Ragaller M, Richter T. Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock. 2010;3(1):43–51. https://doi.org/10.4103/0974-2700.58663.
Article
Google Scholar
Lew TW, Kwek TK, Tai D, Earnest A, Loo S, Singh K, et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290(3):374–80. https://doi.org/10.1001/jama.290.3.374.
Article
Google Scholar
Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 2005;33(4):319–27. https://doi.org/10.1165/rcmb.F305.
Article
CAS
Google Scholar
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. https://doi.org/10.1001/jama.2016.0291.
Article
CAS
Google Scholar
Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–93. https://doi.org/10.1056/NEJMoa050333.
Article
CAS
Google Scholar
Welker C, Huang J, Gil IJN, Ramakrishna H. 2021 Acute respiratory distress syndrome update, with coronavirus disease 2019 focus. J Cardiothorac Vasc Anesth. 2022;36(4):1188–95. https://doi.org/10.1053/j.jvca.2021.02.053.
Article
CAS
Google Scholar
Garcia-Laorden MI, Lorente JA, Flores C, Slutsky AS, Villar J. Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise. Ann Transl Med. 2017;5(14):283. https://doi.org/10.21037/atm.2017.06.49.
Article
CAS
Google Scholar
Sinha P, Calfee CS. Phenotypes in acute respiratory distress syndrome: moving towards precision medicine. Curr Opin Crit Care. 2019;25(1):12–20. https://doi.org/10.1097/mcc.0000000000000571.
Article
Google Scholar
Heffernan DS, Dossett LA, Lightfoot MA, Fremont RD, Ware LB, Sawyer RG, et al. Gender and acute respiratory distress syndrome in critically injured adults: a prospective study. J Trauma. 2011;71(4):878–83. https://doi.org/10.1097/TA.0b013e31822c0d31. (discussion 83-5).
Article
Google Scholar
McNicholas BA, Madotto F, Pham T, Rezoagli E, Masterson CH, Horie S, et al. Demographics, management and outcome of females and males with acute respiratory distress syndrome in the LUNG SAFE prospective cohort study. Eur Respir J. 2019;54:4. https://doi.org/10.1183/13993003.00609-2019.
Article
Google Scholar
Kasotakis G, Stanfield B, Haines K, Vatsaas C, Alger A, Vaslef SN, et al. Acute Respiratory Distress Syndrome (ARDS) after trauma: improving incidence, but increasing mortality. J Crit Care. 2021;64:213–8. https://doi.org/10.1016/j.jcrc.2021.05.003.
Article
Google Scholar
Cochi SE, Kempker JA, Annangi S, Kramer MR, Martin GS. Mortality trends of acute respiratory distress syndrome in the United States from 1999 to 2013. Ann Am Thorac Soc. 2016;13(10):1742–51. https://doi.org/10.1513/AnnalsATS.201512-841OC.
Article
Google Scholar
Kollef MH. Acute respiratory failure: a gender-based outcomes analysis. J Gend Specif Med. 1998;1(3):24–30.
CAS
Google Scholar
Angele MK, Wichmann MW, Ayala A, Cioffi WG, Chaudry IH. Testosterone receptor blockade after hemorrhage in males. Restoration of the depressed immune functions and improved survival following subsequent sepsis. Arch Surg. 1997;132(11):1207–14. https://doi.org/10.1001/archsurg.1997.01430350057010.
Article
CAS
Google Scholar
Knoferl MW, Angele MK, Diodato MD, Schwacha MG, Ayala A, Cioffi WG, et al. Female sex hormones regulate macrophage function after trauma-hemorrhage and prevent increased death rate from subsequent sepsis. Ann Surg. 2002;235(1):105–12. https://doi.org/10.1097/00000658-200201000-00014.
Article
Google Scholar
Angstwurm MW, Gaertner R, Schopohl J. Outcome in elderly patients with severe infection is influenced by sex hormones but not gender. Crit Care Med. 2005;33(12):2786–93. https://doi.org/10.1097/01.ccm.0000190242.24410.17.
Article
CAS
Google Scholar
Tsai CL, Clark S, Cydulka RK, Rowe BH, Camargo CA Jr. Factors associated with hospital admission among emergency department patients with chronic obstructive pulmonary disease exacerbation. Acad Emerg Med. 2007;14(1):6–14. https://doi.org/10.1197/j.aem.2006.07.034.
Article
Google Scholar
Melgert BN, Ray A, Hylkema MN, Timens W, Postma DS. Are there reasons why adult asthma is more common in females? Curr Allergy Asthma Rep. 2007;7(2):143–50. https://doi.org/10.1007/s11882-007-0012-4.
Article
CAS
Google Scholar
Kubota Y, Nishiwaki K, Ito M, Sugimoto A. The role of tissue inhibitors of metalloproteinases in organ development and regulation of ADAMTS family metalloproteinases in Caenorhabditis elegans. Genetics. 2019;212(2):523–35. https://doi.org/10.1534/genetics.119.301795.
Article
CAS
Google Scholar
Woolley DE, Roberts DR, Evanson JM. Inhibition of human collagenase activity by a small molecular weight serum protein. Biochem Biophys Res Commun. 1975;66(2):747–54. https://doi.org/10.1016/0006-291x(75)90573-2.
Article
CAS
Google Scholar
Burkhardt J, Petit-Teixeira E, Teixeira VH, Kirsten H, Garnier S, Ruehle S, et al. Association of the X-chromosomal genes TIMP1 and IL9R with rheumatoid arthritis. J Rheumatol. 2009;36(10):2149–57. https://doi.org/10.3899/jrheum.090059.
Article
CAS
Google Scholar
Anderson CL, Brown CJ. Polymorphic X-chromosome inactivation of the human TIMP1 gene. Am J Hum Genet. 1999;65(3):699–708. https://doi.org/10.1086/302556.
Article
CAS
Google Scholar
Peng J, Gao K, Gao T, Lei Y, Han P, Xin H, et al. Expression and regulation of tissue inhibitors of metalloproteinases (TIMP1 and TIMP3) in goat oviduct. Theriogenology. 2015;84(9):1636–43. https://doi.org/10.1016/j.theriogenology.2015.09.003.
Article
CAS
Google Scholar
Nasiri-Ansari N, Spilioti E, Kyrou I, Kalotychou V, Chatzigeorgiou A, Sanoudou D, et al. Estrogen receptor subtypes elicit a distinct gene expression profile of endothelial-derived factors implicated in atherosclerotic plaque vulnerability. Int J Mol Sci. 2022;23:18. https://doi.org/10.3390/ijms231810960.
Article
CAS
Google Scholar
Egea V, Zahler S, Rieth N, Neth P, Popp T, Kehe K, et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling. Proc Natl Acad Sci USA. 2012;109(6):E309–16. https://doi.org/10.1073/pnas.1115083109.
Article
Google Scholar
Selman M, Ruiz V, Cabrera S, Segura L, Ramirez R, Barrios R, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L562–74. https://doi.org/10.1152/ajplung.2000.279.3.L562.
Article
CAS
Google Scholar
Manoury B, Caulet-Maugendre S, Guenon I, Lagente V, Boichot E. TIMP-1 is a key factor of fibrogenic response to bleomycin in mouse lung. Int J Immunopathol Pharmacol. 2006;19(3):471–87. https://doi.org/10.1177/039463200601900303.
Article
CAS
Google Scholar
Hastbacka J, Linko R, Tervahartiala T, Varpula T, Hovilehto S, Parviainen I, et al. Serum MMP-8 and TIMP-1 in critically ill patients with acute respiratory failure: TIMP-1 is associated with increased 90-day mortality. Anesth Analg. 2014;118(4):790–8. https://doi.org/10.1213/ANE.0000000000000120.
Article
CAS
Google Scholar
Jones TK, Reilly JP, Anderson BJ, Miano TA, Dunn TG, Weisman AR, et al. Elevated plasma levels of matrix metalloproteinase-3 and tissue-inhibitor of matrix metalloproteinases-1 associate with organ dysfunction and mortality in sepsis. Shock. 2022;57(1):41–7. https://doi.org/10.1097/SHK.0000000000001833.
Article
CAS
Google Scholar
Allen JR, Ge L, Huang Y, Brauer R, Parimon T, Cassel SL, et al. TIMP-1 promotes the immune response in influenza-induced acute lung injury. Lung. 2018;196(6):737–43. https://doi.org/10.1007/s00408-018-0154-2.
Article
CAS
Google Scholar
Guo Y, Ma L, Zhang F, Sun R, Li T. Neutrophil elastase ameliorates matrix metalloproteinase-9 to promote lipopolysaccharide-induced acute lung injury in mice 1. Acta Cir Bras. 2016;31(6):382–8. https://doi.org/10.1590/S0102-865020160060000004.
Article
Google Scholar
Chen G, Ge D, Zhu B, Shi H, Ma Q. Upregulation of matrix metalloproteinase 9 (MMP9)/tissue inhibitor of metalloproteinase 1 (TIMP1) and MMP2/TIMP2 ratios may be involved in lipopolysaccharide-induced acute lung injury. J Int Med Res. 2020;48(4):300060520919592. https://doi.org/10.1177/0300060520919592.
Article
CAS
Google Scholar
Kim KH, Burkhart K, Chen P, Frevert CW, Randolph-Habecker J, Hackman RC, et al. Tissue inhibitor of metalloproteinase-1 deficiency amplifies acute lung injury in bleomycin-exposed mice. Am J Respir Cell Mol Biol. 2005;33(3):271–9. https://doi.org/10.1165/rcmb.2005-0111OC.
Article
CAS
Google Scholar
Warner RL, Beltran L, Younkin EM, Lewis CS, Weiss SJ, Varani J, et al. Role of stromelysin 1 and gelatinase B in experimental acute lung injury. Am J Respir Cell Mol Biol. 2001;24(5):537–44. https://doi.org/10.1165/ajrcmb.24.5.4160.
Article
CAS
Google Scholar
Schoeps B, Eckfeld C, Prokopchuk O, Bottcher J, Haussler D, Steiger K, et al. TIMP1 triggers neutrophil extracellular trap formation in pancreatic cancer. Cancer Res. 2021;81(13):3568–79. https://doi.org/10.1158/0008-5472.CAN-20-4125.
Article
CAS
Google Scholar
Scozzi D, Liao F, Krupnick AS, Kreisel D, Gelman AE. The role of neutrophil extracellular traps in acute lung injury. Front Immunol. 2022;13:953195. https://doi.org/10.3389/fimmu.2022.953195.
Article
CAS
Google Scholar
Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015;44–46:247–54. https://doi.org/10.1016/j.matbio.2015.03.005.
Article
CAS
Google Scholar
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and their inhibitors: potential for the development of new therapeutics. Cells. 2020;9:5. https://doi.org/10.3390/cells9051313.
Article
CAS
Google Scholar
Chulia-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play. Int J Mol Sci. 2022;23:13. https://doi.org/10.3390/ijms23136894.
Article
CAS
Google Scholar
Wuyts WA, Agostini C, Antoniou KM, Bouros D, Chambers RC, Cottin V, et al. The pathogenesis of pulmonary fibrosis: a moving target. Eur Respir J. 2013;41(5):1207–18. https://doi.org/10.1183/09031936.00073012.
Article
CAS
Google Scholar
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuna JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci. 2020;21:24. https://doi.org/10.3390/ijms21249739.
Article
CAS
Google Scholar
Hsu AT, Barrett CD, DeBusk GM, Ellson CD, Gautam S, Talmor DS, et al. Kinetics and role of plasma matrix metalloproteinase-9 expression in acute lung injury and the acute respiratory distress syndrome. Shock. 2015;44(2):128–36. https://doi.org/10.1097/SHK.0000000000000386.
Article
CAS
Google Scholar
D’Avila-Mesquita C, Couto AES, Campos LCB, Vasconcelos TF, Michelon-Barbosa J, Corsi CAC, et al. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients. Biomed Pharmacother. 2021;142:112067. https://doi.org/10.1016/j.biopha.2021.112067.
Article
CAS
Google Scholar
Gelzo M, Cacciapuoti S, Pinchera B, De Rosa A, Cernera G, Scialo F, et al. Matrix metalloproteinases (MMP) 3 and 9 as biomarkers of severity in COVID-19 patients. Sci Rep. 2022;12(1):1212. https://doi.org/10.1038/s41598-021-04677-8.
Article
CAS
Google Scholar
Li YT, Wang YC, Lee HL, Lu MC, Yang SF. Elevated plasma matrix metalloproteinase-9 and its correlations with severity of disease in patients with ventilator-associated pneumonia. Int J Med Sci. 2016;13(8):638–45. https://doi.org/10.7150/ijms.16187.
Article
CAS
Google Scholar
Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33. https://doi.org/10.1001/jama.2012.5669.
Article
CAS
Google Scholar
Barnett N, Ware LB. Biomarkers in acute lung injury-marking forward progress. Crit Care Clin. 2011;27(3):661–83. https://doi.org/10.1016/j.ccc.2011.04.001.
Article
CAS
Google Scholar
Almuntashiri S, James C, Wang X, Siddiqui B, Zhang D. The potential of lung epithelium specific proteins as biomarkers for COVID-19-associated lung injury. Diagnostics (Basel). 2021;11:9. https://doi.org/10.3390/diagnostics11091643.
Article
CAS
Google Scholar
Spadaro S, Park M, Turrini C, Tunstall T, Thwaites R, Mauri T, et al. Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 2019;16:1. https://doi.org/10.1186/s12950-018-0202-y.
Article
Google Scholar
Ishizaka A, Matsuda T, Albertine KH, Koh H, Tasaka S, Hasegawa N, et al. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2004;286(6):L1088–94. https://doi.org/10.1152/ajplung.00420.2002.
Article
CAS
Google Scholar
Terpstra ML, Aman J, van Nieuw Amerongen GP, Groeneveld AB. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis*. Crit Care Med. 2014;42(3):691–700. https://doi.org/10.1097/01.ccm.0000435669.60811.24.
Article
CAS
Google Scholar
Miller PR, Croce MA, Kilgo PD, Scott J, Fabian TC. Acute respiratory distress syndrome in blunt trauma: identification of independent risk factors. Am Surg. 2002;68(10):845–50 (discussion 50-1).
Article
Google Scholar
National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Matthay MA, Brower RG, Carson S, Douglas IS, et al. Randomized, placebo-controlled clinical trial of an aerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011;184(5):561–8. https://doi.org/10.1164/rccm.201012-2090OC.
Article
CAS
Google Scholar