Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23(4):525–30.
Article
PubMed
Google Scholar
Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–81.
Article
PubMed
PubMed Central
Google Scholar
Mora DJ, Fortunato LR, Andrade-Silva LE, Ferreira-Paim K, Rocha IH, Vasconcelos RR, et al. Cytokine profiles at admission can be related to outcome in AIDS patients with cryptococcal meningitis. PLoS One. 2015;10(3):e0120297.
Article
PubMed
PubMed Central
Google Scholar
Lin YY, Shiau S, Fang CT. Risk factors for invasive Cryptococcus neoformans diseases: a case-control study. PLoS One. 2015;10(3):e0119090.
Article
PubMed
PubMed Central
Google Scholar
Lortholary O, Improvisi L, Fitting C, Cavaillon JM, Dromer F. Influence of gender and age on course of infection and cytokine responses in mice with disseminated Cryptococcus neoformans infection. Clin Microbiol Infect. 2002;8(1):31–7.
Article
CAS
PubMed
Google Scholar
McClelland EE, Hobbs LM, Rivera J, Casadevall A, Potts WK, Smith JM, et al. The role of host gender in the pathogenesis of Cryptococcus neoformans infections. PLoS One. 2013;8(5):e63632.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maduro AP, Goncalves L, Inacio J, Faria NC, Martins ML, Teles FR. HIV/AIDS-associated cryptococcosis in Portugal spanning the pre- to post-HAART era: a retrospective assessment at the genotypic level based on URA5-RFLP. Curr Microbiol. 2015;71(4):449–57.
Article
CAS
PubMed
Google Scholar
Richardson ET, Collins SE, Kung T, Jones JH, Hoan Tram K, Boggiano VL, et al. Gender inequality and HIV transmission: a global analysis. J Int AIDS Soc. 2014;17:19035.
Article
PubMed
PubMed Central
Google Scholar
Shankar J, Wu TD, Clemons KV, Monteiro JP, Mirels LF, Stevens DA. Influence of 17 beta-estradiol on gene expression of Paracoccidioides during mycelia-to-yeast transition. PLoS One. 2011;6(12):e28402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Javed F, Klingspor L, Sundin U, Altamash M, Klinge B, Engstrom PE. Periodontal conditions, oral Candida albicans and salivary proteins in type 2 diabetic subjects with emphasis on gender. BMC Oral Health. 2009;9:12.
Article
PubMed
PubMed Central
Google Scholar
Kali A, Charles MP, Noyal MJ, Sivaraman U, Kumar S, Easow JM. Prevalence of Candida co-infection in patients with pulmonary tuberculosis. Australas Med J. 2013;6(8):387–91.
Article
PubMed
PubMed Central
Google Scholar
Alves CT, Silva S, Pereira L, Williams DW, Azeredo J, Henriques M. Effect of progesterone on Candida albicans vaginal pathogenicity. Int J Med Microbiol. 2014;304(8):1011–7.
Article
CAS
PubMed
Google Scholar
Tarry W, Fisher M, Shen S, Mawhinney M. Candida albicans: the estrogen target for vaginal colonization. J Surg Res. 2005;129(2):278–82.
Article
CAS
PubMed
Google Scholar
Dromer F, Mathoulin-Pelissier S, Launay O, Lortholary O. French Cryptococcosis Study G. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med. 2007;4(2):e21.
Article
PubMed
PubMed Central
Google Scholar
Butts A, Koselny K, Chabrier-Rosello Y, Semighini CP, Brown JC, Wang X, et al. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. MBio. 2014;5(1):e00765–13.
Article
PubMed
PubMed Central
Google Scholar
Butts A, Martin JA, DiDone L, Bradley EK, Mutz M, Krysan DJ. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen. PLoS One. 2015;10(5):e0125927.
Article
PubMed
PubMed Central
Google Scholar
Lizarazo J, Escandon P, Agudelo CI, Castaneda E. Cryptococcosis in Colombian children and literature review. Mem Inst Oswaldo Cruz. 2014;109(6):797–804.
Article
PubMed
PubMed Central
Google Scholar
Mora DJ, Ferreira-Paim K, Andrade-Silva LE, Bragine T, Rocha IH, Ribeiro BM, et al. Cytokine patterns in a prospective cohort of HIV-infected patients with cryptococcal meningitis following initiation of antifungal and antiretroviral therapy. PLoS One. 2017;12(5):e0176304.
Article
PubMed
PubMed Central
Google Scholar
Schop J. Protective immunity against Cryptococcus neoformans infection. Mcgill J Med. 2007;10(1):35–43.
PubMed
PubMed Central
Google Scholar
Eschke M, Piehler D, Schulze B, Richter T, Grahnert A, Protschka M, et al. A novel experimental model of Cryptococcus neoformans-related immune reconstitution inflammatory syndrome (IRIS) provides insights into pathogenesis. Eur J Immunol. 2015;45(12):3339–50.
Article
CAS
PubMed
Google Scholar
Li X, Liu G, Ma J, Zhou L, Zhang Q, Gao L. Lack of IL-6 increases blood-brain barrier permeability in fungal meningitis. J Biosci. 2015;40(1):7–12.
Article
PubMed
Google Scholar
Rohatgi S, Pirofski LA. Host immunity to Cryptococcus neoformans. Future Microbiol. 2015;10(4):565–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voelz K, May RC. Cryptococcal interactions with the host immune system. Eukaryot Cell. 2010;9(6):835–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguirre KM, Johnson LL. A role for B cells in resistance to Cryptococcus neoformans in mice. Infec Immun. 1997;65(2):525–30.
CAS
Google Scholar
Rivera J, Zaragoza O, Casadevall A. Antibody-mediated protection against Cryptococcus neoformans pulmonary infection is dependent on B cells. Infec Immun. 2005;73(2):1141–50.
Article
CAS
Google Scholar
Neal LM, Xing E, Xu J, Kolbe JL, Osterholzer JJ, Segal BM, et al. CD4(+) T Cells Orchestrate Lethal Immune Pathology despite Fungal Clearance during Cryptococcus neoformans Meningoencephalitis. MBio. 2017;8(6).
Lindell DM, Moore TA, McDonald RA, Toews GB, Huffnagle GB. Generation of antifungal effector CD8+ T cells in the absence of CD4+ T cells during Cryptococcus neoformans infection. J Immunol. 2005;174(12):7920–8.
Article
CAS
PubMed
Google Scholar
Vecchiarelli A, Pericolini E, Gabrielli E, Chow SK, Bistoni F, Cenci E, et al. Cryptococcus neoformans galactoxylomannan is a potent negative immunomodulator, inspiring new approaches in anti-inflammatory immunotherapy. Immunotherapy. 2011;3(8):997–1005.
Article
CAS
PubMed
Google Scholar
Nazarpour R, Zabihi E, Alijanpour E, Abedian Z, Mehdizadeh H, Rahimi F. Optimization of Human Peripheral Blood Mononuclear Cells (PBMCs) Cryopreservation. Int J Mol Cell Med. 2012;1(2):88–93.
PubMed
PubMed Central
Google Scholar
Mody CH, Syme RM. Effect of polysaccharide capsule and methods of preparation on human lymphocyte proliferation in response to Cryptococcus neoformans. Infec Immun. 1993;61(2):464–9.
CAS
Google Scholar
Janbon G, Ormerod KL, Paulet D, Byrnes EJ 3rd, Yadav V, Chatterjee G, et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 2014;10(4):e1004261.
Article
PubMed
PubMed Central
Google Scholar
Stanley J. Essentials of immunology & serology. Albany, NY: Delmar Thomson Learning; 2002. xxi, 538 p. p.
Chen LC, Goldman DL, Doering TL, Pirofski L, Casadevall A. Antibody response to Cryptococcus neoformans proteins in rodents and humans. Infec Immun. 1999;67(5):2218–24.
CAS
Google Scholar
Bajnok A, Ivanova M, Rigo J Jr, Toldi G. The distribution of activation markers and selectins on peripheral T lymphocytes in preeclampsia. Mediators Inflamm. 2017;2017:8045161.
Article
PubMed
PubMed Central
Google Scholar
Labatory Reference Ranges: Endocrine Society: Center for Learning; 2015 [cited 2017. Available from: https://education.endocrine.org/system/files/ESAP 2015 Laboratory Reference Ranges.pdf.
Reichert T, DeBruyere M, Deneys V, Totterman T, Lydyard P, Yuksel F, et al. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol. 1991;60(2):190–208.
Article
CAS
PubMed
Google Scholar
Valiathan R, Deeb K, Diamante M, Ashman M, Sachdeva N, Asthana D. Reference ranges of lymphocyte subsets in healthy adults and adolescents with special mention of T cell maturation subsets in adults of South Florida. Immunobiology. 2014;219(7):487–96.
Article
CAS
PubMed
Google Scholar
Edwards VE, Sutherland JM, Tyrer JH. Cryptococcosis of the central nervous system. Epidemiological, clinical, and therapeutic features. J Neurol Neurosurg Psychiatry. 1970;33(4):415–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiesner DL, Moskalenko O, Corcoran JM, McDonald T, Rolfes MA, Meya DB, et al. Cryptococcal genotype influences immunologic response and human clinical outcome after meningitis. MBio. 2012;3(5).
Bisson GP, Nthobatsong R, Thakur R, Lesetedi G, Vinekar K, Tebas P, et al. The use of HAART is associated with decreased risk of death during initial treatment of cryptococcal meningitis in adults in Botswana. J Acquir Immune Defic Syndr. 2008;49(2):227–9.
Article
PubMed
PubMed Central
Google Scholar
Jimenez-Mejias ME, Fernandez A, Alfaro E, Regordan C, Pachon Diaz J. [Cryptococcosis of the central nervous system. Clinical and diagnostic characteristics]. Med Clin (Barc) 1991;97(16):604-608.
Manfredi R, Rezza G, Coronado VG, Cozzi Lepri A, Coronado OV, Mastroianni A, et al. Is AIDS-related cryptococcosis more frequent among men? AIDS. 1995;9(4):397–8.
Article
CAS
PubMed
Google Scholar
Millogo A, Ki-Zerbo GA, Andonaba JB, Lankoande D, Sawadogo A, Yameogo I, et al. Cryptococcal meningitis in HIV-infected patients at Bobo-Dioulasso hospital (Burkina Faso). Bull Soc Pathol Exot. 2004;97(2):119–21.
CAS
PubMed
Google Scholar
Zheng H, Li M, Wang D, ling Yang J, Chen Q, Zhang X, et al. Gender-specific contributing risk factors and outcome of female cryptococcal meningoencephalitis patients. BMC Infect Dis. 2016;16:22.
Vollman RF. The menstrual cycle. Major Probl Obstet Gynecol. 1977;7:1–193.
CAS
PubMed
Google Scholar
Hajjeh RA, Conn LA, Stephens DS, Baughman W, Hamill R, Graviss E, et al. Cryptococcosis: population-based multistate active surveillance and risk factors in human immunodeficiency virus-infected persons. Cryptococcal Active Surveillance Group. J Infec Dis. 1999;179(2):449–54.
Article
CAS
Google Scholar
Davis J, Zheng WY, Glatman-Freedman A, Ng JA, Pagcatipunan MR, Lessin H, et al. Serologic evidence for regional differences in pediatric cryptococcal infection. Pediatr Infect Dis J. 2007;26(6):549–51.
Article
PubMed
Google Scholar
Osazuwa OF, Dirisu O, Okuonghae E. Cryptococcal antigenemia in anti-retroviral naive AIDS patients: prevalence and its association with CD4 cell count. Acta Med Iran. 2012;50(5):344–7.
PubMed
Google Scholar
Mohr JA, Muchmore HG, Tacker R. Stimulation of phagocytosis of Cryptococcus neoformans in human cryptococcal meningitis. J Reticuloendothel Soc. 1974;15(2):149–54.
CAS
PubMed
Google Scholar
Roved J, Westerdahl H, Hasselquist D. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Horm Behav. 2017;88:95–105.
Article
CAS
PubMed
Google Scholar
Colton CA, Brown CM, Vitek MP. Sex steroids, APOE genotype and the innate immune system. Neurobiol Aging. 2005;26(3):363–72.
Article
CAS
PubMed
Google Scholar
Giefing-Kroll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. 2015;14(3):309–21.
Article
PubMed
PubMed Central
Google Scholar
van den Berg MC, Woerlee JZ, Ma H, May RC. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans. Genetics. 2006;173(2):677–83.
Article
PubMed
PubMed Central
Google Scholar
Mednick AJ, Nosanchuk JD, Casadevall A. Melanization of Cryptococcus neoformans affects lung inflammatory responses during cryptococcal infection. Infec Immun. 2005;73(4):2012–9.
Article
CAS
Google Scholar
Casadevall A, Pirofski L. Insights into mechanisms of antibody-mediated immunity from studies with Cryptococcus neoformans. Curr Mol Med. 2005;5(4):421–33.
Article
CAS
PubMed
Google Scholar
Ellerbroek PM, Walenkamp AM, Hoepelman AI, Coenjaerts FE. Effects of the capsular polysaccharides of Cryptococcus neoformans on phagocyte migration and inflammatory mediators. Curr Med Chem. 2004;11(2):253–66.
Article
CAS
PubMed
Google Scholar
Szaniawski MA, Spivak AM, Bosque A, Planelles V. Sex influences SAMHD1 activity and susceptibility to human immunodeficiency virus-1 in Primary human macrophages. J Infec Dis. 2019;219(5):777–85.
Article
Google Scholar
Huffnagle GB, Yates JL, Lipscomb MF. Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J Exp Med. 1991;173(4):793–800.
Article
CAS
PubMed
Google Scholar
Levitz SM, Dupont MP, Smail EH. Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infec Immun. 1994;62(1):194–202.
CAS
Google Scholar
Panackal AA, Wuest SC, Lin YC, Wu T, Zhang N, Kosa P, et al. Paradoxical Immune Responses in Non-HIV Cryptococcal Meningitis. PLoS Pathog. 2015;11(5):e1004884.
Article
PubMed
PubMed Central
Google Scholar
Jarvis JN, Casazza JP, Stone HH, Meintjes G, Lawn SD, Levitz SM, et al. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J Infec Dis. 2013;207(12):1817–28.
Article
CAS
Google Scholar
Rohatgi S, Pirofski LA. Molecular characterization of the early B cell response to pulmonary Cryptococcus neoformans infection. J Immunol. 2012;189(12):5820–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramaniam K, Metzger B, Hanau LH, Guh A, Rucker L, Badri S, et al. IgM(+) memory B cell expression predicts HIV-associated cryptococcosis status. J Infec Dis. 2009;200(2):244–51.
Article
Google Scholar
Garelnabi M, Taylor-Smith LM, Bielska E, Hall RA, Stones D, May RC. Quantifying donor-to-donor variation in macrophage responses to the human fungal pathogen Cryptococcus neoformans. PLoS One. 2018;13(3):e0194615.
Article
PubMed
PubMed Central
Google Scholar
Scriven JE, Graham LM, Schutz C, Scriba TJ, Wilkinson KA, Wilkinson RJ, et al. A glucuronoxylomannan-associated immune signature, characterized by monocyte deactivation and an increased interleukin 10 level, is a predictor of death in Cryptococcal meningitis. J Infec Dis. 2016;213(11):1725–34.
Article
CAS
Google Scholar
Van Dyke MCC, Chaturvedi AK, Hardison SE, Leopold Wager CM, Castro-Lopez N, Hole CR, et al. Induction of broad-spectrum protective immunity against disparate cryptococcus serotypes. Front Immunol. 2017;8:1359.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Lv X, Song Y. Short-term culture with IL-2 is beneficial for potent memory chimeric antigen receptor T cell production. Biochem Biophys Res Commun. 2018;495(2):1833–8.
Article
CAS
PubMed
Google Scholar
Lehmann C, Zeis M, Uharek L. Activation of natural killer cells with interleukin 2 (IL-2) and IL-12 increases perforin binding and subsequent lysis of tumour cells. Br J Haematol. 2001;114(3):660–5.
Article
CAS
PubMed
Google Scholar
Mohr JA, Long H, McKown BA, Muchmore HG. In vitro susceptibility of Cryptococcus neoformans to steroids. Sabouraudia. 1972;10(2):171–2.
Article
CAS
PubMed
Google Scholar
Abadi J, Pirofski L. Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. J Infec Dis. 1999;180(3):915–9.
Article
CAS
Google Scholar
Census US. Murfreesboro, TN. V2016 ed. Retrieved from: https://www.census.gov/quickfacts/fact/table/murfreesborocitytennessee/PST0452162016.
Angele MK, Pratschke S, Hubbard WJ, Chaudry IH. Gender differences in sepsis: cardiovascular and immunological aspects. Virulence. 2014;5(1):12–9.
Article
PubMed
Google Scholar
Imahara SD, Jelacic S, Junker CE, O'Keefe GE. The influence of gender on human innate immunity. Surgery. 2005;138(2):275–82.
Article
PubMed
Google Scholar
Candore G, Balistreri CR, Listi F, Grimaldi MP, Vasto S, Colonna-Romano G, et al. Immunogenetics, gender, and longevity. Ann N Y Acad Sci. 2006;1089:516–37.
Article
PubMed
Google Scholar
Kim-Fine S, Regnault TR, Lee JS, Gimbel SA, Greenspoon JA, Fairbairn J, et al. Male gender promotes an increased inflammatory response to lipopolysaccharide in umbilical vein blood. J Matern Fetal Neonatal Med. 2012;25(11):2470–4.
Article
CAS
PubMed
Google Scholar
Guess T, McClelland E. An updated overview of the gender-specific response to infection. Principles of Gender-Specific Medicine 3rd ed. Cambridge: Elsevier, Inc.; 2017. p. 417-428.
Chapter
Google Scholar
Sofronescu A. Estradiol Reference Range: MedScape; 2015 [Available from: https://emedicine.medscape.com/article/2089003-overview?pa=L4udVARM1XDHbdrQzqXYLMdFqfh6oL2AJ3pzG%2FHCwYXR1ciqbewlOcfnwAsAfTYsgqoa090UYJ8Fd8FkU1fbR%2FEiL5fM42L%2B9xlMlua7G1g%3D.
Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A. 1986;83(8):2496–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milo GE, Malarkey WB, Powell JE, Blakeslee JR, Yohn DS. Effects of steroid hormones in fetal bovine serum on plating ang cloning of human cells in vitro. In Vitro. 1976;12(1):23–30.
Article
CAS
PubMed
Google Scholar