article
PubMed
CAS
Google Scholar
Gonzalez AMD, Osorio JC, Manlhiot C, Gruber D, Homma S, Mital S. Hypertrophy signaling during peripartum cardiac remodeling. Am J Physiol Heart Circ Physiol. 2007;293(5):H3008–13.
Article
CAS
PubMed
Google Scholar
Saito T, Ciobotaru A, Bopassa JC, Toro L, Stefani E, Eghbali M. Estrogen contributes to gender differences in mouse ventricular repolarization. Circ Res. 2009;105(4):343–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T, McDonnell DP. Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc Natl Acad Sci U S A. 1999;96(8):4686–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazi AA, Molitoris KH, Koos RD. Estrogen rapidly activates the PI3K/AKT pathway and hypoxia-inducible factor 1 and induces vascular endothelial growth factor A expression in luminal epithelial cells of the rat uterus. Biol Reprod. 2009;81(2):378–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansoureh E, Rupal D, Abderrahmane A, Minosyan TY, Hongmei R, Wang Y, et al. Molecular and functional signature of heart hypertrophy during pregnancy. Circ Res. 2005;96(11):1208–16.
Article
CAS
Google Scholar
Torsoni AS, Constancio SS, Wilson N, Hanks Steven K, Franchini Kleber G. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res. 2003;93(2):140–7.
Article
CAS
PubMed
Google Scholar
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010;90(4) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808831/. [cited 2019 Dec 19].
Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, et al. The MEK1–ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000;19(23):6341–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H, Hikoso S, et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci U S A. 2003;100(26):15883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation. 2001;103(5):670–7.
Article
CAS
PubMed
Google Scholar
Parra V, Rothermel BA. Calcineurin signaling in the heart: the importance of time and place. J Mol Cell Cardiol. 2017;103:121–36.
Article
CAS
PubMed
Google Scholar
Chung E, Yeung F, Leinwand LA. Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc Res. 2013;100(3):402–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M. An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med. 2019;6 Available from: https://www.frontiersin.org/articles/10.3389/fcvm.2019.00150/full. [cited 2019 Dec 20].
Zouein FA, Altara R, Chen Q, Lesnefsky EJ, Kurdi M, Booz GW. Pivotal importance of STAT3 in protecting the heart from acute and chronic stress: new advancement and unresolved issues. Front Cardiovasc Med. 2015;2:36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murray PJ. STAT3-mediated anti-inflammatory signalling. Biochem Soc Trans. 2006;34(Pt 6):1028–31.
Article
CAS
PubMed
Google Scholar
Zgheib C, Zouein FA, Kurdi M, Booz GW. Differential STAT3 signaling in the heart: Impact of concurrent signals and oxidative stress. JAKSTAT. 2012;1(2):101–10.
PubMed
PubMed Central
Google Scholar
Datta R, Bansal T, Rana S, Datta K, Datta Chaudhuri R, Chawla-Sarkar M, et al. Myocyte-derived Hsp90 modulates collagen upregulation via biphasic activation of STAT-3 in fibroblasts during cardiac hypertrophy. Mol Cell Biol. 2017;37(6):e00611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meléndez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension. 2010;56(2):225–31.
Article
PubMed
CAS
Google Scholar
Haghikia A, Missol-Kolka E, Tsikas D, Venturini L, Brundiers S, Castoldi M, et al. Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes. Eur Heart J. 2010;32(10):1287–97.
Article
PubMed
CAS
Google Scholar
Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen N-Q-N, Scherr M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest. 2013;123(5):2143–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinji N, Keita K, Yasushi F, Masanobu F, Darville MI, Eizirik DL, et al. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation. 2001;104(9):979–81.
Article
Google Scholar
Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128(3):589–600.
Article
CAS
PubMed
Google Scholar
Li J, Ruffenach G, Kararigas G, Cunningham CM, Motayagheni N, Barakai N, et al. Intralipid protects the heart in late pregnancy against ischemia/reperfusion injury via Caveolin2/STAT3/GSK-3β pathway. J Mol Cell Cardiol. 2017;102:108–16.
Article
CAS
PubMed
Google Scholar
Li J, Umar S, Iorga A, Youn J-Y, Wang Y, Regitz-Zagrosek V, et al. Cardiac vulnerability to ischemia/reperfusion injury drastically increases in late pregnancy. Basic Res Cardiol. 2012;107(4):271.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ricke-Hoch M, Bultmann I, Stapel B, Condorelli G, Rinas U, Sliwa K, et al. Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress. Cardiovasc Res. 2014;101(4):587–96.
Article
CAS
PubMed
Google Scholar
Sarosh R, Elizabeth L, Granger Joey P, Ananth KS. Preeclampsia. Circ Res. 2019;124(7):1094–112.
Article
CAS
Google Scholar
Angueira AR, Ludvik AE, Reddy TE, Wicksteed B, Lowe WL Jr, Layden BT. New insights into gestational glucose metabolism: lessons learned from 21st century approaches. Diabetes. 2015;64(2):327–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan SD, Umans JG, Ratner R. Gestational diabetes: implications for cardiovascular health. Curr Diab Rep. 2012;12(1):43–52.
Article
CAS
PubMed
Google Scholar
Melenovsky V, Benes J, Franekova J, Kovar J, Borlaug BA, Segetova M, et al. Glucose homeostasis, pancreatic endocrine function, and outcomes in advanced heart failure. J Am Heart Assoc. 2017;6(8):e005290.
Article
PubMed
PubMed Central
Google Scholar
Freire CMV, do Carmo Pereira Nunes M, Melo Barbosa M, Ribeiro de Oliveira Longo J, Impeliziere Nogueira A, Santos Assreuy Diniz S, et al. Gestational diabetes: a condition of early diastolic abnormalities in young women. J Am Soc Echocardiogr. 2006;19(10):1251–6.
Article
PubMed
Google Scholar
McKenzie-Sampson S, Paradis G, Healy-Profitós J, St-Pierre F, Auger N. Gestational diabetes and risk of cardiovascular disease up to 25 years after pregnancy: a retrospective cohort study. Acta Diabetol. 2018;55(4):315–22.
Article
PubMed
Google Scholar
Savitz DA, Danilack VA, Elston B, Lipkind HS. Pregnancy-induced hypertension and diabetes and the risk of cardiovascular disease, stroke, and diabetes hospitalization in the year following delivery. Am J Epidemiol. 2014;180(1):41–4.
Article
PubMed
PubMed Central
Google Scholar
Kessous R, Shoham-Vardi I, Pariente G, Sherf M, Sheiner E. An association between gestational diabetes mellitus and long-term maternal cardiovascular morbidity. Heart. 2013;99(15):1118–21.
Article
PubMed
Google Scholar
Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342.
Article
PubMed Central
CAS
Google Scholar
Catalano PM. Trying to understand gestational diabetes. Diabet Med. 2014;31(3):273–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imoh LC, Ocheke AN. Correlation between maternal weight and insulin resistance in second half of pregnancy. Niger Med J. 2014;55(6):465–8.
Article
PubMed
PubMed Central
Google Scholar
Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30(Supplement 2):S112.
Article
CAS
PubMed
Google Scholar
Moyce BL, Dolinsky VW. Maternal β-cell adaptations in pregnancy and placental signalling: implications for gestational diabetes. Int J Mol Sci. 2018;19(11) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274918/. [cited 2019 Dec 30].
Yang Y, Lixiu L, Liu B, Li Q, Wang Z, Fan S, et al. Functional defects of regulatory T cell through interleukin 10 mediated mechanism in the induction of gestational diabetes mellitus. DNA Cell Biol. 2018;37(3):278–85.
Article
CAS
PubMed
Google Scholar
Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 2007;56(9):2356.
Article
CAS
PubMed
Google Scholar
Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr. 2000;71(5):1256S–61S.
Article
CAS
PubMed
Google Scholar
Di Cianni G, Miccoli R, Volpe L, Lencioni C, Del Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev. 2003;19(4):259–70.
Article
PubMed
CAS
Google Scholar
Liu Y, Zhao J, Lu M, Wang H, Tang F. Retinoic acid attenuates cardiac injury induced by hyperglycemia in pre- and post-delivery mice. Can J Physiol Pharmacol. 2020;98(1):6–14.
Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57(4):660–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braunthal S, Brateanu A. Hypertension in pregnancy: pathophysiology and treatment. SAGE Open Med. 2019;7:2050312119843700.
Article
PubMed
PubMed Central
Google Scholar
Mammaro A, Carrara S, Cavaliere A, Ermito S, Dinatale A, Pappalardo EM, et al. Hypertensive disorders of pregnancy. J Prenat Med. 2009;3(1):1–5.
PubMed
PubMed Central
Google Scholar
Wendy Y, Catov Janet M, Pamela O. Hypertensive disorders of pregnancy and future maternal cardiovascular risk. J Am Heart Assoc. 2018;7(17):e009382.
Google Scholar
Vaught AJ, Kovell LC, Szymanski LM, Mayer SA, Seifert SM, Vaidya D, et al. Acute cardiac effects of severe pre-eclampsia. J Am Coll Cardiol. 2018;72(1):1–11.
Article
PubMed
PubMed Central
Google Scholar
Visser W, Wallenburg HC. Central hemodynamic observations in untreated preeclamptic patients. Hypertension. 1991;17(6_pt_2):1072–7.
Article
CAS
PubMed
Google Scholar
Basky T, Erkan K. Cardiovascular system in preeclampsia and beyond. Hypertension. 2019;73(3):522–31.
Article
CAS
Google Scholar
Lang RM, Pridjian G, Feldman T, Neumann A, Lindheimer M, Borow KM. Left ventricular mechanics in preeclampsia. Am Heart J. 1991;121(6, Part 1):1768–75.
Article
CAS
PubMed
Google Scholar
Simmons LA, Gillin AG, Jeremy RW. Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy. Am J Physiol Heart Circ Physiol. 2002;283(4):H1627–33.
Article
CAS
PubMed
Google Scholar
Shivananjiah C, Nayak A, Swarup A. Echo changes in hypertensive disorder of pregnancy. J Cardiovasc Echogr. 2016;26(3):94–6.
Article
PubMed
PubMed Central
Google Scholar
Melchiorre K, Sutherland GR, Baltabaeva A, Liberati M, Thilaganathan B. Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertension. 2011;57(1):85–93.
Article
CAS
PubMed
Google Scholar
Melchiorre K, Sutherland GR, Watt-Coote I, Liberati M, Thilaganathan B. Severe myocardial impairment and chamber dysfunction in preterm preeclampsia. Hypertens Pregnancy. 2012;31(4):454–71.
Article
PubMed
Google Scholar
Borges VTM, Zanati SG, Peraçoli MTS, Poiati JR, Romão-Veiga M, Peraçoli JC, et al. Maternal left ventricular hypertrophy and diastolic dysfunction and brain natriuretic peptide concentration in early- and late-onset pre-eclampsia. Ultrasound Obstet Gynecol. 2018;51(4):519–23.
Article
CAS
PubMed
Google Scholar
Veerbeek JHW, Hermes W, Breimer AY, van Rijn BB, Koenen SV, Mol BW, et al. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension. 2015;65(3):600–6.
Article
CAS
PubMed
Google Scholar
Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A. 1993;90(22):10705–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine RJ, Maynard SE, Qian C, Lim K-H, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.
Article
CAS
PubMed
Google Scholar
Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9.
Article
CAS
PubMed
Google Scholar
Regal JF, Burwick RM, Fleming SD. The complement system and preeclampsia. Curr Hypertens Rep. 2017;19(11):87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen W, Qian L, Wu F, Li M, Wang H. Significance of toll-like receptor 4 signaling in peripheral blood monocytes of pre-eclamptic patients. Hypertens Pregnancy. 2015;34(4):486–94.
Article
CAS
PubMed
Google Scholar
Irani RA, Xia Y. The functional role of the renin–angiotensin system in pregnancy and preeclampsia. Placenta. 2008;29(9):763–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes LM, Usselman CW, Davenport MH, Steinback CD. Sympathetic nervous system regulation in human normotensive and hypertensive pregnancies. Hypertension. 2018;71(5):793–803.
Article
CAS
PubMed
Google Scholar
Hibbard JU, Shroff SG, Lang RM. Cardiovascular changes in preeclampsia. Semin Nephrol. 2004;24(6):580–7.
Article
PubMed
Google Scholar
Cui Y, Wang W, Dong N, Lou J, Srinivasan DK, Cheng W, et al. Role of corin in trophoblast invasion and uterine spiral artery remodeling in pregnancy. Nature. 2012;484(7393):246–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Dijk M, Mulders J, Poutsma A, Könst AAM, Lachmeijer AMA, Dekker GA, et al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet. 2005;37(5):514–9.
Article
PubMed
CAS
Google Scholar
Baird RC, Li S, Wang H, Naga Prasad SV, Majdalany D, Perni U, et al. Pregnancy-associated cardiac hypertrophy in corin-deficient mice: observations in a transgenic model of preeclampsia. Can J Cardiol. 2019;35(1):68–76.
Article
PubMed
Google Scholar
Ducat A, Doridot L, Calicchio R, Méhats C, Vilotte J-L, Castille J, et al. Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Sci Rep. 2016;6:19196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tangerås LH, Austdal M, Skråstad RB, Salvesen KÅ, Austgulen R, Bathen TF, et al. Distinct first trimester cytokine profiles for gestational hypertension and preeclampsia. Arterioscler Thromb Vasc Biol. 2015;35(11):2478–85.
Article
PubMed
CAS
Google Scholar
Herbert V, Paolo NG, Barbara V, Giancarlo DR, Elisabetta RM, Massimo M, et al. Maternal diastolic dysfunction and left ventricular geometry in gestational hypertension. Hypertension. 2001;37(5):1209–15.
Article
Google Scholar
Blanco MV, Roisinblit J, Grosso O, Rodriguez G, Robert S, Berensztein CS, et al. Left ventricular function impairment in pregnancy-induced hypertension. Am J Hypertens. 2001;14(3):271–5.
Article
Google Scholar
Cho K-I, Kim S-M, Shin M-S, Kim E-J, Cho E-J, Seo H-S, et al. Impact of gestational hypertension on left ventricular function and geometric pattern. Circ J. 2011;75(5):1170–6.
Article
PubMed
Google Scholar
Vlahović-Stipac A, Stankić V, Popović ZB, Putniković B, Nešković AN. Left ventricular function in gestational hypertension: serial echocardiographic study. Am J Hypertens. 2010;23(1):85–91.
Article
PubMed
Google Scholar
Scantlebury DC, Kane GC, Wiste HJ, Bailey KR, Turner ST, Arnett DK, et al. Left ventricular hypertrophy after hypertensive pregnancy disorders. Heart. 2015;101(19):1584–90.
Article
CAS
PubMed
Google Scholar
Männistö T, Mendola P, Vääräsmäki M, Järvelin M-R, Hartikainen A-L, Pouta A, et al. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013;127(6):681–90.
Article
PubMed
PubMed Central
Google Scholar
Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165–241.
Article
PubMed
Google Scholar
Zolt A, Uri E. Peripartum cardiomyopathy. Circulation. 2016;133(14):1397–409.
Article
CAS
Google Scholar
Sliwa K, Förster O, Libhaber E, Fett JD, Sundstrom JB, Hilfiker-Kleiner D, et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur Heart J. 2006;27(4):441–6.
Article
CAS
PubMed
Google Scholar
Duran N, Günes H, Duran I, Biteker M, Özkan M. Predictors of prognosis in patients with peripartum cardiomyopathy. Int J Gynecol Obstet. 2008;101(2):137–40.
Article
Google Scholar
Fett JD, Christie LG, Carraway RD, Murphy JG. Five-year prospective study of the incidence and prognosis of peripartum cardiomyopathy at a single institution. Mayo Clin Proc. 2005;80(12):1602–6.
Article
PubMed
Google Scholar
Fett JD, Sannon H, Thélisma E, Sprunger T, Suresh V. Recovery from severe heart failure following peripartum cardiomyopathy. Int J Gynecol Obstet. 2009;104(2):125–7.
Article
Google Scholar
Azibani F, Sliwa K. Peripartum cardiomyopathy: an update. Curr Heart Fail Rep. 2018;15(5):297–306.
Article
PubMed
PubMed Central
Google Scholar
Forster O, Hilfiker-Kleiner D, Ansari AA, Sundstrom JB, Libhaber E, Tshani W, et al. Reversal of IFN-gamma, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy. Eur J Heart Fail. 2008;10(9):861–8.
Article
CAS
PubMed
Google Scholar
Hilfiker-Kleiner D, Haghikia A, Berliner D, Vogel-Claussen J, Schwab J, Franke A, et al. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur Heart J. 2017;38(35):2671–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sliwa K, Blauwet L, Tibazarwa K, Libhaber E, Smedema J-P, Becker A, et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation. 2010;121(13):1465–73.
Article
CAS
PubMed
Google Scholar
Bajou K, Herkenne S, Thijssen VL, D’Amico S, Nguyen N-Q-N, Bouché A, et al. PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nat Med. 2014;20(7):741–7.
Article
CAS
PubMed
Google Scholar
Patten IS, Rana S, Shahul S, Rowe GC, Jang C, Liu L, et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature. 2012;485(7398):333–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowe GC, Jiang A, Arany Z. PGC-1 coactivators in cardiac development and disease. Circ Res. 2010;107(7):825–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia G, Sun X, Zheng X, Wang J. Decreased expression of programmed death 1 on peripheral blood lymphocytes disrupts immune homeostasis in peripartum cardiomyopathy. Int J Cardiol. 2016;223:842–7.
Article
PubMed
Google Scholar
Ware JS, Li J, Mazaika E, Yasso CM, DeSouza T, Cappola TP, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med. 2016;374(3):233–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linke WA, Hamdani N. Gigantic business: titin properties and function through thick and thin. Circ Res. 2014;114(6):1052–68.
Article
CAS
PubMed
Google Scholar
Ottaviani L, Sansonetti M, da Costa Martins PA. Myocardial cell-to-cell communication via microRNAs. Noncoding RNA Res. 2018;3(3):144–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation--identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol. 2011;89(2):185–91.
Article
CAS
PubMed
Google Scholar
Miura K, Miura S, Yamasaki K, Higashijima A, Kinoshita A, Yoshiura K, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem. 2010;56(11):1767–71.
Article
CAS
PubMed
Google Scholar
Lamadrid-Romero M, Solís KH, Cruz-Reséndiz MS, Pérez JE, Díaz NF, Flores-Herrera H, et al. Central nervous system development-related microRNAs levels increase in the serum of gestational diabetic women during the first trimester of pregnancy. Neurosci Res. 2018;130:8–22.
Article
CAS
PubMed
Google Scholar
Bayoumi AS, Park K-M, Wang Y, Teoh J-P, Aonuma T, Tang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J Mol Cell Cardiol. 2018;114:72–82.
Article
CAS
PubMed
Google Scholar
Lin D, Cui B, Ma J, Ren J. MiR-183-5p protects rat hearts against myocardial ischemia/reperfusion injury through targeting VDAC1. BioFactors. 2019;n/a(n/a) Available from: https://doi.org/10.1002/biof.1571. [cited 2019 Nov 20].
Xu L, Chen W, Ma M, Chen A, Tang C, Zhang C, et al. Microarray profiling analysis identifies the mechanism of miR-200b-3p/mRNA-CD36 affecting diabetic cardiomyopathy via peroxisome proliferator activated receptor-γ signaling pathway. J Cell Biochem. 2019;120(4):5193–206.
Article
CAS
PubMed
Google Scholar
Feng B, Cao Y, Chen S, Chu X, Chu Y, Chakrabarti S. miR-200b mediates endothelial-to-mesenchymal transition in diabetic cardiomyopathy. Diabetes. 2016;65(3):768.
Article
CAS
PubMed
Google Scholar
Guarino E, Delli Poggi C, Grieco GE, Cenci V, Ceccarelli E, Crisci I, et al. Circulating microRNAs as biomarkers of gestational diabetes mellitus: updates and perspectives. Int J Endocrinol. 2018;2018:6380463.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wander PL, Boyko EJ, Hevner K, Parikh VJ, Tadesse MG, Sorensen TK, et al. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res Clin Pract. 2017;132:1–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S, et al. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res. 2014;105(3):340–52.
Article
PubMed
CAS
Google Scholar
Tagoma A, Alnek K, Kirss A, Uibo R, Haller-Kikkatalo K. MicroRNA profiling of second trimester maternal plasma shows upregulation of miR-195-5p in patients with gestational diabetes. Gene. 2018;672:137–42.
Article
CAS
PubMed
Google Scholar
Zheng D, Ma J, Yu Y, Li M, Ni R, Wang G, et al. Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia. 2015;58(8):1949–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Yan C, Li Y, Zhang Y, Zhang G, Li M, et al. Expression signature of miRNAs and the potential role of miR-195-5p in high-glucose–treated rat cardiomyocytes. J Biochem Mol Toxicol. 2020;n/a(n/a):e22423.
Google Scholar
Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, et al. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One. 2011;6(8):e23925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnold N, Koppula PR, Gul R, Luck C, Pulakat L. Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One. 2014;9(7) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111545/. [cited 2019 Dec 11].
Han C, Chen X, Zhuang R, Xu M, Liu S, Li Q. miR-29a promotes myocardial cell apoptosis induced by high glucose through down-regulating IGF-1. Int J Clin Exp Med. 2015;8(8):14352–62.
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21(4):584–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su M, Chen Z, Wang C, Song L, Zou Y, Zhang L, et al. Cardiac-specific overexpression of miR-222 induces heart failure and inhibits autophagy in mice. CPB. 2016;39(4):1503–11.
CAS
Google Scholar
Jia K, Shi P, Han X, Chen T, Tang H, Wang J. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep. 2016;14(1):184–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slusarz A, Pulakat L. The two faces of miR-29. J Cardiovasc Med (Hagerstown). 2015;16(7):480–90.
Article
CAS
Google Scholar
Wang Z, Wang Z, Gao L, Xiao L, Yao R, Du B, et al. miR-222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/β-catenin-mediated endothelium to mesenchymal transition. J Cell Physiol. n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.29119. [cited 2019 Nov 20].
Robin V, Tim P, Javier BF, van Rick L, van Tessa H, Wouter V, et al. MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload–induced heart failure. Hypertension. 2018;71(2):280–8.
Article
CAS
Google Scholar
Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052–61.
Article
CAS
PubMed
Google Scholar
Barchitta M, Maugeri A, Quattrocchi A, Agrifoglio O, Agodi A. The role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review. Int J Genomics. 2017;2017:8067972.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jairajpuri DS, Malalla ZH, Mahmood N, Almawi WY. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene. 2017;627:543–8.
Article
CAS
PubMed
Google Scholar
Ura B, Feriotto G, Monasta L, Bilel S, Zweyer M, Celeghini C. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol. 2014;53(2):232–4.
Article
PubMed
Google Scholar
Munaut C, Tebache L, Blacher S, Noël A, Nisolle M, Chantraine F. Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 2016;5(6):686–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L, et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med. 2012;16(2):249–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mutharasan RK, Nagpal V, Ichikawa Y, Ardehali H. microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects. Am J Physiol Heart Circ Physiol. 2011;301(4):H1519–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis. 2016;7(6):e2277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A, et al. MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med. 2017;95(12):1369–85.
Article
CAS
PubMed
Google Scholar
Wang N, Chen C, Yang D, Liao Q, Luo H, Wang X, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta. 2017;1863(8):2085–92.
Article
CAS
Google Scholar
Li H, Ge Q, Guo L, Lu Z. Maternal plasma miRNAs expression in preeclamptic pregnancies. Biomed Res Int. 2013; Available from: https://www.hindawi.com/journals/bmri/2013/970265/. [cited 2019 Dec 12].
Roncarati R, Anselmi CV, Losi MA, Papa L, Cavarretta E, Martins PDC, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63(9):920–7.
Article
CAS
PubMed
Google Scholar
Han W, Han Y, Liu X, Shang X. Effect of miR-29a inhibition on ventricular hypertrophy induced by pressure overload. Cell Biochem Biophys. 2015;71(2):821–6.
Article
CAS
PubMed
Google Scholar
Li M, Wang N, Zhang J, He H-P, Gong H-Q, Zhang R, et al. MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes. Gene. 2016;585(1):44–50.
Article
CAS
PubMed
Google Scholar
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980.
Article
CAS
PubMed
Google Scholar
Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, et al. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem. 2017;42(6):2207–19.
Article
CAS
PubMed
Google Scholar
Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010;87(3):431–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Wang B, Zhou Q, Wang Y, Liu X, Liu Z, et al. MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis. 2018;9(7):1–14.
Article
CAS
Google Scholar
Seok HY, Chen J, Kataoka M, Huang Z-P, Ding J, Yan J, et al. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ Res. 2014;114(10):1585–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen REW, Custers K, et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation. 2013;128(13):1420–32.
Article
CAS
PubMed
Google Scholar
He W, Huang H, Xie Q, Wang Z, Fan Y, Kong B, et al. MiR-155 knockout in fibroblasts improves cardiac remodeling by targeting tumor protein p53-inducible nuclear protein 1. J Cardiovasc Pharmacol Ther. 2015;21(4):423–35.
Article
PubMed
CAS
Google Scholar
Akehurst C, Small HY, Sharafetdinova L, Forrest R, Beattie W, Brown CE, et al. Differential expression of microRNA-206 and its target genes in preeclampsia. J Hypertens. 2015;33(10):2068–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Del Re DP, Nakano N, Sciarretta S, Zhai P, Park J, et al. miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res. 2015;117(10):891–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Q, Wang F, Honda T, James J, Li J, Redington A. Loss of miR-144 signaling interrupts extracellular matrix remodeling after myocardial infarction leading to worsened cardiac function. Sci Rep. 2018;8(1):1–11.
Article
CAS
Google Scholar
Li J, Cai SX, He Q, Zhang H, Friedberg D, Wang F, et al. Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Res Cardiol. 2018;113(5):36.
Article
PubMed
CAS
Google Scholar
Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012;94(2):379–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hromadnikova I, Kotlabova K, Hympanova L, Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb Res. 2016;137:126–40.
Article
CAS
PubMed
Google Scholar
Hromadnikova I, Kotlabova K, Ivankova K, Vedmetskaya Y, Krofta L. Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction. Int J Cardiol. 2017;249:402–9.
Article
PubMed
Google Scholar
Sandrim VC, Eleuterio N, Pilan E, Tanus-Santos JE, Fernandes K, Cavalli R. Plasma levels of increased miR-195-5p correlates with the sFLT-1 levels in preeclampsia. Hypertens Pregnancy. 2016;35(2):150–8.
Article
CAS
PubMed
Google Scholar
Wang L, Qin D, Shi H, Zhang Y, Li H, Han Q. MiR-195-5p promotes cardiomyocyte hypertrophy by targeting MFN2 and FBXW7. Biomed Res Int. 2019;2019:1580982.
PubMed
PubMed Central
Google Scholar
Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang H-H, Chen Y, Gao C-Y, Cui Z-T, Yao J-M. Protective effects of microRNA-126 on human cardiac microvascular endothelial cells against hypoxia/reoxygenation-induced injury and inflammatory response by activating PI3K/Akt/eNOS signaling pathway. CPB. 2017;42(2):506–18.
CAS
Google Scholar
Xiao J, Zhu X, He B, Zhang Y, Kang B, Wang Z, et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci. 2011;18(1):35.
Article
PubMed
PubMed Central
Google Scholar
Tijsen AJ, van der Made I, van den Hoogenhof MM, de Groot NE, Alekseev S, Wijnen WJ, et al. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res. 2014;104(1):61–71.
Article
CAS
PubMed
Google Scholar
Guan Y, Song X, Sun W, Wang Y, Liu B. Effect of hypoxia-induced microRNA-210 expression on cardiovascular disease and the underlying mechanism. Oxidative Med Cell Longev. 2019; Available from: https://new.hindawi.com/journals/omcl/2019/4727283/. [cited 2019 Dec 28].
Duygu B, Da Costa Martins PA. miR-21: a star player in cardiac hypertrophy. Cardiovasc Res. 2015;105(3):235–7.
Article
CAS
PubMed
Google Scholar
Khaliq OP, Murugesan S, Moodley J, Mackraj I. Differential expression of miRNAs are associated with the insulin signaling pathway in preeclampsia and gestational hypertension. Clin Exp Hypertens. 2018;40(8):744–51.
Article
CAS
PubMed
Google Scholar
Zhu J, Yao K, Wang Q, Guo J, Shi H, Ma L, et al. Circulating miR-181a as a potential novel biomarker for diagnosis of acute myocardial infarction. Cell Physiol Biochem. 2016;40(6):1591–602.
Article
CAS
PubMed
Google Scholar
Chen P, Pan J, Zhang X, Shi Z, Yang X. The role of microRNA-181a in myocardial fibrosis following myocardial infarction in a rat model. Med Sci Monit. 2018;24:4121–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li A-L, Lv J-B, Gao L. MiR-181a mediates Ang II-induced myocardial hypertrophy by mediating autophagy. Eur Rev Med Pharmacol Sci. 2017;21(23):5462–70.
PubMed
Google Scholar
Haghikia A, Podewski E, Libhaber E, Labidi S, Fischer D, Roentgen P, et al. Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res Cardiol. 2013;108(4):366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stapel B, Kohlhaas M, Ricke-Hoch M, Haghikia A, Erschow S, Knuuti J, et al. Low STAT3 expression sensitizes to toxic effects of β-adrenergic receptor stimulation in peripartum cardiomyopathy. Eur Heart J. 2017;38(5):349–61.
CAS
PubMed
Google Scholar
Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin Biochem. 2013;46(10):953–60.
Article
CAS
PubMed
Google Scholar
Marshall SA, Hannan NJ, Jelinic M, Nguyen TPH, Girling JE, Parry LJ. Animal models of preeclampsia: translational failings and why. Am J Phys Regul Integr Comp Phys. 2017;314(4):R499–508.
Google Scholar
Florijn BW, Bijkerk R, van der Veer EP, van Zonneveld AJ. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res. 2018;114(2):210–25.
Article
CAS
PubMed
Google Scholar
Medzikovic L, Aryan L, Eghbali M. Connecting sex differences, estrogen signaling, and microRNAs in cardiac fibrosis. J Mol Med. 2019;97(10):1385–98.
Article
CAS
PubMed
Google Scholar