Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.
Article
PubMed
Google Scholar
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020. https://doi.org/10.3322/caac.21601.
Article
PubMed
Google Scholar
Meguid RA, Slidell MB, Wolfgang CL, Chang DC, Ahuja N. Is there a difference in survival between right- versus left-sided colon cancers? Ann Surg Oncol. 2008;15(9):2388–94. https://doi.org/10.1245/s10434-008-0015-y.
Article
PubMed
PubMed Central
Google Scholar
Weiss JM, Pfau PR, O’Connor ES, King J, LoConte N, Kennedy G, et al. Mortality by stage for right- versus left-sided colon cancer: analysis of surveillance, epidemiology, and end results-medicare data. J Clin Oncol. 2011;29(33):4401–9. https://doi.org/10.1200/Jco.2011.36.4414.
Article
PubMed
PubMed Central
Google Scholar
Meza R, Jeon J, Renehan AG, Luebeck EG. Colorectal cancer incidence trends in the United States and United Kingdom: evidence of right- to left-sided biological gradients with implications for screening. Cancer Res. 2010;70(13):5419–29. https://doi.org/10.1158/0008-5472.Can-09-4417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petrelli F, Tomasello G, Borgonovo K, Ghidini M, Turati L, Dallera P, et al. Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis. JAMA Oncol. 2017;3(2):211–9. https://doi.org/10.1001/jamaoncol.2016.4227.
Article
PubMed
Google Scholar
Iacopetta B. Are there two sides to colorectal cancer? Int J Cancer. 2002;101(5):403–8. https://doi.org/10.1002/ijc.10635.
Article
CAS
PubMed
Google Scholar
Lee GH, Malietzis G, Askari A, Bernardo D, Al-Hassi HO, Clark SK. Is right-sided colon cancer different to left-sided colorectal cancer?—a systematic review. EJSO. 2015;41(3):300–8. https://doi.org/10.1016/j.ejso.2014.11.001.
Article
CAS
PubMed
Google Scholar
Breivik J, Lothe RA, Meling GI, Rognum TO, Borresen-Dale AL, Gaudernack G. Different genetic pathways to proximal and distal colorectal cancer influenced by sex-related factors. Int J Cancer. 1997;74(6):664–9. https://doi.org/10.1002/(sici)1097-0215(19971219)74:6%3c664::aid-ijc18%3e3.0.co;2-5.
Article
CAS
PubMed
Google Scholar
Kohoutova D, Smajs D, Moravkova P, Cyrany J, Moravkova M, Forstlova M, et al. Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis. 2014;14:733. https://doi.org/10.1186/s12879-014-0733-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota dysbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20. https://doi.org/10.3389/fmicb.2015.00020.
Article
PubMed
PubMed Central
Google Scholar
Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A. 2014;111(51):18321–6. https://doi.org/10.1073/pnas.1406199111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21(6):891–7. https://doi.org/10.1016/j.cmet.2015.04.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai Y, Rattray NJW, Zhang Q, Mironova V, Santos-Neto A, Hsu KS, et al. Sex differences in colon cancer metabolism reveal a novel subphenotype. Sci Rep. 2020;10(1):4905. https://doi.org/10.1038/s41598-020-61851-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Mironova V, Chen Y, Lundh EPF, Zhang Q, Cai Y, et al. Molecular pathway analysis indicates a distinct metabolic phenotype in women with right-sided colon cancer. Transl Oncol. 2020;13(1):42–56. https://doi.org/10.1016/j.tranon.2019.09.004.
Article
CAS
PubMed
Google Scholar
Zhong M, Xiong Y, Ye Z, Zhao J, Zhong L, Liu Y, et al. Microbial community profiling distinguishes left-sided and right-sided colon cancer. Front Cell Infect Microbiol. 2020;10: 498502. https://doi.org/10.3389/fcimb.2020.498502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332–8. https://doi.org/10.1097/MOG.0000000000000057.
Article
PubMed
PubMed Central
Google Scholar
Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360:6391. https://doi.org/10.1126/science.aan5931.
Article
CAS
Google Scholar
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576(7785):143–8. https://doi.org/10.1038/s41586-019-1785-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas LA, Veysey MJ, French G, Hylemon PB, Murphy GM, Dowling RH. Bile acid metabolism by fresh human colonic contents: a comparison of caecal versus faecal samples. Gut. 2001;49(6):835–42.
Article
CAS
Google Scholar
Baxter BA, Parker KD, Nosler MJ, Rao S, Craig R, Seiler C, et al. Metabolite profile comparisons between ascending and descending colon tissue in healthy adults. World J Gastroenterol: WJG. 2020;26(3):335–52. https://doi.org/10.3748/wjg.v26.i3.335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie G, Wang Y, Wang X, Zhao A, Chen T, Ni Y, et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J Proteome Res. 2015;14(2):850–9. https://doi.org/10.1021/pr500920q.
Article
CAS
PubMed
Google Scholar
Zhu G, Su H, Johnson CH, Khan SA, Kluger H, Lu L. Intratumour microbiome associated with the infiltration of cytotoxic CD8+ T cells and patient survival in cutaneous melanoma. Eur J Cancer. 2021;151:25–34. https://doi.org/10.1016/j.ejca.2021.03.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA. 2008;105(36):13580–5. https://doi.org/10.1073/pnas.0804437105.
Article
PubMed
PubMed Central
Google Scholar
Joyce SA, Shanahan F, Hill C, Gahan CG. Bacterial bile salt hydrolase in host metabolism: potential for influencing gastrointestinal microbe–host crosstalk. Gut microbes. 2014;5(5):669–74. https://doi.org/10.4161/19490976.2014.969986.
Article
PubMed
PubMed Central
Google Scholar
Cross HS, Nittke T, Peterlik M. Modulation of vitamin D synthesis and catabolism in colorectal mucosa: a new target for cancer prevention. Anticancer Res. 2009;29(9):3705–12.
CAS
PubMed
Google Scholar
Holmes RJ. Enhancing energy transport in conjugated polymers. Science. 2018;360(6391):854–5. https://doi.org/10.1126/science.aat6009.
Article
CAS
PubMed
Google Scholar
Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576(7785):143–8. https://doi.org/10.1038/s41586-019-1785-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao D, Chen W, Stratagoules ED, Martinez JD. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J Biol Chem. 2000;275(20):15090–8. https://doi.org/10.1074/jbc.M908890199.
Article
CAS
PubMed
Google Scholar
Zhao C, Gao H, Liu Y, Papoutsi Z, Jaffrey S, Gustafsson JA, et al. Genome-wide mapping of estrogen receptor-beta-binding regions reveals extensive cross-talk with transcription factor activator protein-1. Cancer Res. 2010;70(12):5174–83. https://doi.org/10.1158/0008-5472.Can-09-4407.
Article
CAS
PubMed
Google Scholar
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. https://doi.org/10.1038/nature04330.
Article
CAS
PubMed
Google Scholar
Hofmann AF, Eckmann L. How bile acids confer gut mucosal protection against bacteria. Proc Natl Acad Sci U S A. 2006;103(12):4333–4. https://doi.org/10.1073/pnas.0600780103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–5. https://doi.org/10.1073/pnas.0509592103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keating MJ, Holmes R, Lerner S, Ho DH. L-asparaginase and PEG asparaginase—past, present, and future. Leuk Lymphoma. 1993;10(sup1):153–7. https://doi.org/10.3109/10428199309149129.
Article
PubMed
Google Scholar
Suga T, Yamaguchi H, Sato T, Maekawa M, Goto J, Mano N. Preference of conjugated bile acids over unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PLoS ONE. 2017;12(1): e0169719-e. https://doi.org/10.1371/journal.pone.0169719.
Article
CAS
Google Scholar
van Faassen A, Tangerman A, Bueno-de-Mesquita BH. Serum bile acids and risk factors for colorectal cancer. Br J Cancer. 2004;90(3):632–4. https://doi.org/10.1038/sj.bjc.6601608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kühn T, Stepien M, López-Nogueroles M, Damms-Machado A, Sookthai D, Johnson T, et al. Prediagnostic plasma bile acid levels and colon cancer risk: a prospective study. J Natl Cancer Inst. 2020;112(5):516–24. https://doi.org/10.1093/jnci/djz166.
Article
CAS
PubMed
Google Scholar
Tong JL, Ran ZH, Shen J, Fan GQ, Xiao SD. Association between fecal bile acids and colorectal cancer: a meta-analysis of observational studies. Yonsei Med J. 2008;49(5):792–803. https://doi.org/10.3349/ymj.2008.49.5.792.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Deng S, Yan L, Gu J, Yang J, Yang M, et al. A nomogram based on pretreatment levels of serum bilirubin and total bile acid levels predicts survival in colorectal cancer patients. BMC Cancer. 2021;21(1):85. https://doi.org/10.1186/s12885-021-07805-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679–89. https://doi.org/10.1038/s41591-019-0406-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cross AJ, Moore SC, Boca S, Huang WY, Xiong X, Stolzenberg-Solomon R, et al. A prospective study of serum metabolites and colorectal cancer risk. Cancer. 2014;120(19):3049–57. https://doi.org/10.1002/cncr.28799.
Article
CAS
PubMed
Google Scholar
Dai J, Wang H, Shi Y, Dong Y, Zhang Y, Wang J. Impact of bile acids on the growth of human cholangiocarcinoma via FXR. J Hematol Oncol. 2011;4:41. https://doi.org/10.1186/1756-8722-4-41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology (Baltimore, MD). 2012;55(1):267–76. https://doi.org/10.1002/hep.24681.
Article
CAS
Google Scholar
Bayerdorffer E, Mannes GA, Richter WO, Ochsenkuhn T, Wiebecke B, Kopcke W, et al. Increased serum deoxycholic acid levels in men with colorectal adenomas. Gastroenterology. 1993;104(1):145–51. https://doi.org/10.1016/0016-5085(93)90846-5.
Article
CAS
PubMed
Google Scholar
Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73(2):539–49. https://doi.org/10.1158/0008-5472.Can-12-2325.
Article
CAS
PubMed
Google Scholar
Zhang X, Kelaria S, Kerstetter J, Wang J. The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest Oncol. 2015;6(3):307–13. https://doi.org/10.3978/j.issn.2078-6891.2015.017.
Article
PubMed
PubMed Central
Google Scholar
Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis. Nature. 2020;577(7790):410–5. https://doi.org/10.1038/s41586-019-1865-0.
Article
CAS
PubMed
Google Scholar
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 2020;579(7800):567–74. https://doi.org/10.1038/s41586-020-2095-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46.
Article
PubMed
PubMed Central
Google Scholar
Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, et al. Antibody validation. Biotechniques. 2010;48(3):197–209. https://doi.org/10.2144/000113382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res. 2014;20(10):2773–82. https://doi.org/10.1158/1078-0432.CCR-13-2702.
Article
CAS
PubMed
Google Scholar
Carvajal-Hausdorf DE, Schalper KA, Neumeister VM, Rimm DL. Quantitative measurement of cancer tissue biomarkers in the lab and in the clinic. Lab Invest. 2015;95(4):385–96. https://doi.org/10.1038/labinvest.2014.157.
Article
CAS
PubMed
Google Scholar
Welsh AW, Harigopal M, Wimberly H, Prasad M, Rimm DL. Quantitative analysis of estrogen receptor expression shows SP1 antibody is more sensitive than 1D5. Appl Immunohistochem Mol Morphol. 2013;21(2):139–47. https://doi.org/10.1097/PAI.0b013e31825d73b2.
Article
CAS
PubMed
PubMed Central
Google Scholar