Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91. https://doi.org/10.1016/0165-0173(93)90013-P.
Article
CAS
PubMed
Google Scholar
Brown PL, Jenkins HM. Auto-shaping of the pigeon’s key-peck. J Exp Anal Behav. 1968;11:1–8. https://doi.org/10.1901/jeab.1968.11-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flagel SB, Akil H, Robinson TE. Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology. 2009;56:139–48. https://doi.org/10.1016/j.neuropharm.2008.06.027.
Article
CAS
PubMed
Google Scholar
Flagel SB, Watson SJ, Robinson TE, Akil H. Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology. 2007;191:599–607. https://doi.org/10.1007/s00213-006-0535-8.
Article
CAS
PubMed
Google Scholar
Uslaner JM, Acerbo MJ, Jones SA, Robinson TE. The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behav Brain Res. 2006;169:320–4. https://doi.org/10.1016/j.bbr.2006.02.001.
Article
CAS
PubMed
Google Scholar
Robinson TE, Yager LM, Cogan ES, Saunders BT. On the motivational properties of reward cues: individual differences. Neuropharmacology. 2014:450–9. https://doi.org/10.1016/j.neuropharm.2013.05.040.
Article
CAS
Google Scholar
Lovic V, Saunders BT, Yager LM, Robinson TE. Rats prone to attribute incentive salience to reward cues are also prone to impulsive action. Behav Brain Res. 2011;223:255–61. https://doi.org/10.1016/j.bbr.2011.04.006.
Article
PubMed
PubMed Central
Google Scholar
Tomie A, Aguado AS, Pohorecky LA, Benjamin D. Ethanol induces impulsive-like responding in a delay-of-reward operant choice procedure: impulsivity predicts autoshaping. Psychopharmacology. 1998;139:376–82. https://doi.org/10.1007/s002130050728.
Article
CAS
PubMed
Google Scholar
Flagel SB, Chaudhury S, Waselus M, Kelly R, Sewani S, Clinton SM, Thompson RC, Watson SJ, Akil H. Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model. Proc Natl Acad Sci U S A. 2016;113:E2861–70. https://doi.org/10.1073/pnas.1520491113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campus P, Accoto A, Maiolati M, Latagliata C, Orsini C. Role of prefrontal 5-HT in the strain-dependent variation in sign-tracking behavior of C57BL/6 and DBA/2 mice. Psychopharmacology. 2016;233:1157–69. https://doi.org/10.1007/s00213-015-4192-7.
Article
CAS
PubMed
Google Scholar
Flagel SB, Cameron CM, Pickup KN, Watson SJ, Akil H, Robinson TE. A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience. 2011;196:80–96. https://doi.org/10.1016/j.neuroscience.2011.09.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paolone G, Angelakos CC, Meyer PJ, Robinson TE, Sarter M. Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J Neurosci. 2013;33:8321–35. https://doi.org/10.1523/JNEUROSCI.0709-13.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saunders BT, Robinson TE. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci. 2012;36:2521–32. https://doi.org/10.1111/j.1460-9568.2012.08217.x.
Article
PubMed
PubMed Central
Google Scholar
Singer BF, Guptaroy B, Austin CJ, Wohl I, Lovic V, Seiler JL, Vaughan RA, Gnegy ME, Robinson TE, Aragona BJ. Individual variation in incentive salience attribution and Accumbens dopamine transporter expression and function. Eur J Neurosci. 2016;43, In Press. https://doi.org/10.1111/ejn.13134.
Article
Google Scholar
Krank MD, O’Neill S, Squarey K, Jacob J. Goal- and signal-directed incentive: conditioned approach, seeking, and consumption established with unsweetened alcohol in rats. Psychopharmacology. 2008;196:397–405. https://doi.org/10.1007/s00213-007-0971-0.
Article
CAS
PubMed
Google Scholar
Versaggi CL, King CP, Meyer PJ. The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Psychopharmacology. 2016. https://doi.org/10.1007/s00213-016-4341-7.
Article
CAS
Google Scholar
Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib M, Craven L, Palmatier MI, Liu X, Sved AF. Self-administered and noncontingent nicotine enhance reinforced operant responding in rats: impact of nicotine dose and reinforcement schedule. Psychopharmacology. 2007;190:353–62. https://doi.org/10.1007/s00213-006-0454-8.
Article
CAS
PubMed
Google Scholar
Palmatier MI, Marks KR, Jones SA, Freeman KS, Wissman KM, Sheppard BA. The effect of nicotine on sign-tracking and goal-tracking in a Pavlovian conditioned approach paradigm in rats. Psychopharmacology. 2013;226:247–59. https://doi.org/10.1007/s00213-012-2892-9.
Article
CAS
PubMed
Google Scholar
Palmatier MI, Matteson GL, Black JJ, Liu X, Caggiula AR, Craven L, Donny EC, Sved AF. The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug Alcohol Depend. 2007;89:52–9. https://doi.org/10.1016/j.drugalcdep.2006.11.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins KA, Karelitz JL, Boldry MC. Nicotine Acutely enhances Reinforcement from Non-Drug Rewards in Humans. 2017;8. https://doi.org/10.3389/fpsyt.2017.00065.
Stringfield SJ, Boettiger CA, Robinson DL. Nicotine-enhanced Pavlovian conditioned approach is resistant to omission of expected outcome. Behav Brain Res. 2018;343:16–20. https://doi.org/10.1016/j.bbr.2018.01.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stringfield SJ, Palmatier MI, Boettiger CA, Robinson DL. Orbitofrontal participation in sign- and goal-tracking conditioned responses: effects of nicotine. Neuropharmacology. 2017;116:208–23. https://doi.org/10.1016/j.neuropharm.2016.12.020.
Article
CAS
PubMed
Google Scholar
Guy EG, Fletcher PJ. The effects of nicotine exposure during Pavlovian conditioning in rats on several measures of incentive motivation for a conditioned stimulus paired with water. Psychopharmacology. 2014;231:2261–71. https://doi.org/10.1007/s00213-013-3375-3.
Article
CAS
PubMed
Google Scholar
Overby PF, Daniels CW, Del Franco A, Goenaga J, Powell GL, Gipson CD, Sanabria F. Effects of nicotine self-administration on incentive salience in male Sprague Dawley rats. Psychopharmacology. 2018;235:1121–30. https://doi.org/10.1007/s00213-018-4829-4.
Article
CAS
PubMed
Google Scholar
Madayag AC, Stringfield SJ, Reissner KJ, Boettiger CA, Robinson DL. Sex and adolescent ethanol exposure influence Pavlovian conditioned approach. Alcohol Clin Exp Res. 2017;41. https://doi.org/10.1111/acer.13354.
Article
CAS
Google Scholar
Pitchers KK, Flagel SB, O’Donnell EG, Solberg Woods LC, Sarter M, Robinson TE. Individual variation in the propensity to attribute incentive salience to a food cue: influence of sex. Behav Brain Res. 2015;278:462–9. https://doi.org/10.1016/j.bbr.2014.10.036.
Article
PubMed
Google Scholar
Hammerslag LR, Gulley JM. Age and sex differences in reward behavior in adolescent and adult rats. Dev Psychobiol. 2014;56:611–21. https://doi.org/10.1002/dev.21127.
Article
PubMed
Google Scholar
Donny EC, Caggiula AR, Rowell PP, Gharib MA, Maldovan V, Booth S, Mielke MM, Hoffman A, McCallum S. Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacology. 2000;151:392–405. https://doi.org/10.1007/s002130000497.
Article
CAS
PubMed
Google Scholar
Lynch WJ. Sex and ovarian hormones influence vulnerability and motivation for nicotine during adolescence in rats. Pharmacol Biochem Behav. 2009;94:43–50. https://doi.org/10.1016/j.pbb.2009.07.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feltenstein MW, See RE. The neurocircuitry of addiction: an overview. Br J Pharmacol. 2008;154:261–74. https://doi.org/10.1038/bjp.2008.51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swalve N, Smethells JR, Carroll ME. Sex differences in the acquisition and maintenance of cocaine and nicotine self-administration in rats. Psychopharmacology. 2016;233:1005–13. https://doi.org/10.1007/s00213-015-4183-8.
Article
CAS
PubMed
Google Scholar
Chaudhri N, Caggiula AR, Donny EC, Booth S, Gharib MA, Craven LA, Allen SS, Sved AF, Perkins KA. Sex differences in the contribution of nicotine and nonpharmacological stimuli to nicotine self-administration in rats. Psychopharmacology. 2005;180:258–66. https://doi.org/10.1007/s00213-005-2152-3.
Article
CAS
PubMed
Google Scholar
Perkins KA, Jacobs L, Sanders M, Caggiula AR. Sex differences in the subjective and reinforcing effects of cigarette nicotine dose. Psychopharmacology. 2002;163:194–201. https://doi.org/10.1007/s00213-002-1168-1.
Article
CAS
PubMed
Google Scholar
Bath KG, Lee FS. Variant BDNF (Val66Met) impact on brain structure and function. Cogn Affect Behav Neurosci. 2006;6:79–85. https://doi.org/10.3758/CABN.6.1.79.
Article
PubMed
Google Scholar
Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L. Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav Rev. 2010;35:157–71. https://doi.org/10.1016/j.neubiorev.2009.11.009.
Article
CAS
PubMed
Google Scholar
Pitts EG, Taylor JR, Gourley SL. Prefrontal cortical BDNF: a regulatory key in cocaine- and food-reinforced behaviors. Neurobiol Dis. 2016;91:326–35. https://doi.org/10.1016/j.nbd.2016.02.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrow JD, Saunders BT, Maren S, Robinson TE. Sign-tracking to an appetitive cue predicts incubation of conditioned fear in rats. Behav Brain Res. 2015;276:59–66. https://doi.org/10.1016/j.bbr.2014.04.002.
Article
PubMed
Google Scholar
Gourley SL, Zimmermann KS, Allen a G, Taylor JR. The medial orbitofrontal cortex regulates sensitivity to outcome value. J Neurosci. 2016;36:4600–13. https://doi.org/10.1523/JNEUROSCI.4253-15.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann KS, Yamin JA, Rainnie DG, Ressler KJ, Gourley SL. Connections of the mouse orbitofrontal cortex and regulation of goal-directed action selection by brain-derived neurotrophic factor. Biol Psychiatry. 2015;81:366–77. https://doi.org/10.1016/j.biopsych.2015.10.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhang S-Y, Choi S-W, Ahn J-H. Changes in plasma brain-derived neurotrophic factor levels in smokers after smoking cessation. Neurosci Lett. 2010. https://doi.org/10.1016/j.neulet.2009.10.046.
Article
CAS
Google Scholar
Jamal M, Van der Does W, Elzinga BM, Molendijk ML, Penninx BWJH. Association between smoking, nicotine dependence, and BDNF Val66Met polymorphism with BDNF concentrations in serum. Nicotine Tob Res. 2015;17:323–9. https://doi.org/10.1093/ntr/ntu151.
Article
CAS
PubMed
Google Scholar
Kim T-S, Kim D-J, Lee H, Kim Y-K. Increased plasma brain-derived neurotrophic factor levels in chronic smokers following unaided smoking cessation. Neurosci Lett. 2007. https://doi.org/10.1016/j.neulet.2007.05.064.
Article
CAS
Google Scholar
Lang UE, Sander T, Lohoff FW, Hellweg R, Bajbouj M, Winterer G, Gallinat J. Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking. Psychopharmacology. 2007;190:433–9. https://doi.org/10.1007/s00213-006-0647-1.
Article
CAS
PubMed
Google Scholar
Wook Koo J, Labonté B, Engmann O, Calipari ES, Juarez B, Lorsch Z, Walsh JJ, Friedman AK, Yorgason JT, Han M-H, Nestler EJ. Essential role of mesolimbic brain-derived neurotrophic factor in chronic social stress–induced depressive behaviors. Biol Psychiatry. 2016;80:469–78. https://doi.org/10.1016/j.biopsych.2015.12.009.
Article
CAS
PubMed
Google Scholar
Kenny PJ, File SE, Rattray M. Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res Mol Brain Res. 2000;85:234–8. https://doi.org/10.1016/S0169-328X(00)00246-1.
Article
CAS
PubMed
Google Scholar
Kivinummi T, Kaste K, Rantamäki T, Castrén E, Ahtee L. Alterations in BDNF and phospho-CREB levels following chronic oral nicotine treatment and its withdrawal in dopaminergic brain areas of mice. Neurosci Lett. 2011;491:108–12. https://doi.org/10.1016/j.neulet.2011.01.015.
Article
CAS
PubMed
Google Scholar
Ortega LA, Tracy BA, Gould TJ, Parikh V. Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behav Brain Res. 2013;238:134–45. https://doi.org/10.1016/j.bbr.2012.10.032.
Article
CAS
PubMed
Google Scholar
Yeom M, Shim I, Lee H-J, Hahm D-H. Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats. Biochem Biophys Res Commun. 2005;326:321–8. https://doi.org/10.1016/j.bbrc.2004.11.034.
Article
CAS
PubMed
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences 2nd edn; 1988.
Google Scholar
Guizzetti M, Davies DL, Egli M, Finn DA, Molina P, Regunathan S, Robinson DL, Sohrabji F. Sex and the lab: an alcohol-focused commentary on the NIH initiative to balance sex in cell and animal studies. Alcohol Clin Exp Res. 2016;40:1182–91. https://doi.org/10.1111/acer.13072.
Article
PubMed
PubMed Central
Google Scholar
Becker JB, Prendergast BJ, Liang JW. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol Sex Differ. 2016;7:34. https://doi.org/10.1186/s13293-016-0087-5.
Article
PubMed
PubMed Central
Google Scholar
Perkins KA, Donny E, Caggiula AR. Sex differences in nicotine effects and self-administration: review of human and animal evidence. Nicotine Tob Res. 1999;1:301–15. https://doi.org/10.1080/14622299050011431.
Article
CAS
PubMed
Google Scholar
Pogun S, Yararbas G. Sex differences in nicotine action. In: Nicotine psychopharmacology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 261–91. https://doi.org/10.1007/978-3-540-69248-5_10.
Chapter
Google Scholar
Perkins KA, Gerlach D, Broge M, Grobe JE, Wilson A. Greater sensitivity to subjective effects of nicotine in nonsmokers high in sensation seeking. Exp Clin Psychopharmacol. 2000;8:462–71. https://doi.org/10.1037/1064-1297.8.4.462.
Article
CAS
PubMed
Google Scholar
Isiegas C, Mague SD, Blendy JA. Sex differences in response to nicotine in C57Bl/6:129SvEv mice. Nicotine Tob Res. 2009;11:851–8. https://doi.org/10.1093/ntr/ntp076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanýt L, Stolerman IP, Chandler CJ, Saigusa T, Pögün Ş. Influence of sex and female hormones on nicotine-induced changes in locomotor activity in rats. Pharmacol Biochem Behav. 1999;62:179–87. https://doi.org/10.1016/S0091-3057(98)00140-3.
Article
PubMed
Google Scholar
Chang SE, Wheeler DS, Holland PC. Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing. Neurobiol Learn Mem. 2012;97:441–51. https://doi.org/10.1016/j.nlm.2012.03.008.
Article
PubMed
PubMed Central
Google Scholar
Chudasama Y, Robbins TW. Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci. 2003;23:8771–80. https://doi.org/10.1016/j.nlm.2012.03.008.
Article
CAS
PubMed
Google Scholar
Baker-Andresen D, Flavell CR, Li X, Bredy TW. Activation of BDNF signaling prevents the return of fear in female mice. Learn Mem. 2013;20:237–40. https://doi.org/10.1101/lm.029520.112.
Article
CAS
PubMed
Google Scholar
Franklin TB, Perrot-Sinal TS. Sex and ovarian steroids modulate brain-derived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions. Psychoneuroendocrinology. 2006;31:38–48. https://doi.org/10.1016/j.psyneuen.2005.05.008.
Article
CAS
PubMed
Google Scholar
Karisetty BC, Joshi PC, Kumar A, Chakravarty S. Sex differences in the effect of chronic mild stress on mouse prefrontal cortical BDNF levels: a role of major ovarian hormones. Neuroscience. 2017;356:89–101. https://doi.org/10.1016/j.neuroscience.2017.05.020.
Article
CAS
PubMed
Google Scholar
Hill RA, Wu YWC, Kwek P, Van Den Buuse M. Modulatory effects of sex steroid hormones on brain-derived neurotrophic factor-tyrosine kinase B expression during adolescent development in C57Bl / 6 mice. Neuroendocrinology. 2012:774–88. https://doi.org/10.1111/j.1365-2826.2012.02277.x.
Article
CAS
Google Scholar
Kight KE, Mccarthy MM. Sex differences and estrogen regulation of BDNF gene expression , but not Propeptide content , in the Developing Hippocampus. 2017;354:345–54. https://doi.org/10.1002/jnr.23920.
Article
Google Scholar
Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology. 2019. https://doi.org/10.1038/s41386-018-0125-6.
Article
Google Scholar
Cichocki M, Baer-Dubowska W, Czubak A, Metelska J, Kus K, Nowakowska E, Burda K. Influences of chronic venlafaxine, olanzapine and nicotine on the hippocampal and cortical concentrations of brain-derived neurotrophic factor (BDNF). Pharmacol Reports. 2014;61:1017–23. https://doi.org/10.1016/s1734-1140(09)70163-x.
Article
Google Scholar
Jia Y, Gall CM, Lynch G. Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum. J Neurosci. 2010;30.
Article
CAS
Google Scholar
Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 2014;76:639–56. https://doi.org/10.1016/j.neuropharm.2013.04.005.
Article
CAS
PubMed
Google Scholar
Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 2002;9:224–37. https://doi.org/10.1101/lm.51202.
Article
PubMed
PubMed Central
Google Scholar