World Health Organization. Global status report on alcohol and health 2018; 2018. p. 450.
Google Scholar
Erol A, Karpyak VM. Sex and gender-related differences in alcohol use and its consequences: contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015;156:1–13 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26371405. Cited 21 Feb 2016.
Article
PubMed
Google Scholar
Rehm J, Dawson D, Frick U, Gmel G, Roerecke M, Shield KD, et al. Burden of disease associated with alcohol use disorders in the United States. Alcohol Clin Exp Res. 2014;38(4):1068–77 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4147870&tool=pmcentrez&rendertype=abstract. Cited 16 Feb 2016.
Article
PubMed
PubMed Central
Google Scholar
Grant BF, Chou SP, Saha TD, Pickering RP, Kerridge BT, Ruan WJ, et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM-IV alcohol use disorder in the United States, 2001-2002 to 2012-2013. JAMA Psychiatry. 2017;20852:2001–2.
Google Scholar
Becker JB, McClellan ML, Reed BG. Sex differences, gender and addiction. J Neurosci Res. 2017;95(1–2):136–47 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27870394. Cited 21 Dec 2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker JB, Perry AN, Westenbroek C. Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis. Biol Sex Differ. 2012;3(14):1–35.
Article
PubMed
PubMed Central
Google Scholar
Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35(3):565–72 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3008499&tool=pmcentrez&rendertype=abstract. Cited 17 Feb 2016.
Article
PubMed
Google Scholar
Zucker I, Beery AK. Males still dominate animal studies. Nature. 2010;465(7299):–690 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20535186. Cited 20 Dec 2015.
Article
CAS
PubMed
Google Scholar
Li T-K, Lumeng L. Alcohol preference and voluntary alcohol intakes of inbred rat strains and the National Institutes of Health heterogeneous stock of rats. Alcohol Clin Exp Res. 1984;8(5):485–6.
Article
CAS
PubMed
Google Scholar
Torres OV, Walker EM, Beas BA, O’Dell LE. Female rats display enhanced rewarding effects of ethanol that are hormone dependent. Alcohol Clin Exp Res. 2014;38(31):108–15.
Article
CAS
PubMed
Google Scholar
Almeida OFX, Shoaib M, Deicke J, Fischer D, Darwish MH, Patchev VK. Gender differences in ethanol preference and ingestion in rats. J Clin Invest. 1998;101(12):2677–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts AJ, Smith AD, Weiss F, Rivier C, Koob GF. Estrous cycle effects on operant responding for ethanol in female rats. Alcohol Clin Exp Res. 1998;22(7):1564–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9802543. Cited 18 Feb 2016.
Article
CAS
PubMed
Google Scholar
Henricks AM, Berger AL, Lugo JM, Baxter-Potter LN, Bieniasz KV, Craft RM, et al. Sex differences in alcohol consumption and alterations in nucleus accumbens endocannabinoid mRNA in alcohol-dependent rats. Neuroscience. 2016;335:195–206.
Article
CAS
PubMed
Google Scholar
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760–73 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27475769. Cited 21 Dec 2018.
Article
PubMed
PubMed Central
Google Scholar
Goto Y, Grace AA. Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci. 2008;31(11):552–8 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0166223608001884. Cited 2 Apr 2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. https://doi.org/10.1038/npp.2009.110.
Article
PubMed
Google Scholar
Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159(10):1642–52.
Article
PubMed
PubMed Central
Google Scholar
Howe MW, Atallah HE, McCool A, Gibson DJ, Graybiel AM. Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proc Natl Acad Sci U S A. 2011;108(40):16801–6 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1113158108. Cited 21 Dec 2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorn CA, Graybiel AM. Differential entrainment and learning-related dynamics of spike and local field potential activity in the sensorimotor and associative striatum. J Neurosci. 2014;34(8):2845–59 Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1782-13.2014. Cited 21 Dec 2018.
Article
PubMed
PubMed Central
Google Scholar
van der Meer MAA, Kalenscher T, Lansink CS, Pennartz CMA, Berke JD, Redish AD. Integrating early results on ventral striatal gamma oscillations in the rat. Front Neurosci. 2010;4:300 Available from: http://journal.frontiersin.org/article/10.3389/fnins.2010.00300/abstract.Cited 21 Dec 2018.
PubMed
PubMed Central
Google Scholar
Hadar R, Voget M, Vengeliene V, Haumesser JK, van Riesen C, Avchalumov Y, et al. Altered neural oscillations and elevated dopamine levels in the reward pathway during alcohol relapse. Behav Brain Res. 2017;316:131–5 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166432816305630. Cited 21 Dec 2018.
Article
CAS
PubMed
Google Scholar
Berke JD. Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. Eur J Neurosci. 2009;30(5):848–59 Available from: http://doi.wiley.com/10.1111/j.1460-9568.2009.06843.x. Cited 18 Dec 2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morra JT, Glick SD, Cheer JF. Cannabinoid receptors mediate methamphetamine induction of high frequency gamma oscillations in the nucleus accumbens. Neuropharmacology. 2012;63(4):565–74 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0028390812001724. Cited 21 Dec 2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dejean C, Boraud T, Le Moine C. Opiate dependence induces network state shifts in the limbic system. Neurobiol Dis. 2013;59:220–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996113002064. Cited 21 Dec 2018.
Article
CAS
PubMed
Google Scholar
Tsurugizawa T, Abe Y, Le Bihan D. Water apparent diffusion coefficient correlates with gamma oscillation of local field potentials in the rat brain nucleus accumbens following alcohol injection. J Cereb Blood Flow Metab. 2017;37(9):3193–202.
Article
PubMed
PubMed Central
Google Scholar
McCane AM, Ahn S, Rubchinsky LL, Janetsian-Fritz SS, Linsenbardt DN, Czachowski CL, et al. COMT inhibition alters cued-evoked oscillatory dynamics during alcohol drinking in the rat. Eneuro. 2018;5(October):ENEURO.0326-18.2018.
Article
PubMed
PubMed Central
Google Scholar
Doucette WT, Khokhar JY, Green AI. Nucleus accumbens deep brain stimulation in a rat model of binge eating. Transl Psychiatry. 2015;5(12):e695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson MB, Green AI, Bradford PS, Chau DT, Roberts DW, Leiter JC. Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurg Focus. 2010;29(2):E12 Available from: http://thejns.org/doi/10.3171/2010.4.FOCUS10105. Cited 2 Apr 2018.
Article
PubMed
Google Scholar
Henricks AM, Dwiel LL, Deveau NH, Simon AA, Ruiz-Jaquez MJ, Green AI, et al. Corticostriatal oscillations predict high vs. low drinkers in a rat model of limited access alcohol consumption. Front Syst Neurosci. 2019;13(August):1–8.
Google Scholar
Mccracken CB, Grace AA. Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses in vivo. J Neurosci. 2009;29(16):5354–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catanese J, Carmichael JE, van der Meer MAA. Low- and high-gamma oscillations deviate in opposite directions from zero-phase synchrony in the limbic corticostriatal loop. J Neurophysiol. 2016;116(1):5–17.
Article
PubMed
PubMed Central
Google Scholar
Doucette WT, Dwiel L, Boyce JE, Simon AA, Khokhar JY, Green AI. Machine learning based classification of deep brain stimulation outcomes in a rat model of binge eating using ventral striatal oscillations. Front Psychiatry. 2018;9:336 Available from: https://www.frontiersin.org/article/10.3389/fpsyt.2018.00336/full. Cited 15 Aug 2018.
Article
PubMed
PubMed Central
Google Scholar
Dwiel LL, Khokhar JY, Connerney MA, Green AI, Doucette WT. Finding the balance between model complexity and performance: using ventral striatal oscillations to classify feeding behavior in rats. PLoS Comput Biol. 2019;15(4):e1006838 Cohen KB, editor. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31009448. Cited 16 July 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian, J., Hastie, T., Friedman, J., Tibshirani, R. and Simon N. Glmnet in Matlab. 2013. Available from: http://www.stanford.edu/~hastie/glmnet_matlab/. Cited 24 July 2019.
Google Scholar
DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, et al. Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc Natl Acad Sci U S A. 2007;104(13):5644–9 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0700818104. Cited 15 July 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, et al. Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. J Neurophysiol. 2007;97(5):3800–5 Available from: http://www.physiology.org/doi/10.1152/jn.00108.2007. Cited 15 July 2019.
Article
PubMed
Google Scholar
Matulewicz P, Kasicki S, Hunt MJ. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine. Brain Res. 2010;1366:226–32 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006899310021542. Cited 15 July 2019.
Article
CAS
PubMed
Google Scholar
Peltier MR, Verplaetse TL, Mineur YS, Petrakis IL, Cosgrove KP, Picciotto MR, et al. Sex differences in stress-related alcohol use. Neurobiol Stress. 2019;10:100149 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30949562. Cited 17 July 2019.
Article
PubMed
PubMed Central
Google Scholar
Hudson A, Stamp JA. Neuroscience and biobehavioral reviews ovarian hormones and propensity to drug relapse: a review. Neurosci Biobehav Rev. 2011;35(3):427–36.
Article
CAS
PubMed
Google Scholar
Bertholomey ML, Nagarajan V, Torregrossa MM. Sex differences in reinstatement of alcohol seeking in response to cues and yohimbine in rats with and without a history of adolescent corticosterone exposure. Psychopharmacology (Berl). 2016;233(12):2277–87 Available from: http://link.springer.com/10.1007/s00213-016-4278-x. Cited 17 July 2019.
Article
CAS
Google Scholar
Ide JS, Zhornitsky S, Hu S, Zhang S, Krystal JH, Li CR. Sex differences in the interacting roles of impulsivity and positive alcohol expectancy in problem drinking: a structural brain imaging study. NeuroImage Clin. 2017;14:750–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28413777. Cited 15 July 2019.
Article
PubMed
PubMed Central
Google Scholar
Tapert SF, Brown GG, Baratta MV, Brown SA. fMRI BOLD response to alcohol stimuli in alcohol dependent young women. Addict Behav. 2004;29(1):33–50 Available from: http://www.ncbi.nlm.nih.gov/pubmed/14667419. Cited 17 July 2019.
Article
PubMed
Google Scholar
Kaag AM, Wiers RW, de Vries TJ, Pattij T, Goudriaan AE. Striatal alcohol cue-reactivity is stronger in male than female problem drinkers. Eur J Neurosci. 2018; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29888821. Cited 17 July 2019.
Priddy BM, Carmack SA, Thomas LC, Vendruscolo JCM, Koob GF, Vendruscolo LF. Sex, strain, and estrous cycle influences on alcohol drinking in rats. Pharmacol Biochem Behav. 2017;152:61–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27498303. Cited 21 Dec 2018.
Article
CAS
PubMed
Google Scholar
Jackson LR, Robinson TE, Becker JB. Sex differences and hormonal influences on acquisition of cocaine self-administration in rats. Neuropsychopharmacology. 2006;31:129–38.
Article
CAS
PubMed
Google Scholar
Allen AM, Lunos S, Heishman SJ, al’Absi M, Hatsukami D, Allen SS. Subjective response to nicotine by menstrual phase. Addict Behav. 2015;43:50–3 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25553511. Cited 17 July 2019.
Article
PubMed
Google Scholar