Ooi GT, Tawadros N, Escalona RM. Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol. 2004;228:1–21. https://doi.org/10.1016/j.mce.2004.07.018.
Article
CAS
PubMed
Google Scholar
Baylis PH, Ball S. The neurohypophysis: endocrinology of vasopressin and oxytocin. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, Editors. Endotext. MDText.com, Inc., South Dartmouth (MA); 2000.
Bucy PC. The pars nervosa of the bovine hypophysis. J Comp Neurol. 1930;50:505–19. https://doi.org/10.1002/cne.900500209.
Article
Google Scholar
Fauquier T, Lacampagne A, Travo P, Bauer K, Mollard P. Hidden face of the anterior pituitary. Trends Endocrinol Metab. 2002;13:304–9.
Article
CAS
Google Scholar
Yoshida S, Kato T, Yako H, Susa T, Cai LY, Osuna M, Inoue K, Kato Y. Significant quantitative and qualitative transition in pituitary stem / progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol. 2011;23:933–43. https://doi.org/10.1111/j.1365-2826.2011.02198.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waxman DJ, O’Connor C. Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol. 2006;20:2613–29. https://doi.org/10.1210/me.2006-0007.
Article
CAS
PubMed
Google Scholar
Agustsson TT, Baldvinsdottir T, Jonasson JG, Olafsdottir E, Steinthorsdottir V, Sigurdsson G, Thorsson AV, Carroll PV, Korbonits M, Benediktsson R. The epidemiology of pituitary adenomas in Iceland, 1955–2012: a nationwide population-based study. Eur J Endocrinol. 2015;173(5):655–64. https://doi.org/10.1530/EJE-15-0189.
Article
CAS
PubMed
Google Scholar
Mindermann T, Wilson CB. Age-related and gender-related occurrence of pituitary adenomas. Clin Endocrinol (Oxf). 1994;41(3):359–64. https://doi.org/10.1111/j.1365-2265.1994.tb02557.x.
Article
CAS
PubMed
Google Scholar
Bjelobaba I, Janjic MM, Kucka M, Stojilkovic SS. Cell type-specific sexual dimorphism in rat pituitary gene expression during maturation. Biol Reprod. 2015;93:21. https://doi.org/10.1095/biolreprod.115.129320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishida Y, Yoshioka M, St-Amand J. Sexually dimorphic gene expression in the hypothalamus, pituitary gland, and cortex. Genomics. 2005;85:679–87. https://doi.org/10.1016/j.ygeno.2005.02.013.
Article
CAS
PubMed
Google Scholar
Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 2017;15:7. https://doi.org/10.1186/s12915-017-0352-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes-Ramos CM, Chen C-Y, Kuijjer ML, Paulson JN, Sonawane AR, Fagny M, Platig J, Glass K, Quackenbush J, DeMeo DL. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 2020;31: 107795. https://doi.org/10.1016/j.celrep.2020.107795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A, Castel SE, Mohammadi P, Aguet F, Zou Y, Khramtsova EA, Skol AD, Garrido-Martín D, Reverter F, Brown A, Evans P, Gamazon ER, Payne A, Bonazzola R, Barbeira AN, Hamel AR, Martinez-Perez A, Soria JM, Pierce BL, Stephens M, Eskin E, Dermitzakis ET, Segrè AV, Im HK, Engelhardt BE, Ardlie KG, Montgomery SB, Battle AJ, Lappalainen T, Guigó R, Stranger BE, GTEx Consortium. The impact of sex on gene expression across human tissues. Science. 2020. https://doi.org/10.1126/science.aba3066.
Article
PubMed
PubMed Central
Google Scholar
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell type- and sex-dependent transcriptome profiles of rat anterior pituitary cells. Front Endocrinol (Lausanne). 2019;10:623. https://doi.org/10.3389/fendo.2019.00623.
Article
Google Scholar
Ho Y, Hu P, Peel MT, Chen S, Camara PG, Epstein DJ, Wu H, Liebhaber SA. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity. Protein Cell. 2020;11:565–83. https://doi.org/10.1007/s13238-020-00705-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruf-Zamojski F, Zhang Z, Zamojski M, Smith GR, Mendelev N, Liu H, Nudelman G, Moriwaki M, Pincas H, Castanon RG, Nair VD, Seenarine N, Amper MAS, Zhou X, Ongaro L, Toufaily C, Schang G, Nery JR, Bartlett A, Aldridge A, Jain N, Childs GV, Troyanskaya OG, Ecker JR, Turgeon JL, Welt CK, Bernard DJ, Sealfon SC. Single nucleus multi-omics regulatory landscape of the murine pituitary. Nat Commun. 2021;12:2677. https://doi.org/10.1038/s41467-021-22859-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou H, Uusküla-Reimand L, Makarem M, Corre C, Saleh S, Metcalf A, Goldenberg A, Palmert MR, Wilson MD. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development. Hum Mol Genet. 2017;26:3585–99. https://doi.org/10.1093/hmg/ddx246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiao S, Nordström K, Muijs L, Gasparoni G, Tierling S, Krause E, Walter J, Boehm U. Molecular plasticity of male and female murine gonadotropes revealed by mRNA sequencing. Endocrinology. 2016;157:1082–93. https://doi.org/10.1210/en.2015-1836.
Article
CAS
PubMed
Google Scholar
Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14:432–44. https://doi.org/10.1261/rna.783108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007;210:370–7. https://doi.org/10.1002/jcp.20832.
Article
CAS
PubMed
Google Scholar
Ye J, Yao Z, Si W, Gao X, Yang C, Liu Y, Ding J, Huang W, Fang F, Zhou J. Identification and characterization of microRNAs in the pituitary of pubescent goats. Reprod Biol Endocrinol. 2018;16:51. https://doi.org/10.1186/s12958-018-0370-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye R-S, Li M, Qi Q-E, Cheng X, Chen T, Li C-Y, Wang S-B, Shu G, Wang L-N, Zhu X-T, Jiang Q-Y, Xi Q-Y, Zhang Y-L. Comparative anterior pituitary miRNA and mRNA expression profiles of Bama Minipigs and Landrace Pigs reveal potential molecular network involved in animal postnatal growth. PLoS ONE. 2015;10: e0131987. https://doi.org/10.1371/journal.pone.0131987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan B, Han D-X, Dai L-S, Gao Y, Ding Y, Yu X-F, Chen J, Jiang H, Chen C-Z, Zhang J-B. A comprehensive expression profile of micrornas in rat’s pituitary. Int J Clin Exp Med. 2015;8:13289–95.
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Qi Q, Chen T, Luo J, Xi Q, Jiang Q, Sun J, Zhang Y. Age-related changes in microRNA in the rat pituitary and potential role in GH regulation. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19072058.
Article
PubMed
PubMed Central
Google Scholar
Hao P, Waxman DJ. Functional roles of sex-biased, growth hormone-regulated microRNAs miR-1948 and miR-802 in young adult mouse liver. Endocrinology. 2018;159:1377–92. https://doi.org/10.1210/en.2017-03109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan CP, Bale TL. Sex differences in microRNA-mRNA networks: examination of novel epigenetic programming mechanisms in the sexually dimorphic neonatal hypothalamus. Biol Sex Differ. 2017;8:27. https://doi.org/10.1186/s13293-017-0149-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danilovich N, Wernsing D, Coschigano KT, Kopchick JJ, Bartke A. Deficits in female reproductive function in GH-R-KO mice; role of IGF-I. Endocrinology. 1999;140:2637–40. https://doi.org/10.1210/endo.140.6.6992.
Article
CAS
PubMed
Google Scholar
Korenbrot CC, Huhtaniemi IT, Weiner RI. Preputial separation as an external sign of pubertal development in the male rat. Biol Reprod. 1977;17:298–303. https://doi.org/10.1095/biolreprod17.2.298.
Article
CAS
PubMed
Google Scholar
Sánchez-Garrido MA, Castellano JM, Ruiz-Pino F, Garcia-Galiano D, Manfredi-Lozano M, Leon S, Romero-Ruiz A, Diéguez C, Pinilla L, Tena-Sempere M. Metabolic programming of puberty: sexually dimorphic responses to early nutritional challenges. Endocrinology. 2013;154:3387–400. https://doi.org/10.1210/en.2012-2157.
Article
CAS
PubMed
Google Scholar
Yuki KE, Eyck TT, Bannister S, Kyriakopoulou L, Shlien A, Wilson MD. Automation of the Lexogen QuantSeq3’ mRNA Kit on the Agilent NGS workstation produces high-qualitysequencing libraries. Agilent Technologies. 2018.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–4. https://doi.org/10.1093/bioinformatics/btv566.
Article
CAS
PubMed
Google Scholar
Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B, Irizarry RA, Leek JT, Jaffe AE. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 2017;45: e9. https://doi.org/10.1093/nar/gkw852.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656.
Article
CAS
PubMed
Google Scholar
Bushnell B. BBMap: a fast, accurate, splice-aware aligner. SourceForge. 2014.
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52. https://doi.org/10.1093/nar/gkr688.
Article
CAS
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68-73. https://doi.org/10.1093/nar/gkt1181.
Article
CAS
PubMed
Google Scholar
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896–902. https://doi.org/10.1038/nbt.2931.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97. https://doi.org/10.1093/nar/gks042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85. https://doi.org/10.1038/nrm1644.
Article
CAS
PubMed
Google Scholar
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microrna biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. https://doi.org/10.3389/fendo.2018.00402.
Article
Google Scholar
Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–6. https://doi.org/10.1038/nature05983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–62. https://doi.org/10.1093/nar/gky1141.
Article
CAS
PubMed
Google Scholar
Qin Q, Fan J, Zheng R, Wan C, Mei S, Wu Q, Sun H, Brown M, Zhang J, Meyer CA, Liu XS. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol. 2020;21:32. https://doi.org/10.1186/s13059-020-1934-6.
Article
PubMed
PubMed Central
Google Scholar
Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, Hirata TDC, Lima DS, Passos FM, Fukutani KF, Lever M, Silva JS, Maracaja-Coutinho V, Nakaya HI. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinform. 2018;19:56. https://doi.org/10.1186/s12859-018-2053-1.
Article
CAS
Google Scholar
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015. https://doi.org/10.7554/eLife.05005.
Article
PubMed
PubMed Central
Google Scholar
Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, Huang W-C, Sun T-H, Tu S-J, Lee W-H, Chiew M-Y, Tai C-S, Wei T-Y, Tsai T-R, Huang H-T, Wang C-Y, Wu H-Y, Ho S-Y, Chen P-R, Chuang C-H, Hsieh P-J, Wu Y-S, Chen W-L, Li M-J, Wu Y-C, Huang X-Y, Ng FL, Buddhakosai W, Huang P-C, Lan K-C, Huang C-Y, Weng S-L, Cheng Y-N, Liang C, Hsu W-L, Huang H-D. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46:D296–302. https://doi.org/10.1093/nar/gkx1067.
Article
CAS
PubMed
Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-3587.e29. https://doi.org/10.1016/j.cell.2021.04.048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296. https://doi.org/10.1186/s13059-019-1874-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. comprehensive integration of single-cell data. Cell. 2019;177:1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sokolowski DJ, Faykoo-Martinez M, Erdman L, Hou H, Chan C, Zhu H, Holmes MM, Goldenberg A, Wilson MD. Single-cell mapper (scMappR): using scRNA-seq to infer the cell-type specificities of differentially expressed genes. NAR Genom Bioinform. 2021;3:lqab011. https://doi.org/10.1093/nargab/lqab011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danziger SA, Gibbs DL, Shmulevich I, McConnell M, Trotter MWB, Schmitz F, Reiss DJ, Ratushny AV. ADAPTS: Automated deconvolution augmentation of profiles for tissue specific cells. PLoS ONE. 2019;14: e0224693. https://doi.org/10.1371/journal.pone.0224693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corre C, Shinoda G, Zhu H, Cousminer DL, Crossman C, Bellissimo C, Goldenberg A, Daley GQ, Palmert MR. Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. J Endocrinol. 2016;228:179–91. https://doi.org/10.1530/JOE-15-0360.
Article
CAS
PubMed
Google Scholar
Cheung LYM, George AS, McGee SR, Daly AZ, Brinkmeier ML, Ellsworth BS, Camper SA. Single-cell RNA sequencing reveals novel markers of male pituitary stem cells and hormone-producing cell types. Endocrinology. 2018;159:3910–24. https://doi.org/10.1210/en.2018-00750.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckstrum KS, Weis KE, Baur NG, Yoshihara Y, Raetzman LT. Icam5 expression exhibits sex differences in the neonatal pituitary and is regulated by estradiol and bisphenol A. Endocrinology. 2016;157:1408–20. https://doi.org/10.1210/en.2015-1521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung LYM, Rizzoti K, Lovell-Badge R, Le Tissier PR. Pituitary phenotypes of mice lacking the notch signalling ligand delta-like 1 homologue. J Neuroendocrinol. 2013;25:391–401. https://doi.org/10.1111/jne.12010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishida Y, Yoshioka M, St-Amand J. The top 10 most abundant transcripts are sufficient to characterize the organs functional specificity: evidences from the cortex, hypothalamus and pituitary gland. Gene. 2005;344:133–41. https://doi.org/10.1016/j.gene.2004.09.007.
Article
CAS
PubMed
Google Scholar
Robinson AG, Verbalis JG. Posterior pituitary. In: Williams textbook of endocrinology. Elsevier; 2011. pp. 291–323. doi:https://doi.org/10.1016/B978-1-4377-0324-5.00010-9.
Stojilkovic SS, Bjelobaba I, Zemkova H. Ion channels of pituitary gonadotrophs and their roles in signaling and secretion. Front Endocrinol (Lausanne). 2017;8:126. https://doi.org/10.3389/fendo.2017.00126.
Article
Google Scholar
Stojilkovic SS, Tabak J, Bertram R. Ion channels and signaling in the pituitary gland. Endocr Rev. 2010;31:845–915. https://doi.org/10.1210/er.2010-0005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stinnett GS, Westphal NJ, Seasholtz AF. Pituitary CRH-binding protein and stress in female mice. Physiol Behav. 2015;150:16–23. https://doi.org/10.1016/j.physbeh.2015.02.050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torner L. Actions of prolactin in the brain: from physiological adaptations to stress and neurogenesis to psychopathology. Front Endocrinol (Lausanne). 2016;7:25. https://doi.org/10.3389/fendo.2016.00025.
Article
Google Scholar
Li R, Vannitamby A, Yue SSK, Handelsman D, Hutson J. Mouse minipuberty coincides with gonocyte transformation into spermatogonial stem cells: a model for human minipuberty. Reprod Fertil Dev. 2017;29:2430–6. https://doi.org/10.1071/RD17100.
Article
CAS
PubMed
Google Scholar
Schroeder A, Buret L, Hill RA, van den Buuse M. Gene-environment interaction of reelin and stress in cognitive behaviours in mice: implications for schizophrenia. Behav Brain Res. 2015;287:304–14. https://doi.org/10.1016/j.bbr.2015.03.063.
Article
CAS
PubMed
Google Scholar
Hodge CW, Raber J, McMahon T, Walter H, Sanchez-Perez AM, Olive MF, Mehmert K, Morrow AL, Messing RO. Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cepsilon. J Clin Invest. 2002;110:1003–10. https://doi.org/10.1172/JCI15903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: an important role for gonadal hormones. Neuropsychopharmacology. 2019;44:45–58. https://doi.org/10.1038/s41386-018-0167-9.
Article
CAS
PubMed
Google Scholar
Terenina EE, Cavigelli S, Mormede P, Zhao W, Parks C, Lu L, Jones BC, Mulligan MK. Genetic factors mediate the impact of chronic stress and subsequent response to novel acute stress. Front Neurosci. 2019;13:438. https://doi.org/10.3389/fnins.2019.00438.
Article
PubMed
PubMed Central
Google Scholar
Shin S, Kwon O, Kang JI, Kwon S, Oh S, Choi J, Kim CH, Kim DG. mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nat Neurosci. 2015;18:1017–24. https://doi.org/10.1038/nn.4028.
Article
CAS
PubMed
Google Scholar
Moon AL, Haan N, Wilkinson LS, Thomas KL, Hall J. CACNA1C: association with psychiatric disorders, behavior, and neurogenesis. Schizophr Bull. 2018;44:958–65. https://doi.org/10.1093/schbul/sby096.
Article
PubMed
PubMed Central
Google Scholar
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress. 2017;20:476–94. https://doi.org/10.1080/10253890.2017.1369523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu H, Miao Y-R, Jia L-H, Yu Q-Y, Zhang Q, Guo A-Y. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019;47:D33–8. https://doi.org/10.1093/nar/gky822.
Article
CAS
PubMed
Google Scholar
Chen Q, Leshkowitz D, Blechman J, Levkowitz G. Single-cell molecular and cellular architecture of the mouse neurohypophysis. eNeuro. 2020. https://doi.org/10.1523/ENEURO.0345-19.2019.
Article
PubMed
PubMed Central
Google Scholar
Sasaki F, Iwama Y. Sex difference in prolactin and growth hormone cells in mouse adenohypophysis: stereological, morphometric, and immunohistochemical studies by light and electron microscopy. Endocrinology. 1988;123:905–12. https://doi.org/10.1210/endo-123-2-905.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 2011;14:677–83. https://doi.org/10.1038/nn.2834.
Article
CAS
PubMed
PubMed Central
Google Scholar
Million Passe CM, White CR, King MW, Quirk PL, Iovanna JL, Quirk CC. Loss of the protein NUPR1 (p8) leads to delayed LHB expression, delayed ovarian maturation, and testicular development of a sertoli-cell-only syndrome-like phenotype in mice. Biol Reprod. 2008;79:598–607. https://doi.org/10.1095/biolreprod.108.068304.
Article
CAS
PubMed
Google Scholar
O’Hara L, Curley M, Tedim Ferreira M, Cruickshanks L, Milne L, Smith LB. Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS ONE. 2015;10: e0121657. https://doi.org/10.1371/journal.pone.0121657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu S, Chen Y, Fajobi T, DiVall SA, Chang C, Yeh S, Wolfe A. Conditional knockout of the androgen receptor in gonadotropes reveals crucial roles for androgen in gonadotropin synthesis and surge in female mice. Mol Endocrinol. 2014;28:1670–81. https://doi.org/10.1210/me.2014-1154.
Article
CAS
PubMed
PubMed Central
Google Scholar
AlOgayil N, Bauermeister K, Galvez JH, Venkatesh VS, Zhuang QK-W, Chang ML, Davey RA, Zajac JD, Ida K, Kamiya A, Taketo T, Bourque G, Naumova AK. Distinct roles of androgen receptor, estrogen receptor alpha, and BCL6 in the establishment of sex-biased DNA methylation in mouse liver. Sci Rep. 2021;11:13766. https://doi.org/10.1038/s41598-021-93216-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau-Corona D, Bae WK, Hennighausen L, Waxman DJ. Sex-biased genetic programs in liver metabolism and liver fibrosis are controlled by EZH1 and EZH2. PLoS Genet. 2020;16: e1008796. https://doi.org/10.1371/journal.pgen.1008796.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, Knoll JG, Wright H, Pfeifer GP, Ojeda SR. Epigenetic control of female puberty. Nat Neurosci. 2013;16:281–9. https://doi.org/10.1038/nn.3319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dina OA, Aley KO, Isenberg W, Messing RO, Levine JD. Sex hormones regulate the contribution of PKCε and PKA signalling in inflammatory pain in the rat. Eur J Neurosci. 2001;13:2227–33. https://doi.org/10.1046/j.0953-816x.2001.01614.x.
Article
CAS
PubMed
Google Scholar
Kim HJ, Gieske MC, Trudgen KL, Hudgins-Spivey S, Kim BG, Krust A, Chambon P, Jeong J-W, Blalock E, Ko C. Identification of estradiol/ERα-regulated genes in the mouse pituitary. J Endocrinol. 2011;210:309–21. https://doi.org/10.1530/JOE-11-0098.
Article
CAS
PubMed
Google Scholar
Alim Z, Hartshorn C, Mai O, Stitt I, Clay C, Tobet S, Boehm U. Gonadotrope plasticity at cellular and population levels. Endocrinology. 2012;153:4729–39. https://doi.org/10.1210/en.2012-1360.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Parra S, Argente J, García-Segura LM, Chowen JA. Cellular composition of the adult rat anterior pituitary is influenced by the neonatal sex steroid environment. Neuroendocrinology. 1998;68:152–62. https://doi.org/10.1159/000054361.
Article
PubMed
Google Scholar
Gonzázalez-Parra S, Argente J, García-Segura LM, Chowen JA. Effect of neonatal and adult testosterone treatment on the cellular composition of the adult female rat anterior pituitary. J Endocrinol. 2000;164:265–76. https://doi.org/10.1677/joe.0.1640265.
Article
PubMed
Google Scholar
Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP. Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell. 2013;13:433–45. https://doi.org/10.1016/j.stem.2013.07.004.
Article
CAS
PubMed
Google Scholar
Scheithauer BW, Sano T, Kovacs KT, Young WF, Ryan N, Randall RV. The pituitary gland in pregnancy: a clinicopathologic and immunohistochemical study of 69 cases. Mayo Clin Proc. 1990;65:461–74. https://doi.org/10.1016/s0025-6196(12)60946-x.
Article
CAS
PubMed
Google Scholar
Oishi Y, Okuda M, Takahashi H, Fujii T, Morii S. Cellular proliferation in the anterior pituitary gland of normal adult rats: influences of sex, estrous cycle, and circadian change. Anat Rec. 1993;235:111–20. https://doi.org/10.1002/ar.1092350111.
Article
CAS
PubMed
Google Scholar
Taniguchi Y, Yasutaka S, Kominami R, Shinohara H. Proliferation and differentiation of rat anterior pituitary cells. Anat Embryol (Berl). 2002;206:1–11. https://doi.org/10.1007/s00429-002-0271-8.
Article
CAS
Google Scholar
Perez F, Lledo PM, Karagogeos D, Vincent JD, Prochiantz A, Ayala J. Rab3A and Rab3B carboxy-terminal peptides are both potent and specific inhibitors of prolactin release by rat cultured anterior pituitary cells. Mol Endocrinol. 1994;8:1278–87. https://doi.org/10.1210/mend.8.9.7838160.
Article
CAS
PubMed
Google Scholar
Charles MA, Saunders TL, Wood WM, Owens K, Parlow AF, Camper SA, Ridgway EC, Gordon DF. Pituitary-specific Gata2 knockout: effects on gonadotrope and thyrotrope function. Mol Endocrinol. 2006;20:1366–77. https://doi.org/10.1210/me.2005-0378.
Article
CAS
PubMed
Google Scholar
Schang G, Ongaro L, Brûlé E, Zhou X, Wang Y, Boehm U, Ruf-Zamojski F, Zamojski M, Mendelev N, Seenarine N, Amper MA, Nair V, Ge Y, Sealfon SC, Bernard DJ. Transcription factor GATA2 may potentiate follicle-stimulating hormone production in mice via induction of the BMP antagonist gremlin in gonadotrope cells. J Biol Chem. 2022;298: 102072. https://doi.org/10.1016/j.jbc.2022.102072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruf-Zamojski F, Fribourg M, Ge Y, Nair V, Pincas H, Zaslavsky E, Nudelman G, Tuminello SJ, Watanabe H, Turgeon JL, Sealfon SC. Regulatory architecture of the LβT2 gonadotrope cell underlying the response to gonadotropin-releasing hormone. Front Endocrinol (Lausanne). 2018;9:34. https://doi.org/10.3389/fendo.2018.00034.
Article
Google Scholar
Hücker SM, Fehlmann T, Werno C, Weidele K, Lüke F, Schlenska-Lange A, Klein CA, Keller A, Kirsch S. Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells. Nat Commun. 2021;12:4316. https://doi.org/10.1038/s41467-021-24611-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Zheng J, Chen Z, Liu Y, Dura B, Kwak M, Xavier-Ferrucio J, Lu Y-C, Zhang M, Roden C, Cheng J, Krause DS, Ding Y, Fan R, Lu J. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat Commun. 2019;10:95. https://doi.org/10.1038/s41467-018-07981-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong Y, Zhou J, Mizutani J, Fukuoka H, Ren S-G, Gutierrez-Hartmann A, Koeffler HP, Melmed S. CEBPD suppresses prolactin expression and prolactinoma cell proliferation. Mol Endocrinol. 2011;25:1880–91. https://doi.org/10.1210/me.2011-1075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pyczek J, Buslei R, Schult D, Hölsken A, Buchfelder M, Heß I, Hahn H, Uhmann A. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland. Sci Rep. 2016;6:24928. https://doi.org/10.1038/srep24928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vila G, Papazoglou M, Stalla J, Theodoropoulou M, Stalla GK, Holsboer F, Paez-Pereda M. Sonic hedgehog regulates CRH signal transduction in the adult pituitary. FASEB J. 2005;19:281–3. https://doi.org/10.1096/fj.04-2138fje.
Article
CAS
PubMed
Google Scholar
Kober P, Boresowicz J, Rusetska N, Maksymowicz M, Paziewska A, Dąbrowska M, Kunicki J, Bonicki W, Ostrowski J, Siedlecki JA, Bujko M. The role of aberrant DNA methylation in misregulation of gene expression in gonadotroph nonfunctioning pituitary tumors. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11111650.
Article
Google Scholar
Miyamoto J, Matsumoto T, Shiina H, Inoue K, Takada I, Ito S, Itoh J, Minematsu T, Sato T, Yanase T, Nawata H, Osamura YR, Kato S. The pituitary function of androgen receptor constitutes a glucocorticoid production circuit. Mol Cell Biol. 2007;27:4807–14. https://doi.org/10.1128/MCB.02039-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
García IA, Torres Demichelis V, Viale DL, Di Giusto P, Ezhova Y, Polishchuk RS, Sampieri L, Martinez H, Sztul E, Alvarez C. CREB3L1-mediated functional and structural adaptation of the secretory pathway in hormone-stimulated thyroid cells. J Cell Sci. 2017;130:4155–67. https://doi.org/10.1242/jcs.211102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenwood M, Paterson A, Rahman PA, Gillard BT, Langley S, Iwasaki Y, Murphy D, Greenwood MP. Transcription factor Creb3l1 regulates the synthesis of prohormone convertase enzyme PC1/3 in endocrine cells. J Neuroendocrinol. 2020;32: e12851. https://doi.org/10.1111/jne.12851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konishi H, Ogawa T, Nakagomi S, Inoue K, Tohyama M, Kiyama H. Id1, Id2 and Id3 are induced in rat melanotrophs of the pituitary gland by dopamine suppression under continuous stress. Neuroscience. 2010;169:1527–34. https://doi.org/10.1016/j.neuroscience.2010.06.030.
Article
CAS
PubMed
Google Scholar
Zhu X, Zhang J, Tollkuhn J, Ohsawa R, Bresnick EH, Guillemot F, Kageyama R, Rosenfeld MG. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes Dev. 2006;20:2739–53. https://doi.org/10.1101/gad.1444706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cogliati T, Delgado-Romero P, Norwitz ER, Guduric-Fuchs J, Kaiser UB, Wray S, Kirsch IR. Pubertal impairment in Nhlh2 null mice is associated with hypothalamic and pituitary deficiencies. Mol Endocrinol. 2007;21:3013–27. https://doi.org/10.1210/me.2005-0337.
Article
CAS
PubMed
Google Scholar
Gordon A, Garrido-Gracia JC, Aguilar R, Sánchez-Criado JE. Understanding the regulation of pituitary progesterone receptor expression and phosphorylation. Reproduction. 2015;149:615–23. https://doi.org/10.1530/REP-14-0592.
Article
CAS
PubMed
Google Scholar
Turgeon JL, Waring DW. Progesterone regulation of the progesterone receptor in rat gonadotropes. Endocrinology. 2000;141:3422–9. https://doi.org/10.1210/endo.141.9.7688.
Article
CAS
PubMed
Google Scholar
Li J-T, Xie X-M, Yu J-Y, Sun Y-X, Liao X-M, Wang X-X, Su Y-A, Liu Y-J, Schmidt MV, Wang X-D, Si T-M. Suppressed calbindin levels in hippocampal excitatory neurons mediate stress-induced memory loss. Cell Rep. 2017;21:891–900. https://doi.org/10.1016/j.celrep.2017.10.006.
Article
CAS
PubMed
Google Scholar