Cook MB, McGlynn KA, Devesa SS, Freedman ND, Anderson WF. Sex disparities in cancer mortality and survival. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2011;20:1629–37. https://doi.org/10.1158/1055-9965.EPI-11-0246.
Article
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30. https://doi.org/10.3322/caac.21387.
Article
PubMed
Google Scholar
Conforti F, et al. Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. Lancet Oncol. 2018;19:737–46. https://doi.org/10.1016/S1470-2045(18)30261-4.
Article
CAS
PubMed
Google Scholar
Rampen FH. Malignant melanoma: sex differences in response to chemotherapy? Eur J Cancer Clin Oncol. 1982;18:107–10.
Article
CAS
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. https://doi.org/10.3322/caac.21332.
Article
PubMed
Google Scholar
Mervic L. Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS One. 2012;7:e32955. https://doi.org/10.1371/journal.pone.0032955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal SK, Hurria A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J Clin Oncol. 2010;28:4086–93. https://doi.org/10.1200/JCO.2009.27.0579.
Article
PubMed
Google Scholar
Rampen F. Malignant melanoma: sex differences in survival after evidence of distant metastasis. Br J Cancer. 1980;42:52–7. https://doi.org/10.1038/bjc.1980.202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308. https://doi.org/10.1210/er.2002-0032.
Article
CAS
PubMed
Google Scholar
Weiss JR, Moysich KB, Swede H. Epidemiology of male breast cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2005;14:20–6.
Article
Google Scholar
Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270–82. https://doi.org/10.1056/NEJMra050776.
Article
CAS
PubMed
Google Scholar
Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. Curr Opin Genet Dev. 2008;18:3–10. https://doi.org/10.1016/j.gde.2008.01.003.
Article
CAS
PubMed
Google Scholar
Antoni S, et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71:96–108. https://doi.org/10.1016/j.eururo.2016.06.010.
Article
PubMed
Google Scholar
Aron M, Nguyen MM, Stein RJ, Gill IS. Impact of gender in renal cell carcinoma: an analysis of the SEER database. Eur Urol. 2008;54:133–40. https://doi.org/10.1016/j.eururo.2007.12.001.
Article
PubMed
Google Scholar
Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol. 2009;472:467–77. https://doi.org/10.1007/978-1-60327-492-0_23.
Article
PubMed
Google Scholar
Cartwright RA, Gurney KA, Moorman AV. Sex ratios and the risks of haematological malignancies. Br J Haematol. 2002;118:1071–7. https://doi.org/10.1046/j.1365-2141.2002.03750.x.
Article
PubMed
Google Scholar
Chow WH, et al. Risk factors for small intestine cancer. Cancer Causes Control. 1993;4:163–9.
Article
CAS
PubMed
Google Scholar
Cook MB, Chow WH, Devesa SS. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977-2005. Br J Cancer. 2009;101:855–9. https://doi.org/10.1038/sj.bjc.6605246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farahati, J., Bucsky, P., Parlowsky, T., Mader, U. & Reiners, C. Characteristics of differentiated thyroid carcinoma in children and adolescents with respect to age, gender, and histology. Cancer 80, 2156-2162, doi:10.1002/(sici)1097-0142(19971201)80:11 < 2156::aid-cncr16 > 3.0.co;2-y (1997).
Jawad MU, et al. Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: an analysis of 1631 cases from the SEER database, 1973-2005. Cancer. 2009;115:3526–36. https://doi.org/10.1002/cncr.24388.
Article
PubMed
Google Scholar
Kfoury N, et al. Cooperative p16 and p21 action protects female astrocytes from transformation. Acta Neuropathol Commun. 2018;6:12. https://doi.org/10.1186/s40478-018-0513-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SE, et al. Sex- and gender-specific disparities in colorectal cancer risk. World J Gastroenterol. 2015;21:5167–75. https://doi.org/10.3748/wjg.v21.i17.5167.
Article
PubMed
PubMed Central
Google Scholar
Lautrup, M. D. et al. Male breast cancer: a nation-wide population-based comparison with female breast cancer. Acta Oncol 57, 613-621, doi:10.1080/0284186X.2017.1418088 (2018).
Li Y, Izumi K, Miyamoto H. The role of the androgen receptor in the development and progression of bladder cancer. Jpn J Clin Oncol. 2012;42:569–77. https://doi.org/10.1093/jjco/hys072.
Article
PubMed
Google Scholar
Muscat, JE. & Wynder, EL. Tobacco, alcohol, asbestos, and occupational risk factors for laryngeal cancer. Cancer 69, 2244-2251, doi:10.1002/1097-0142(19920501)69:9 < 2244::aid-cncr2820690906 > 3.0.co;2-o (1992).
Muscat JE, Wynder EL. A case/control study of risk factors for major salivary gland cancer. Otolaryngol Head Neck Surg. 1998;118:195–8. https://doi.org/10.1016/S0194-5998(98)80013-2.
Article
CAS
PubMed
Google Scholar
Naugler WE, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4. https://doi.org/10.1126/science.1140485.
Article
CAS
PubMed
Google Scholar
Nosrati A, Wei ML. Sex disparities in melanoma outcomes: the role of biology. Arch Biochem Biophys. 2014;563:42–50. https://doi.org/10.1016/j.abb.2014.06.018.
Article
CAS
PubMed
Google Scholar
Patel JD. Lung cancer in women. J Clin Oncol. 2005;23:3212–8. https://doi.org/10.1200/JCO.2005.11.486.
Article
CAS
PubMed
Google Scholar
Polednak, AP. & Flannery, JT. Brain, other central nervous system, and eye cancer. Cancer 75, 330-337, doi:10.1002/1097-0142(19950101)75:1 + <330::aid-cncr2820751315 > 3.0.co;2-5 (1995).
Prieto J. Inflammation, HCC and sex: IL-6 in the centre of the triangle. J Hepatol. 2008;48:380–1. https://doi.org/10.1016/j.jhep.2007.11.007.
Article
CAS
PubMed
Google Scholar
Rahbari R, Zhang L, Kebebew E. Thyroid cancer gender disparity. Future Oncol. 2010;6:1771–9. https://doi.org/10.2217/fon.10.127.
Article
CAS
PubMed
Google Scholar
Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: recent update. World J Gastroenterol. 2017;23:3978–98. https://doi.org/10.3748/wjg.v23.i22.3978.
Article
PubMed
PubMed Central
Google Scholar
Soderlund S, et al. Inflammatory bowel disease confers a lower risk of colorectal cancer to females than to males. Gastroenterology. 2010;138:1697–703. https://doi.org/10.1053/j.gastro.2010.02.007.
Article
PubMed
Google Scholar
Sun T, et al. Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males. J Clin Invest. 2014;124:4123–33. https://doi.org/10.1172/JCI71048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun T, Warrington NM, Rubin JB. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors. Biol Sex Differ. 2012;3:3.
Article
PubMed
PubMed Central
Google Scholar
Swango PA. Cancers of the oral cavity and pharynx in the United States: an epidemiologic overview. J Public Health Dent. 1996;56:309–18.
Article
CAS
PubMed
Google Scholar
Tota JE, et al. Rising incidence of oral tongue cancer among white men and women in the United States, 1973-2012. Oral Oncol. 2017;67:146–52. https://doi.org/10.1016/j.oraloncology.2017.02.019.
Article
PubMed
Google Scholar
Tseng HF, Morgenstern H, Mack TM, Peters RK. Risk factors for anal cancer: results of a population-based case--control study. Cancer Causes Control. 2003;14:837–46.
Article
PubMed
Google Scholar
Warrington NM, et al. The cyclic AMP pathway is a sex-specific modifier of glioma risk in type I neurofibromatosis patients. Cancer Res. 2015;75:16–21. https://doi.org/10.1158/0008-5472.CAN-14-1891.
Article
CAS
PubMed
Google Scholar
Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1252–61. https://doi.org/10.1053/j.gastro.2013.01.068.
Article
PubMed
Google Scholar
Yan TD, Popa E, Brun EA, Cerruto CA, Sugarbaker PH. Sex difference in diffuse malignant peritoneal mesothelioma. Br J Surg. 2006;93:1536–42. https://doi.org/10.1002/bjs.5377.
Article
CAS
PubMed
Google Scholar
Curtin, SC., Minino, AM. & Anderson, RN. Declines in cancer death rates among children and adolescents in the United States, 1999-2014. NCHS Data Brief, 1-8 (2016).
Centers for Disease Control and Prevention, N. C. f. H. S. WHO Growth Standards Are Recommended for Use in the U.S. for Infants and Children 0 to 2 Years of Age, <https://www.cdc.gov/growthcharts/who_charts.htm> (2010).
Perrin JS, et al. Sex differences in the growth of white matter during adolescence. Neuroimage. 2009;45:1055–66. https://doi.org/10.1016/j.neuroimage.2009.01.023.
Article
CAS
PubMed
Google Scholar
Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. 2019;56:308–21. https://doi.org/10.1007/s12016-017-8648-x.
Article
CAS
PubMed
Google Scholar
Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38. https://doi.org/10.1038/nri.2016.90.
Article
CAS
PubMed
Google Scholar
Chaudhari S, et al. Mechanisms of sex disparities in cardiovascular function and remodeling. Compr Physiol. 2018;9:375–411. https://doi.org/10.1002/cphy.c180003.
Article
PubMed
Google Scholar
Chella Krishnan, K., Mehrabian, M. & Lusis, AJ. Sex differences in metabolism and cardiometabolic disorders. Curr Opin Lipidol 29, 404-410, doi:10.1097/MOL.0000000000000536 (2018).
Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing and repair. Maturitas. 2017;103:60–4. https://doi.org/10.1016/j.maturitas.2017.06.026.
Article
CAS
PubMed
Google Scholar
Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21:v1–v100. https://doi.org/10.1093/neuonc/noz150.
Article
PubMed
PubMed Central
Google Scholar
Franceschi E, et al. The prognostic roles of gender and O6-methylguanine-DNA methyltransferase methylation status in glioblastoma patients: the female power. World Neurosurg. 2018;112:e342–7. https://doi.org/10.1016/j.wneu.2018.01.045.
Article
PubMed
Google Scholar
Gittleman H, et al. Sex is an important prognostic factor for glioblastoma but not for nonglioblastoma. Neurooncol Pract. 2019;6:451–62. https://doi.org/10.1093/nop/npz019.
Article
PubMed
PubMed Central
Google Scholar
Ostrom QT, et al. Sex-specific gene and pathway modeling of inherited glioma risk. Neuro Oncol. 2019;21:71–82. https://doi.org/10.1093/neuonc/noy135.
Article
CAS
PubMed
Google Scholar
Ostrom QT, Rubin JB, Lathia JD, Berens ME, Barnholtz-Sloan JS. Females have the survival advantage in glioblastoma. Neuro Oncol. 2018;20:576–7. https://doi.org/10.1093/neuonc/noy002.
Article
PubMed
PubMed Central
Google Scholar
Schiffgens, S. et al. Sex-specific clinicopathological significance of novel (Frizzled-7) and established (MGMT, IDH1) biomarkers in glioblastoma. Oncotarget 7, 55169-55180, doi:10.18632/oncotarget.10465 (2016).
Silvestris DA, et al. Dynamic inosinome profiles reveal novel patient stratification and gender-specific differences in glioblastoma. Genome Biol. 2019;20:33. https://doi.org/10.1186/s13059-019-1647-x.
Article
PubMed
PubMed Central
Google Scholar
Tian, M. et al. Impact of gender on the survival of patients with glioblastoma. Biosci Rep 38, doi:10.1042/BSR20180752 (2018).
Yang, W. et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med 11, doi:10.1126/scitranslmed.aao5253 (2019).
Brennan CW, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77. https://doi.org/10.1016/j.cell.2013.09.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27. https://doi.org/10.1016/j.cell.2012.06.013.
Article
CAS
PubMed
Google Scholar
Feinberg AP, Koldobskiy MA, Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17:284–99. https://doi.org/10.1038/nrg.2016.13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mack SC, Hubert CG, Miller TE, Taylor MD, Rich JN. An epigenetic gateway to brain tumor cell identity. Nat Neurosci. 2016;19:10–9. https://doi.org/10.1038/nn.4190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sturm D, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425–37. https://doi.org/10.1016/j.ccr.2012.08.024.
Article
CAS
PubMed
Google Scholar
Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature. 1959;183:1654–5. https://doi.org/10.1038/1831654a0.
Article
CAS
PubMed
Google Scholar
Flavahan, WA., Gaskell, E. & Bernstein, BE. Epigenetic plasticity and the hallmarks of cancer. Science 357, doi:10.1126/science.aal2380 (2017).
Suva ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339:1567–70. https://doi.org/10.1126/science.1230184.
Article
CAS
PubMed
Google Scholar
Liau, BB. et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20, 233-246 e237, doi:10.1016/j.stem.2016.11.003 (2017).
Roesch A, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell. 2013;23:811–25. https://doi.org/10.1016/j.ccr.2013.05.003.
Article
CAS
PubMed
Google Scholar
Sharma SV, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80. https://doi.org/10.1016/j.cell.2010.02.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banelli B, et al. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle. 2015;14:3418–29. https://doi.org/10.1080/15384101.2015.1090063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banelli, B. et al. Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells. Oncotarget 8, 34896-34910, doi:10.18632/oncotarget.16820 (2017).
Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41. https://doi.org/10.1038/nrg.2016.93.
Article
CAS
PubMed
Google Scholar
Liu J, Morgan M, Hutchison K, Calhoun VD. A study of the influence of sex on genome wide methylation. PLoS One. 2010;5:e10028. https://doi.org/10.1371/journal.pone.0010028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maschietto M, et al. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases. Sci Rep. 2017;7:44547. https://doi.org/10.1038/srep44547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singmann P, et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin. 2015;8:43. https://doi.org/10.1186/s13072-015-0035-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yousefi P, et al. Sex differences in DNA methylation assessed by 450 K BeadChip in newborns. BMC Genomics. 2015;16:911. https://doi.org/10.1186/s12864-015-2034-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin E, et al. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics. 2017;9:267–78. https://doi.org/10.2217/epi-2016-0132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Calzon S, Perfilyev A, de Mello VD, Pihlajamaki J, Ling C. Sex differences in the methylome and transcriptome of the human liver and circulating HDL-cholesterol levels. J Clin Endocrinol Metab. 2018;103:4395–408. https://doi.org/10.1210/jc.2018-00423.
Article
PubMed
PubMed Central
Google Scholar
Grimm SA, et al. DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat Commun. 2019;10:305. https://doi.org/10.1038/s41467-018-08067-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormick H, et al. Isogenic mice exhibit sexually-dimorphic DNA methylation patterns across multiple tissues. BMC Genomics. 2017;18:966. https://doi.org/10.1186/s12864-017-4350-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reizel Y, et al. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes Dev. 2015;29:923–33. https://doi.org/10.1101/gad.259309.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall E, et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 2014;15:522. https://doi.org/10.1186/s13059-014-0522-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davegardh C, et al. Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther. 2019;10:26. https://doi.org/10.1186/s13287-018-1118-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghahramani NM, et al. The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biol Sex Differ. 2014;5:8. https://doi.org/10.1186/2042-6410-5-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross JA, et al. Characterizing 5-hydroxymethylcytosine in human prefrontal cortex at single base resolution. BMC Genomics. 2015;16:672. https://doi.org/10.1186/s12864-015-1875-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spiers H, Hannon E, Schalkwyk LC, Bray NJ, Mill J. 5-hydroxymethylcytosine is highly dynamic across human fetal brain development. BMC Genomics. 2017;18:738. https://doi.org/10.1186/s12864-017-4091-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spiers H, et al. Methylomic trajectories across human fetal brain development. Genome Res. 2015;25:338–52. https://doi.org/10.1101/gr.180273.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, et al. Sex-biased methylome and transcriptome in human prefrontal cortex. Hum Mol Genet. 2014;23:1260–70. https://doi.org/10.1093/hmg/ddt516.
Article
CAS
PubMed
Google Scholar
Shen EY, et al. Epigenetics and sex differences in the brain: a genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice. Exp Neurol. 2015;268:21–9. https://doi.org/10.1016/j.expneurol.2014.08.006.
Article
CAS
PubMed
Google Scholar
Tsai HW, Grant PA, Rissman EF. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics. 2009;4:47–53. https://doi.org/10.4161/epi.4.1.7288.
Article
CAS
PubMed
Google Scholar
Arnold AP. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav. 2009;55:570–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82. https://doi.org/10.1210/endo-65-3-369.
Article
CAS
PubMed
Google Scholar
Bramble MS, Lipson A, Vashist N, Vilain E. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: lessons from cases of disorders of sex development. J Neurosci Res. 2017;95:65–74. https://doi.org/10.1002/jnr.23832.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee PA, et al. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr. 2016;85:158–80. https://doi.org/10.1159/000442975.
Article
CAS
PubMed
Google Scholar
Kolodkin MH, Auger AP. Sex difference in the expression of DNA methyltransferase 3a in the rat amygdala during development. J Neuroendocrinol. 2011;23:577–83. https://doi.org/10.1111/j.1365-2826.2011.02147.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz JM, Nugent BM, McCarthy MM. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology. 2010;151:4871–81. https://doi.org/10.1210/en.2010-0142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nugent BM, et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci. 2015;18:690–7. https://doi.org/10.1038/nn.3988.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosley M, et al. Neonatal inhibition of DNA methylation alters cell phenotype in sexually dimorphic regions of the mouse brain. Endocrinology. 2017;158:1838–48. https://doi.org/10.1210/en.2017-00205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bramble MS, et al. Sex-specific effects of testosterone on the sexually dimorphic transcriptome and epigenome of embryonic neural stem/progenitor cells. Sci Rep. 2016;6:36916. https://doi.org/10.1038/srep36916.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83. https://doi.org/10.1038/nature10866.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1:239–59. https://doi.org/10.2217/epi.09.33.
Article
CAS
PubMed
Google Scholar
Madakashira BP, Sadler KC. DNA methylation, nuclear organization, and cancer. Front Genet. 2017;8:76. https://doi.org/10.3389/fgene.2017.00076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikkelsen TS, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 2008;454:49–55. https://doi.org/10.1038/nature07056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuda KI, et al. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology. 2011;152:2760–7. https://doi.org/10.1210/en.2011-0193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray EK, Hien A, de Vries GJ, Forger NG. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology. 2009;150:4241–7. https://doi.org/10.1210/en.2009-0458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci U S A. 2010;107:3394–9. https://doi.org/10.1073/pnas.0913843107.
Article
PubMed
PubMed Central
Google Scholar
Kobayashi S, et al. Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr Biol. 2006;16:166–72. https://doi.org/10.1016/j.cub.2005.11.071.
Article
CAS
PubMed
Google Scholar
Lowe R, Gemma C, Rakyan VK, Holland ML. Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics. 2015;16:295. https://doi.org/10.1186/s12864-015-1506-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werner RJ, et al. Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ. 2017;8:28. https://doi.org/10.1186/s13293-017-0150-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zylicz, JJ. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182-197 e123, doi:10.1016/j.cell.2018.11.041 (2019).
Pasque V, et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell. 2014;159:1681–97. https://doi.org/10.1016/j.cell.2014.11.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantone, I. & Fisher, AG. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. Philos Trans R Soc Lond B Biol Sci 372, doi:10.1098/rstb.2016.0358 (2017).
Dandulakis MG, Meganathan K, Kroll KL, Bonni A, Constantino JN. Complexities of X chromosome inactivation status in female human induced pluripotent stem cells-a brief review and scientific update for autism research. J Neurodev Disord. 2016;8:22. https://doi.org/10.1186/s11689-016-9155-8.
Article
PubMed
PubMed Central
Google Scholar
Di KQ, et al. Generation of fully pluripotent female murine-induced pluripotent stem cells. Biol Reprod. 2015;92:123. https://doi.org/10.1095/biolreprod.114.124958.
Article
CAS
PubMed
Google Scholar
Chaligne R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett. 2014;588:2514–22. https://doi.org/10.1016/j.febslet.2014.06.023.
Article
CAS
PubMed
Google Scholar
Pageau GJ, Hall LL, Ganesan S, Livingston DM, Lawrence JB. The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer. 2007;7:628–33. https://doi.org/10.1038/nrc2172.
Article
CAS
PubMed
Google Scholar
Yang Z, Jiang X, Jiang X, Zhao H. X-inactive-specific transcript: a long noncoding RNA with complex roles in human cancers. Gene. 2018;679:28–35. https://doi.org/10.1016/j.gene.2018.08.071.
Article
CAS
PubMed
Google Scholar
Liu, JL., Zhang, WQ., Zhao, M. & Huang, M.Y. Upregulation of long noncoding RNA XIST is associated with poor prognosis in human cancers. J Cell Physiol 234, 6594-6600, doi:https://doi.org/10.1002/jcp.27400 (2019).
Zhu J, Kong F, Xing L, Jin Z, Li Z. Prognostic and clinicopathological value of long noncoding RNA XIST in cancer. Clin Chim Acta. 2018;479:43–7. https://doi.org/10.1016/j.cca.2018.01.005.
Article
CAS
PubMed
Google Scholar
Liu F, et al. Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a. Oncogene. 2016;35:5422–34. https://doi.org/10.1038/onc.2016.80.
Article
CAS
PubMed
Google Scholar
Jin M, et al. Long noncoding RNA JPX correlates with poor prognosis and tumor progression in non-small cell lung cancer by interacting with miR-145-5p and CCND2. Carcinogenesis. 2019. https://doi.org/10.1093/carcin/bgz125.
Yang F, et al. Identifying potential metastasis-related long non-coding RNAs, microRNAs, and message RNAs in the esophageal squamous cell carcinoma. J Cell Biochem. 2019;120:13202–15. https://doi.org/10.1002/jcb.28594.
Article
CAS
PubMed
Google Scholar
Jiang S, et al. An expanded landscape of human long noncoding RNA. Nucleic Acids Res. 2019;47:7842–56. https://doi.org/10.1093/nar/gkz621.
Article
PubMed
PubMed Central
Google Scholar
Liu S, et al. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res. 2017;27:1608–20. https://doi.org/10.1101/gr.217463.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalil AM, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72. https://doi.org/10.1073/pnas.0904715106.
Article
PubMed
PubMed Central
Google Scholar
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81. https://doi.org/10.1158/0008-5472.CAN-16-2634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu, HS. et al. Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep 23, 297-312 e212, doi:10.1016/j.celrep.2018.03.064 (2018).
Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res. 2018;3:108–17. https://doi.org/10.1016/j.ncrna.2018.03.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi, Y., Wang, D., Wang, J., Yu, W. & Yang, J. Long non-coding RNA in the pathogenesis of cancers. Cells 8, doi:10.3390/cells8091015 (2019).
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179:1033–55. https://doi.org/10.1016/j.cell.2019.10.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152:1308–23. https://doi.org/10.1016/j.cell.2013.02.016.
Article
CAS
PubMed
Google Scholar
Gregg C, Zhang J, Butler JE, Haig D, Dulac C. Sex-specific parent-of-origin allelic expression in the mouse brain. Science. 2010;329:682–5. https://doi.org/10.1126/science.1190831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lepage JF, et al. Genomic imprinting effects of the X chromosome on brain morphology. J Neurosci. 2013;33:8567–74. https://doi.org/10.1523/JNEUROSCI.5810-12.2013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4. https://doi.org/10.1038/nature03479.
Article
CAS
PubMed
Google Scholar
Yang F, Babak T, Shendure J, Disteche CM. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 2010;20:614–22. https://doi.org/10.1101/gr.103200.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wijchers PJ, et al. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well. Dev Cell. 2010;19:477–84. https://doi.org/10.1016/j.devcel.2010.08.005.
Article
CAS
PubMed
Google Scholar
Wijchers PJ, Festenstein RJ. Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet. 2011;27:132–40. https://doi.org/10.1016/j.tig.2011.01.004.
Article
CAS
PubMed
Google Scholar
Lan F, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94. https://doi.org/10.1038/nature06192.
Article
CAS
PubMed
Google Scholar
Snell DM, Turner JM. A. Sex chromosome effects on male-female differences in mammals. Curr Biol. 2018;28:R1313–24. https://doi.org/10.1016/j.cub.2018.09.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Deng X, Watkins R, Disteche CM. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci. 2008;28:4521–7. https://doi.org/10.1523/JNEUROSCI.5382-07.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunford A, et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet. 2017;49:10–6. https://doi.org/10.1038/ng.3726.
Article
CAS
PubMed
Google Scholar
Kaneko, S. & Li, X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci Adv 4, eaar5598, doi:10.1126/sciadv.aar5598 (2018).
Li X, et al. UTX is an escape from X-inactivation tumor-suppressor in B cell lymphoma. Nat Commun. 2018;9:2720. https://doi.org/10.1038/s41467-018-05084-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van der Meulen J, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13–21. https://doi.org/10.1182/blood-2014-05-577270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andricovich, J. et al. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33, 512-526 e518, doi:10.1016/j.ccell.2018.02.003 (2018).
Reinius B, et al. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics. 2010;11:614. https://doi.org/10.1186/1471-2164-11-614.
Article
CAS
PubMed
PubMed Central
Google Scholar
Care A, et al. Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death Differ. 2018;25:477–85. https://doi.org/10.1038/s41418-017-0051-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramassone, A., Pagotto, S., Veronese, A. & Visone, R. Epigenetics and microRNAs in cancer. Int J Mol Sci 19, doi:10.3390/ijms19020459 (2018).
Wu, KL., Tsai, YM., Lien, CT., Kuo, PL. & Hung, AJ. The roles of microRNA in lung cancer. Int J Mol Sci 20, doi:10.3390/ijms20071611 (2019).
Reid MA, Dai Z, Locasale JW. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol. 2017;19:1298–306. https://doi.org/10.1038/ncb3629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaelin, WG., Jr. & McKnight, SL. Influence of metabolism on epigenetics and disease. Cell 153, 56-69, doi:https://doi.org/10.1016/j.cell.2013.03.004 (2013).
Shimazu T, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211–4. https://doi.org/10.1126/science.1227166.
Article
CAS
PubMed
Google Scholar
Xu W, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30. https://doi.org/10.1016/j.ccr.2010.12.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laskowski AI, Fanslow DA, Smith ED, Kosak ST. Clinical epigenetic therapies disrupt sex chromosome dosage compensation in human female cells. Gend Genome. 2018;2:2–7. https://doi.org/10.1177/2470289718787106.
Article
PubMed
PubMed Central
Google Scholar
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308. https://doi.org/10.1016/j.ccr.2012.02.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strickland M, Stoll EA. Metabolic reprogramming in glioma. Front Cell Dev Biol. 2017;5:43. https://doi.org/10.3389/fcell.2017.00043.
Article
PubMed
PubMed Central
Google Scholar
Ray PF, Conaghan J, Winston RM, Handyside AH. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J Reprod Fertil. 1995;104:165–71. https://doi.org/10.1530/jrf.0.1040165.
Article
CAS
PubMed
Google Scholar
Tagirov M, Rutkowska J. Sexual dimorphism in the early embryogenesis in zebra finches. PLoS One. 2014;9:e114625. https://doi.org/10.1371/journal.pone.0114625.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsunoda Y, Tokunaga T, Sugie T. Altered sex ratio of live young after transfer of fast- and slow-developing mouse embryos. Mol Rep Dev. 1985;12:301–4.
Google Scholar
Valdivia RP, Kunieda T, Azuma S, Toyoda Y. PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in vitro. Mol Reprod Dev. 1993;35:121–6. https://doi.org/10.1002/mrd.1080350204.
Article
CAS
PubMed
Google Scholar
Alfarawati S, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4. https://doi.org/10.1016/j.fertnstert.2010.04.003.
Article
PubMed
Google Scholar
Menezo YJ, Chouteau J, Torello J, Girard A, Veiga A. Birth weight and sex ratio after transfer at the blastocyst stage in humans. Fertil Steril. 1999;72:221–4. https://doi.org/10.1016/s0015-0282(99)00256-3.
Article
CAS
PubMed
Google Scholar
Geng X, et al. Fetal sex influences maternal fasting plasma glucose levels and basal beta-cell function in pregnant women with normal glucose tolerance. Acta Diabetol. 2017;54:1131–8. https://doi.org/10.1007/s00592-017-1055-1.
Article
CAS
PubMed
Google Scholar
Giannubilo SR, Pasculli A, Ballatori C, Biagini A, Ciavattini A. Fetal sex, need for insulin, and perinatal outcomes in gestational diabetes mellitus: an observational cohort study. Clin Ther. 2018;40:587–92. https://doi.org/10.1016/j.clinthera.2018.02.015.
Article
CAS
PubMed
Google Scholar
Gutierrez-Adan A, et al. Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology. 2001;55:1117–26.
Article
CAS
PubMed
Google Scholar
Larson MA, Kimura K, Kubisch HM, Roberts RM. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-tau. Proc Natl Acad Sci U S A. 2001;98:9677–82. https://doi.org/10.1073/pnas.171305398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peippo J, Kurkilahti M, Bredbacka P. Developmental kinetics of in vitro produced bovine embryos: the effect of sex, glucose and exposure to time-lapse environment. Zygote. 2001;9:105–13.
Article
CAS
PubMed
Google Scholar
Tiffin GJ, Rieger D, Betteridge KJ, Yadav BR, King WA. Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J Reprod Fertil. 1991;93:125–32. https://doi.org/10.1530/jrf.0.0930125.
Article
CAS
PubMed
Google Scholar
Garcia-Herreros M, Aparicio IM, Rath D, Fair T, Lonergan P. Differential glycolytic and glycogenogenic transduction pathways in male and female bovine embryos produced in vitro. Reprod Fertil Dev. 2012;24:344–52. https://doi.org/10.1071/RD11080.
Article
CAS
PubMed
Google Scholar
Kimura K, Iwata H, Thompson JG. The effect of glucosamine concentration on the development and sex ratio of bovine embryos. Anim Reprod Sci. 2008;103:228–38. https://doi.org/10.1016/j.anireprosci.2006.12.014.
Article
CAS
PubMed
Google Scholar
Williams TJ. A technique for sexing mouse embryos by a visual colorimetric assay of the X-linked enzyme, glucose 6-phosphate dehydrogenase. Theriogenology. 1986;25:733–9.
Article
CAS
PubMed
Google Scholar
Krumsiek J, et al. Gender-specific pathway differences in the human serum metabolome. Metabolomics. 2015;11:1815–33. https://doi.org/10.1007/s11306-015-0829-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christmann V, et al. The enigma to achieve normal postnatal growth in preterm infants--using parenteral or enteral nutrition? Acta Paediatr. 2013;102:471–9. https://doi.org/10.1111/apa.12188.
Article
CAS
PubMed
Google Scholar
van den Akker, CH., te Braake, FW., Weisglas-Kuperus, N. & van Goudoever, JB. Observational outcome results following a randomized controlled trial of early amino acid administration in preterm infants. J Pediatr Gastroenterol Nutr 59, 714-719, doi:10.1097/MPG.0000000000000549 (2014).
Mittelstrass K, et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 2011;7:e1002215. https://doi.org/10.1371/journal.pgen.1002215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamont, LS., McCullough, AJ. & Kalhan, SC. Gender differences in the regulation of amino acid metabolism. J Appl Physiol (1985) 95, 1259-1265, doi:10.1152/japplphysiol.01028.2002 (2003).
Al-Suwailem E, Abdi S, El-Ansary A. Sex differences in the glutamate signaling pathway in juvenile rats. J Neurosci Res. 2018;96:459–66. https://doi.org/10.1002/jnr.24144.
Article
CAS
PubMed
Google Scholar
Levin E, McCue MD, Davidowitz G. Sex differences in the utilization of essential and non-essential amino acids in Lepidoptera. J Exp Biol. 2017;220:2743–7. https://doi.org/10.1242/jeb.154757.
Article
PubMed
Google Scholar
Hedrington MS, Davis SN. Sexual dimorphism in glucose and lipid metabolism during fasting, hypoglycemia, and exercise. Front Endocrinol (Lausanne). 2015;6:61. https://doi.org/10.3389/fendo.2015.00061.
Article
Google Scholar
Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55. https://doi.org/10.1016/j.molmet.2018.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kochhar S, et al. Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics. Anal Biochem. 2006;352:274–81. https://doi.org/10.1016/j.ab.2006.02.033.
Article
CAS
PubMed
Google Scholar
Frias JP, et al. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes. 2001;50:1344–50. https://doi.org/10.2337/diabetes.50.6.1344.
Article
CAS
PubMed
Google Scholar
Ribas, V. et al. Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med 8, 334ra354, doi:10.1126/scitranslmed.aad3815 (2016).
Ockner RK, Burnett DA, Lysenko N, Manning JA. Sex differences in long chain fatty acid utilization and fatty acid binding protein concentration in rat liver. J Clin Invest. 1979;64:172–81. https://doi.org/10.1172/JCI109437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hevener A, Reichart D, Janez A, Olefsky J. Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes. 2002;51:1907–12. https://doi.org/10.2337/diabetes.51.6.1907.
Article
CAS
PubMed
Google Scholar
Fried SK, Kral JG. Sex differences in regional distribution of fat cell size and lipoprotein lipase activity in morbidly obese patients. Int J Obes. 1987;11:129–40.
CAS
PubMed
Google Scholar
Ippolito, JE., Yim, AK., Luo, J., Chinnaiyan, P. & Rubin, JB. Sexual dimorphism in glioma glycolysis underlies sex differences in survival. JCI Insight 2, doi:10.1172/jci.insight.92142 (2017).
Nguyen GK, Mellnick VM, Yim AK, Salter A, Ippolito JE. Synergy of sex differences in visceral fat measured with CT and tumor metabolism helps predict overall survival in patients with renal cell carcinoma. Radiology. 2018;287:884–92. https://doi.org/10.1148/radiol.2018171504.
Article
PubMed
Google Scholar
Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–37. https://doi.org/10.1007/s13238-017-0451-1.
Article
CAS
PubMed
Google Scholar
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80. https://doi.org/10.1038/cr.2017.155.
Article
CAS
PubMed
Google Scholar
Munro D, Treberg JR. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol. 2017;220:1170–80. https://doi.org/10.1242/jeb.132142.
Article
PubMed
Google Scholar
Ventura-Clapier R, et al. Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond). 2017;131:803–22. https://doi.org/10.1042/CS20160485.
Article
CAS
Google Scholar
Guevara R, et al. Sex-dependent differences in aged rat brain mitochondrial function and oxidative stress. Free Radic Biol Med. 2009;46:169–75. https://doi.org/10.1016/j.freeradbiomed.2008.09.035.
Article
CAS
PubMed
Google Scholar
Guevara R, Gianotti M, Roca P, Oliver J. Age and sex-related changes in rat brain mitochondrial function. Cell Physiol Biochem. 2011;27:201–6. https://doi.org/10.1159/000327945.
Article
CAS
PubMed
Google Scholar
Gaignard P, et al. Effect of sex differences on brain mitochondrial function and its suppression by ovariectomy and in aged mice. Endocrinology. 2015;156:2893–904. https://doi.org/10.1210/en.2014-1913.
Article
CAS
PubMed
Google Scholar
Khalifa, AR. et al. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain. Physiol Rep 5, doi:10.14814/phy2.13125 (2017).
Escames G, et al. Early gender differences in the redox status of the brain mitochondria with age: effects of melatonin therapy. Horm Mol Biol Clin Investig. 2013;16:91–100. https://doi.org/10.1515/hmbci-2013-0026.
Article
CAS
PubMed
Google Scholar
Kim HJ, Magrane J, Starkov AA, Manfredi G. The mitochondrial calcium regulator cyclophilin D is an essential component of oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis. Brain. 2012;135:2865–74. https://doi.org/10.1093/brain/aws208.
Article
PubMed
PubMed Central
Google Scholar
Jaber SM, et al. Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int. 2018;117:82–90. https://doi.org/10.1016/j.neuint.2017.09.003.
Article
CAS
PubMed
Google Scholar
Harish G, et al. Mitochondrial function in human brains is affected by pre- and post mortem factors. Neuropathol Appl Neurobiol. 2013;39:298–315. https://doi.org/10.1111/j.1365-2990.2012.01285.x.
Article
CAS
PubMed
Google Scholar
Zawada, I. et al. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging (Albany NY) 7, 195-204, doi:10.18632/aging.100733 (2015).
Borras C, et al. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med. 2003;34:546–52.
Article
CAS
PubMed
Google Scholar
Ide T, et al. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol. 2002;22:438–42.
Article
CAS
PubMed
Google Scholar
Reczek RR, XChandel N. The two faces of reactive oxygen species in cancer. Annual Review of Cancer Biology. 2017;1:79–98. https://doi.org/10.1146/annurev-cancerbio-041916-065808.
Article
Google Scholar
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64. https://doi.org/10.1016/j.freeradbiomed.2017.01.004.
Article
CAS
PubMed
Google Scholar
Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci. 2015;36:124–35. https://doi.org/10.1016/j.tips.2014.11.004.
Article
CAS
PubMed
Google Scholar
Yang J, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:26. https://doi.org/10.1186/s12943-019-0954-x.
Article
PubMed
PubMed Central
Google Scholar
Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018;18:744–57. https://doi.org/10.1038/s41568-018-0074-8.
Article
CAS
PubMed
Google Scholar
Rideout EJ, Narsaiya MS, Grewal SS. The sex determination gene transformer regulates male-female differences in drosophila body size. PLoS Genet. 2015;11:e1005683. https://doi.org/10.1371/journal.pgen.1005683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurgen, D. et al. Sex-specific mTOR signaling determines sexual dimorphism in myocardial adaptation in normotensive DOCA-salt model. Hypertension 61, 730-736, doi:10.1161/HYPERTENSIONAHA.111.00276 (2013).
Lukey MJ, Katt WP, Cerione RA. Targeting amino acid metabolism for cancer therapy. Drug Discov Today. 2017;22:796–804. https://doi.org/10.1016/j.drudis.2016.12.003.
Article
CAS
PubMed
Google Scholar
Poff A, et al. Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol. 2019;56:135–48. https://doi.org/10.1016/j.semcancer.2017.12.011.
Article
CAS
PubMed
Google Scholar
Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res. 2018;202:35–51. https://doi.org/10.1016/j.trsl.2018.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stacpoole, PW. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst 109, doi:10.1093/jnci/djx071 (2017).
Losman, JA. & Kaelin, WG., Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27, 836-852, doi:https://doi.org/10.1101/gad.217406.113 (2013).
L, MG., Boulay, K., Topisirovic, I., Huot, ME. & Mallette, FA. Oncogenic activities of IDH1/2 mutations: from epigenetics to cellular signaling. Trends Cell Biol 27, 738-752, doi:10.1016/j.tcb.2017.06.002 (2017).
Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27:599–608. https://doi.org/10.1093/annonc/mdw013.
Article
CAS
PubMed
Google Scholar
Whitmire, P. et al. Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. bioRxiv, 325464, doi:10.1101/325464 (2018).
Chan WM, Siu WY, Lau A, Poon RY. How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol. 2004;24:3536–51. https://doi.org/10.1128/mcb.24.8.3536-3551.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008. https://doi.org/10.1101/cshperspect.a001008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6. https://doi.org/10.1038/358015a0.
Article
CAS
PubMed
Google Scholar
Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78. https://doi.org/10.1016/j.cell.2017.08.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bossi G, et al. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene. 2006;25:304–9. https://doi.org/10.1038/sj.onc.1209026.
Article
CAS
PubMed
Google Scholar
Napoletano F, et al. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis. PLoS Genet. 2017;13:e1007024. https://doi.org/10.1371/journal.pgen.1007024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W. The role of p53 gene family in reproduction. Cold Spring Harb Perspect Biol. 2009;1:a001073. https://doi.org/10.1101/cshperspect.a001073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, et al. Sex difference in neural tube defects in p53-null mice is caused by differences in the complement of X not Y genes. Dev Neurobiol. 2008;68:265–73. https://doi.org/10.1002/dneu.20581.
Article
CAS
PubMed
Google Scholar
Delbridge, ARD. et al. Loss of p53 causes stochastic aberrant X-chromosome inactivation and female-specific neural tube defects. Cell Rep 27, 442-454 e445, doi:10.1016/j.celrep.2019.03.048 (2019).
Yi L, Lu C, Hu W, Sun Y, Levine AJ. Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res. 2012;72:5635–45. https://doi.org/10.1158/0008-5472.CAN-12-1451.
Article
CAS
PubMed
Google Scholar
Waskar, M. et al. Drosophila melanogaster p53 has developmental stage-specific and sex-specific effects on adult life span indicative of sexual antagonistic pleiotropy. Aging (Albany NY) 1, 903-936, doi:10.18632/aging.100099 (2009).
Lee JH, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018;560:243–7. https://doi.org/10.1038/s41586-018-0389-3.
Article
CAS
PubMed
Google Scholar
Liu C, et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146:209–21. https://doi.org/10.1016/j.cell.2011.06.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JY, Casaccia-Bonnefil P. Interplay of hormones and p53 in modulating gender dimorphism of subventricular zone cell number. J Neurosci Res. 2009;87:3297–305. https://doi.org/10.1002/jnr.21940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li FP, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48:5358–62.
CAS
PubMed
Google Scholar
Malkin D, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8. https://doi.org/10.1126/science.1978757.
Article
CAS
PubMed
Google Scholar
Hwang SJ, Lozano G, Amos CI, Strong LC. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003;72:975–83. https://doi.org/10.1086/374567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chompret A, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82:1932–7. https://doi.org/10.1054/bjoc.2000.1167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu, C C., Shete, S., Amos, CI. & Strong, LC. Joint effects of germ-line p53 mutation and sex on cancer risk in Li-Fraumeni syndrome. Cancer Res 66, 8287-8292, doi:10.1158/0008-5472.CAN-05-4247 (2006).
Gonzalez KD, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27:1250–6. https://doi.org/10.1200/JCO.2008.16.6959.
Article
CAS
PubMed
Google Scholar
Olivier M, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003;63:6643–50.
CAS
PubMed
Google Scholar
Ribeiro RC, Pinto EM, Zambetti GP, Rodriguez-Galindo C. The International Pediatric Adrenocortical Tumor Registry initiative: contributions to clinical, biological, and treatment advances in pediatric adrenocortical tumors. Mol Cell Endocrinol. 2012;351:37–43. https://doi.org/10.1016/j.mce.2011.10.015.
Article
CAS
PubMed
Google Scholar
Kebebew E, Reiff E, Duh QY, Clark OH, McMillan A. Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress? World J Surg. 2006;30:872–8. https://doi.org/10.1007/s00268-005-0329-x.
Article
PubMed
Google Scholar
Zhang, Y. et al. The p53 pathway in glioblastoma. Cancers (Basel) 10, doi:10.3390/cancers10090297 (2018).
Bond GL, Hu W, Levine AJ. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets. 2005;5:3–8. https://doi.org/10.2174/1568009053332627.
Article
CAS
PubMed
Google Scholar
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9. https://doi.org/10.1038/387296a0.
Article
CAS
PubMed
Google Scholar
Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci. 2012;8:672–84. https://doi.org/10.7150/ijbs.4283.
Article
PubMed
PubMed Central
Google Scholar
Oliner, JD., Saiki, AY. & Caenepeel, S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb Perspect Med 6, doi:10.1101/cshperspect.a026336 (2016).
Bond GL, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119:591–602. https://doi.org/10.1016/j.cell.2004.11.022.
Article
CAS
PubMed
Google Scholar
Bond GL, et al. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res. 2006;66:5104–10. https://doi.org/10.1158/0008-5472.CAN-06-0180.
Article
CAS
PubMed
Google Scholar
Haupt S, et al. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat Commun. 2019;10:5385. https://doi.org/10.1038/s41467-019-13266-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18:89–102. https://doi.org/10.1038/nrc.2017.109.
Article
CAS
PubMed
Google Scholar
Golubovskaya VM, Cance WG. Targeting the p53 pathway. Surg Oncol Clin N Am. 2013;22:747–64. https://doi.org/10.1016/j.soc.2013.06.003.
Article
PubMed
Google Scholar
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53. https://doi.org/10.1016/j.tcb.2018.02.001.
Article
CAS
PubMed
Google Scholar
Rao SG, Jackson JG. SASP: tumor suppressor or promoter? Yes! Trends Cancer. 2016;2:676–87. https://doi.org/10.1016/j.trecan.2016.10.001.
Article
PubMed
Google Scholar
Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acosta JC, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978–90. https://doi.org/10.1038/ncb2784.
Article
CAS
PubMed
PubMed Central