Wells JCK. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21(3):415–30.
Article
PubMed
Google Scholar
Corona G, Giagulli VA, Maseroli E, Vignozzi L, Aversa A, Zitzmann M, et al. Testosterone supplementation and body composition: results from a meta-analysis of observational studies. J Endocrinol Invest. 2016;39:967–81.
Article
CAS
PubMed
Google Scholar
Pasiakos SM, Berryman CE, Karl JP, Lieberman HR, Orr JS, Margolis LM, et al. Effects of testosterone supplementation on body composition and lower-body muscle function during severe exercise- and diet-induced energy deficit: a proof-of-concept, single centre, randomised, double-blind, controlled trial. EBioMedicine. 2019;46:411–22.
Article
PubMed
PubMed Central
Google Scholar
Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology. 2015;30(1):30–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Handelsman DJ, Hirschberg AL, Bermon S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr Rev. 2018;39(5):803–29.
Article
PubMed
PubMed Central
Google Scholar
Gharahdaghi N, Rudrappa S, Brook MS, Farrash W, Idris I, Aziz MHA, et al. Pharmacological hypogonadism impairs molecular transducers of exercise-induced muscle growth in humans. J Cachexia Sarcopenia Muscle. 2022;13(2):1134–50.
Article
PubMed
PubMed Central
Google Scholar
Borst SE, Yarrow JF, Conover CF, Nseyo U, Meuleman JR, Lipinska JA, et al. Musculoskeletal and prostate effects of combined testosterone and finasteride administration in older hypogonadal men: a randomized, controlled trial. Am J Physiol - Endocrinol Metab. 2014;306(4):E433–42.
Article
CAS
PubMed
Google Scholar
Frederiksen L, Højlund K, Hougaard DM, Brixen K, Andersen M. Testosterone therapy increased muscle mass and lipid oxidation in aging men. Age (Omaha). 2012;34(1):145–56.
Article
CAS
Google Scholar
Wang C, Cunningham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ, et al. Long-term testosterone gel (AndroGel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. J Clin Endocrinol Metab. 2004;89(5):2085–98.
Article
CAS
PubMed
Google Scholar
Gentile MA, Nantermet PV, Vogel RL, Phillips R, Holder D, Hodor P, et al. Androgen-mediated improvement of body composition and muscle function involves a novel early transcriptional program including IGF1, mechano growth factor, and induction of β-catenin. J Mol Endocrinol. 2010;44(1):55–73.
Article
CAS
PubMed
Google Scholar
Golden KL, Marsh JD, Jiang Y, Brown T, Moulden J. Gonadectomy of adult male rats reduces contractility of isolated cardiac myocytes. Am J Physiol Metab. 2003;285(3):E449–53.
CAS
Google Scholar
Binalee F, Udomuksorn W, Kumarnsit E, Vongvatcharanon U, Vongvatcharanon S. Anabolic effect of Butea superba Roxb. on improving skeletal muscle atrophy and strength via androgen receptors and increasing parvalbumin levels in orchidectomized rats. ScienceAsia. 2022;48(6):718–25.
Article
Google Scholar
Sinnesael M, Callewaert F, Morreels M, Kumar N, Sitruk-Ware R, van Proeyen K, et al. 7 α-methyl-19-nortestosterone vs. testosterone implants for hypogonadal osteoporosis: a preclinical study in the aged male orchidectomized rat model. Int J Androl. 2011;34(6 PART 2):601–11.
Article
Google Scholar
Bermon S, Garnier P-Y. Serum androgen levels and their relation to performance in track and field: mass spectrometry results from 2127 observations in male and female elite athletes. Br J Sports Med. 2017;51(17):1309–14.
Article
PubMed
Google Scholar
Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, et al. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335(1):1–7.
Article
CAS
PubMed
Google Scholar
Gharahdaghi N, Rudrappa S, Brook MS, Idris I, Crossland H, Hamrock C, et al. Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men. J Cachexia Sarcopenia Muscle. 2019;10(6):1276–94.
Article
PubMed
PubMed Central
Google Scholar
King DS, Sharp RL, Vukovich MD, Brown GA, Reifenrath TA, Uhl NL, et al. Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men. A randomized controlled trial. J Am Med Assoc. 1999;281(21):2020–8.
Article
CAS
Google Scholar
Hildreth KL, Barry DW, Moreau KL, Vande Griend J, Meacham RB, Nakamura T, et al. Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab. 2013;98(5):1891–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chasland LC, Yeap BB, Maiorana AJ, Chan YX, Maslen BA, Cooke BR, et al. Testosterone and exercise: effects on fitness, body composition, and strength in middle-to-older aged men with low-normal serum testosterone levels. Am J Physiol - Heart Circ Physiol. 2021;320(5):H1985–98.
Article
CAS
PubMed
Google Scholar
Wainman P, Shipounoff GC. The effects of castration and testosterone propionate on the striated perineal musculature in the rat. Endocrinology. 1941;29(6):975–8.
Article
CAS
Google Scholar
Dalbo VJ, Roberts MD, Mobley CB, Ballmann C, Kephart WC, Fox CD, et al. Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle. Andrologia. 2017;49(3):e12622.
Article
Google Scholar
Antonio J, Wilson JD, George FW. Effects of castration and androgen treatment on androgen-receptor levels in rat skeletal muscles. J Appl Physiol. 1999;87(6):2016–9.
Article
CAS
PubMed
Google Scholar
Monks DA, Kopachik W, Breedlove SM, Jordan CL. Anabolic responsiveness of skeletal muscles correlates with androgen receptor protein but not mRNA. Can J Physiol Pharmacol. 2006;84(2):273–7.
Article
CAS
PubMed
Google Scholar
Monks DA, O’Bryant EL, Jordan CL. Androgen receptor immunoreactivity in skeletal muscle: enrichment at the neuromuscular junction. J Comp Neurol. 2004;473(1):59–72.
Article
CAS
PubMed
Google Scholar
Nicoll JX, Fry AC, Mosier EM. Sex-based differences in resting MAPK, androgen, and glucocorticoid receptor phosphorylation in human skeletal muscle. Steroids. 2019;141:23–9.
Article
CAS
PubMed
Google Scholar
Vingren JL, Kraemer WJ, Hatfield DL, Volek JS, Ratamess NA, Anderson JM, et al. Effect of resistance exercise on muscle steroid receptor protein content in strength-trained men and women. Steroids. 2009;74(13–14):1033–9.
Article
CAS
PubMed
Google Scholar
Forger NG, Wong V, Marc BS. Ciliary neurotrophic factor arrests muscle and motoneuron degeneration in androgen-insensitive rats. J Neurobiol. 1995;28(3):354–62.
Article
CAS
PubMed
Google Scholar
Yeh S, Tsai M-Y, Xu Q, Mu X-M, Lardy H, Huang K-E, et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci. 2002;99(21):13498–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
McPhaul MJ. Molecular defects of the androgen receptor. Recent Prog Horm Res. 2002;57(1):181–94.
Article
CAS
PubMed
Google Scholar
Flier JS, Underhill LH, Griffin JE. Androgen resistance—the clinical and molecular spectrum. N Engl J Med. 1992;326(9):611–8.
Article
Google Scholar
Sato T, Matsumoto T, Yamada T, Watanabe T, Kawano H, Kato S. Late onset of obesity in male androgen receptor-deficient (AR KO) mice. Biochem Biophys Res Commun. 2003;300(1):167–71.
Article
CAS
PubMed
Google Scholar
Matsumoto T, Takeyama KI, Sato T, Kato S. Androgen receptor functions from reverse genetic models. J Steroid Biochem Mol Biol. 2003;85(2–5):95–9.
Article
CAS
PubMed
Google Scholar
Kato S, Matsumoto T, Kawano H, Sato T, Takeyama K. Function of androgen receptor in gene regulations. J Steroid Biochem Mol Biol. 2004;89–90(1–5):627–33.
Article
PubMed
Google Scholar
Matsumoto T, Kawano H, Shiina H, Sato T, Kato S. Androgen receptor functions in male and female reproduction. Reprod Med Biol. 2007;6(1):11–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res. 2006;21(4):576–85.
Article
CAS
PubMed
Google Scholar
MacLean HE, Chiu WSM, Notini AJ, Axell A-M, Davey RA, McManus JF, et al. Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J. 2008;22(8):2676–89.
Article
CAS
PubMed
Google Scholar
Ophoff J, Callewaert F, Venken K, De Gendt K, Ohlsson C, Gayan-Ramirez G, et al. Physical activity in the androgen receptor knockout mouse: evidence for reversal of androgen deficiency on cancellous bone. Biochem Biophys Res Commun. 2009;378(1):139–44.
Article
CAS
PubMed
Google Scholar
Dubois V, Laurent MR, Jardi F, Antonio L, Lemaire K, Goyvaerts L, et al. Androgen deficiency exacerbates high-fat diet-induced metabolic alterations in male mice. Endocrinology. 2016;157(2):648–65.
Article
CAS
PubMed
Google Scholar
Rana K, Chiu MWS, Russell PK, Skinner JP, Lee NKL, Fam BC, et al. Muscle-specific androgen receptor deletion shows limited actions in myoblasts but not in myofibers in different muscles in vivo. J Mol Endocrinol. 2016;57(2):125–38.
Article
CAS
PubMed
Google Scholar
Altuwaijri S, Lee DK, Chuang K-H, Ting H-J, Yang Z, Xu Q, et al. Androgen receptor regulates expression of skeletal muscle-specific proteins and muscle cell types. Endocrine. 2004;25(1):27–32.
Article
CAS
PubMed
Google Scholar
Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, et al. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes. 2005;54(4):1000–8.
Article
CAS
PubMed
Google Scholar
Callewaert F, Venken K, Ophoff J, De Gendt K, Torcasio A, Lenthe GH, et al. Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-α. FASEB J. 2009;23(1):232–40.
Article
CAS
PubMed
Google Scholar
Usui T, Kajita K, Kajita T, Mori I, Hanamoto T, Ikeda T, et al. Elevated mitochondrial biogenesis in skeletal muscle is associated with testosterone-induced body weight loss in male mice. FEBS Lett. 2014;588(10):1935–41.
Article
CAS
PubMed
Google Scholar
Rana K, Zajac J, Lee N, MacLean H. Expression of androgen receptor target genes in skeletal muscle. Asian J Androl. 2014;16(5):675.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jardí F, Laurent MR, Kim N, Khalil R, De Bundel D, Van Eeckhaut A, et al. Testosterone boosts physical activity in male mice via dopaminergic pathways. Sci Rep. 2018;8(1):957.
Article
PubMed
PubMed Central
Google Scholar
Monks DA, Johansen JA, Mo K, Rao P, Eagleson B, Yu Z, et al. Overexpression of wild-type androgen receptor in muscle recapitulates polyglutamine disease. Proc Natl Acad Sci USA. 2007;104(46):18259–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johansen JA, Troxell-Smith SM, Yu Z, Mo K, Monks DA, Lieberman AP, et al. Prenatal flutamide enhances survival in a myogenic mouse model of spinal bulbar muscular atrophy. Neurodegener Dis. 2011;8(1–2):25–34.
Article
CAS
PubMed
Google Scholar
Ophoff J, Van Proeyen K, Callewaert F, De Gendt K, De Bock K, Vanden Bosch A, et al. Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology. 2009;150(8):3558–66.
Article
CAS
PubMed
Google Scholar
Chambon C, Duteil D, Vignaud A, Ferry A, Messaddeq N, Malivindi R, et al. Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc Natl Acad Sci. 2010;107(32):14327–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davey RA, Clarke MV, Russell PK, Rana K, Seto J, Roeszler KN, et al. Androgen action via the androgen receptor in neurons within the brain positively regulates muscle mass in male mice. Endocrinology. 2017;158(1945–7170 (Electronic)):3684–95.
Article
CAS
PubMed
Google Scholar
Niel L, Shah AH, Lewis GA, Mo K, Chatterjee D, Fernando SM, et al. Sexual differentiation of the spinal nucleus of the bulbocavernosus is not mediated solely by androgen receptors in muscle fibers. Endocrinology. 2009;150(7):3207–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernando SM, Rao P, Niel L, Chatterjee D, Stagljar M, Monks DA. Myocyte androgen receptors increase metabolic rate and improve body composition by reducing fat mass. Endocrinology. 2010;151(7):3125–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Georgieva K, Angelova P, Gerginska F, Terzieva D, Shishmanova-Doseva M, Delchev S, et al. The effect of flutamide on the physical working capacity and activity of some of the key enzymes for the energy supply in adult rats. Asian J Androl. 2017;19(4):444.
Article
CAS
PubMed
Google Scholar
Yin L, Lu L, Lin X, Wang X. Crucial role of androgen receptor in resistance and endurance trainings-induced muscle hypertrophy through IGF-1/IGF-1R- PI3K/Akt- mTOR pathway. Nutr Metab (Lond). 2020;17(1):26.
Article
CAS
Google Scholar
Shankaran M, Shearer TW, Stimpson SA, Turner SM, King C, Wong PA, et al. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats. Am J Physiol Metab. 2016;310(6):E405–17.
Google Scholar
Fontana K, Campos GER, Staron RS, da Cruz-Höfling MA. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice. PLoS ONE. 2013;8(11):e80909.
Article
PubMed
PubMed Central
Google Scholar
Reitzner SM, Hengevoss J, Isenmann E, Diel P. Modulation of exercise training related adaptation of body composition and regulatory pathways by anabolic steroids. J Steroid Biochem Mol Biol. 2019;190:44–53.
Article
CAS
PubMed
Google Scholar
Morton RW, Sato K, Gallaugher MPB, Oikawa SY, McNicholas PD, Fujita S, et al. Muscle androgen receptor content but not systemic hormones is associated with resistance training-induced skeletal muscle hypertrophy in healthy. Young Men Front Physiol. 2018;9:1373.
Article
PubMed
Google Scholar
Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques. 2000;29(1):52–4.
Article
CAS
PubMed
Google Scholar
Smolka MB, Zoppi CC, Alves AA, Silveira LR, Marangoni S, Pereira-Da-Silva L, et al. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Integr Comp Physiol. 2000;279(5):R1539–45.
Article
CAS
Google Scholar
Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.
Article
Google Scholar
Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol. 1991;7(1):453–78.
Article
CAS
PubMed
Google Scholar
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.
Article
CAS
PubMed
Google Scholar
Liu C, Ma J, Zhang J, Zhao H, Zhu Y, Qi J, et al. Testosterone deficiency caused by castration modulates mitochondrial biogenesis through the AR/PGC1α/TFAM pathway. Front Genet. 2019;10(MAY):1–16.
PubMed
PubMed Central
Google Scholar
Hiort O. The differential role of androgens in early human sex development. BMC Med. 2013;11(1):152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Handelsman DJ. Sex differences in athletic performance emerge coinciding with the onset of male puberty. Clin Endocrinol (Oxf). 2017;87(1):68–72.
Article
CAS
Google Scholar
Buckley WE, Yesalis CE, Friedl KE, Anderson WA, Streit AL, Wright JE. Estimated prevalence of anabolic steroid use among male high school seniors. JAMA J Am Med Assoc. 1988;260(23):3441–5.
Article
CAS
Google Scholar
Pope HG, Kanayama G, Athey A, Ryan E, Hudson JI, Baggish A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: current best estimates. Am J Addict. 2014;23:371–7.
Article
PubMed
Google Scholar
Korkia P, Stimson GV. Indications of prevalence, practice and effects of anabolic steroid use in Great Britain. Int J Sports Med. 1997;18(7):557–62.
Article
CAS
PubMed
Google Scholar
Handelsman DJ, Gupta L. Prevalence and risk factors for anabolic-androgenic steroid abuse in Australian high school students. Int J Androl. 1997;20(3):159–64.
Article
CAS
PubMed
Google Scholar
Rachoń D, Pokrywka L, Suchecka-Rachoń K. Prevalence and risk factors of anabolic-androgenic steroids (AAS) abuse among adolescents and young adults in Poland. Soz Praventivmed. 2006;51(6):392–8.
Article
PubMed
Google Scholar
Bahri A, Mahfouz MS, Marran NM, Dighriri YH, Alessa HS, Khwaji MO, et al. Prevalence and awareness of anabolic androgenic steroid use among male body builders in Jazan, Saudi Arabia. Trop J Pharm Res. 2017;16(6):1425–30.
Article
Google Scholar
Razavi Z, Moeini B, Shafiei Y, Bazmamoun H. Prevalence of anabolic steroid use and associated factors among bodybuilders in Hamadan, western province of Iran. J Res Health Sci. 2014;14(2):163–6.
PubMed
Google Scholar
Rana K, Fam BC, Clarke MV, Pang TPS, Zajac JD, MacLean HE. Increased adiposity in DNA binding-dependent androgen receptor knockout male mice associated with decreased voluntary activity and not insulin resistance. Am J Physiol Metab. 2011;301(5):E767–78.
CAS
Google Scholar
Cortright RN, Chandler MP, Lemon PWR, Dicarlo SE. Daily exercise reduces fat, protein and body mass in male but not female rats. Physiol Behav. 1997;62(1):105–11.
Article
CAS
PubMed
Google Scholar
Kutsenko Y, Barreda A, Toval A, Garrigos D, Martínez-Morga M, Ribeiro Do Couto B, et al. Sex-dependent effects of forced exercise in the body composition of adolescent rats. Sci Rep. 2021;11(1):10154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Applegate EA, Upton DE, Stern JS. Food intake, body composition and blood lipids following treadmill exercise in male and female rats. Physiol Behav. 1982;28(5):917–20.
Article
CAS
PubMed
Google Scholar
Oydanich M, Babici D, Zhang J, Rynecki N, Vatner DE, Vatner SF. Mechanisms of sex differences in exercise capacity. Am J Physiol Integr Comp Physiol. 2019;316(6):R832–8.
Article
CAS
Google Scholar
Konhilas JP, Maass AH, Luckey SW, Stauffer BL, Olson EN, Leinwand LA. Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Circ Physiol. 2004;287(6):H2768–76.
Article
CAS
Google Scholar
Cichy I, Dudkowski A, Kociuba M, Ignasiak Z, Sebastjan A, Kochan K, et al. Sex differences in body composition changes after preseason training in Elite Handball Players. Int J Environ Res Public Health. 2020;17(11):3880.
Article
PubMed Central
Google Scholar
Janssen I, Heymsfield SB, Wang Z, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1):81–8.
Article
CAS
PubMed
Google Scholar
Carter SL, Rennie CD, Hamilton SJ, Tarnopolsky MA. Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol. 2001;79(5):386–92.
Article
CAS
PubMed
Google Scholar
Després JP, Bouchard C, Savard R, Tremblay A, Marcotte M, Thériault G. The effect of a 20-week endurance training program on adipose-tissue morphology and lipolysis in men and women. Metabolism. 1984;33(3):235–9.
Article
PubMed
Google Scholar
Musa M, Fernando SM, Chatterjee D, Monks DA. Subcellular effects of myocyte-specific androgen receptor overexpression in mice. J Endocrinol. 2011;210(1):93–104.
Article
CAS
PubMed
Google Scholar
Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
West DWD, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, et al. Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol. 2010;108(1):60–7.
Article
PubMed
Google Scholar
Landen S, Hiam D, Voisin S, Jacques M, Lamon S, Eynon N. Physiological and molecular sex differences in human skeletal muscle in response to exercise training. J Physiol. 2021. https://doi.org/10.1113/EP088548.
Article
PubMed
Google Scholar
Landen S, Voisin S, Craig JM, McGee SL, Lamon S, Eynon N. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics. 2019;14(6):523–35.
Article
PubMed
PubMed Central
Google Scholar
Magkos F, Kavouras SA, Yannakoulia M, Karipidou M, Sidossi S, Sidossis LS. The bone response to non-weight-bearing exercise is sport-, site-, and sex-specific. Clin J Sport Med. 2007;17:123–8.
Article
PubMed
Google Scholar
Froberg K, Pedersen PK. Sex differences in endurance capacity and metabolic response to prolonged, heavy exercise. Eur J Appl Physiol Occup Physiol. 1984;52:446–50.
Article
CAS
PubMed
Google Scholar
Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219(2):205–13.
Article
PubMed
Google Scholar
Ipulan LA, Suzuki K, Sakamoto Y, Murashima A, Imai Y, Omori A, et al. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle. Endocrinology. 2014;155(7):2467–79.
Article
PubMed
PubMed Central
Google Scholar
Lee NKL, Skinner JPJ, Zajac JD, MacLean HE. Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am J Physiol Metab. 2011;301(1):E172–9.
CAS
Google Scholar
Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, et al. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J. 2014;28(7):2979–94.
Article
CAS
PubMed
Google Scholar
Ferry A, Schuh M, Parlakian A, Mgrditchian T, Valnaud N, Joanne P, et al. Myofiber androgen receptor promotes maximal mechanical overload-induced muscle hypertrophy and fiber type transition in male mice. Endocrinology. 2014;155(12):4739–48.
Article
PubMed
Google Scholar
Isayama RN, Oishi J, Cagnon VHA, Campos GER. Effect of testosterone on skeletal muscle of young and old male rats Skeletal muscle consists of various fiber types. Braz J Morphol Sci. 2006;23(2):247–53.
Google Scholar
Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–9.
Article
CAS
PubMed
Google Scholar
Drzymala-Celichowska H, Karolczak J, Redowicz MJ, Bukowska D. The content of myosin heavy chains in hindlimb muscles of female and male rats. J Physiol Pharmacol. 2012;63(2):187–93.
CAS
PubMed
Google Scholar
Andersen LL, Andersen JL, Magnusson SP, Suetta C, Madsen JL, Christensen LR, et al. Changes in the human muscle force–velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol. 2005;99(1):87–94.
Article
PubMed
Google Scholar
Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity—from gene to form and function. In: Amara SG, Bamberg E, Blaustein MP, Grunicke H, Jahn R, Lederer WJ, Miyajima A, Murer H, Offermanns S, Pfanner N, Schultz G, Schweiger M, editors. Reviews of physiology, biochemistry and pharmacology. Berlin: Springer; 2003. p. 159–216.
Chapter
Google Scholar
da Rocha AL, Pereira BC, Teixeira GR, Pinto AP, Frantz FG, Elias LLK, et al. Treadmill slope modulates inflammation, fiber type composition, androgen, and glucocorticoid receptors in the skeletal muscle of overtrained mice. Front Immunol. 2017;8(OCT):1378.
Article
PubMed
PubMed Central
Google Scholar
Colom B, Alcolea M, Valle A, Oliver J, Roca P, García-Palmer F. Skeletal muscle of female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities compared to males. Cell Physiol Biochem. 2007;19(1–4):205–12.
Article
CAS
PubMed
Google Scholar
Montero D, Madsen K, Meinild-Lundby A-K, Edin F, Lundby C. Sexual dimorphism of substrate utilization: differences in skeletal muscle mitochondrial volume density and function. Exp Physiol. 2018;103(6):851–9.
Article
CAS
PubMed
Google Scholar
Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Integr Comp Physiol. 2007;292(3):R1271–8.
Article
CAS
Google Scholar
Warren M, Perlroth N. The effects of intense exercise on the female reproductive system. J Endocrinol. 2001;170(1):3–11.
Article
CAS
PubMed
Google Scholar
Cano Sokoloff N, Misra M, Ackerman KE. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men and women. Front Horm Res. 2016;47:27–43.
Article
PubMed
PubMed Central
Google Scholar