Smith JM, Maynard-Smith J. The evolution of sex. Cambridge: Cambridge Univ. Press; 1978.
Google Scholar
Charney ND. Relating hybrid advantage and genome replacement in unisexual salamanders. Evolution. 2012;66(5):1387–97.
Article
PubMed
Google Scholar
Dawley RM. An introduction to unisexual vertebrates. In: Dawley RM, Bogard JP, editors. Evolution and ecology of unisexual vertebrates New York State museum, vol. 466. Albany: New York Bull; 1989. p. 1–18.
Google Scholar
Vrijenhoek RC, Dawley RM, Cole CJ, Bogart JP. A list of the known unisexual vertebrates. In: Dawley RM, Bogard JP, editors. Evolution and ecology of unisexual vertebrates New York State museum, vol. 466. Albany: New York Bull; 1989. p. 19–23.
Google Scholar
Kearney M, Fujita MK, Ridenour J. Lost sex in the reptiles: constraints and correlations. In: Lost sex: the evolutionary biology of parthenogenesis; 2009. p. 447–74.
Chapter
Google Scholar
Lamatsch DK, Stöck M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In: Lost sex: the evolutionary biology of parthenogenesis; 2009. p. 399–432.
Chapter
Google Scholar
Choleva L, Janko K, De Gelas K, Bohlen J, Šlechtová V, Rábová M, et al. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution. 2012;66(7):2191–203.
Article
PubMed
Google Scholar
Günther R. Zum natürlichen Vorkommen und zur Morphologie triploider Teichfrösche,“Rana esculenta”, L., in der DDR (Anura, Ranidae). 1975;(51):145-58.
Uzzell T, Günther R, Berger L. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proc Acad Nat Sci Phila. 1977;128:147–71.
Google Scholar
Günther R. Zur populationsgenetik der mitteleuropäischen wasserfrösche des Rana esculenta—synkleptons (Anura, Ranidae). Zool Anz. 1983;211(1/2):43–54.
Google Scholar
Alves MJ, Coelho MM, Collares-Pereira MJ. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111(1):375–85.
Article
CAS
PubMed
Google Scholar
Morishima K, Oshima K, Horie S, Fujimoto T, Yamaha E, Arai K. Clonal diploid sperm of the diploid-triploid mosaic loach, Misgurnus anguillicaudatus (Teleostei:Cobitidae). J Exp Zool. 2004;301A(6):502–11.
Article
Google Scholar
Fujimoto T, Yasui GS, Yoshikawa H, Yamaha E, Arai K. Genetic and reproductive potential of spermatozoa of diploid and triploid males obtained from interspecific hybridization of Misgurnus anguillicaudatus female with M. mizolepis male. J Appl Ichthyol. 2008;24(4):430–7.
Article
Google Scholar
Schmidt DJ, Bond NR, Adams M, Hughes JM. Cytonuclear evidence for hybridogenetic reproduction in natural populations of the Australian carp gudgeon (Hypseleotris: Eleotridae). Mol Ecol. 2011;20(16):3367–80.
Article
PubMed
Google Scholar
Lehtonen J, Schmidt DJ, Heubel K, Kokko H. Evolutionary and ecological implications of sexual parasitism. Trends Ecol Evol. 2013;28(5):297–306.
Article
PubMed
Google Scholar
Schultz RJ. Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am Nat. 1969;103(934):605–19.
Article
Google Scholar
Bogart JP, Bi K, Fu J, Noble DWA, Niedzwiecki J. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome. 2007;136:119–36.
Stöck M, Ustinova J, Betto-Colliard C, Schartl M, Moritz C, Perrin N. Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proc R Soc B Biol Sci. 2012;279(1732):1293–9.
Article
Google Scholar
Vrijenhoek RC. Factors affecting clonal diversity and coexistence. Integr Comp Biol. 1979;19(3):787–97.
Google Scholar
Uzzell T, Berger L. Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc Acad Nat Sci Phila. 1975;127(1975):13–24.
Google Scholar
Graf JD, Polls PM. Evolutionary genetics of the Rana esculenta complex. In: Dawley RM, Bogard JP, editors. Evolution and ecology of unisexual vertebrates New York State museum, vol. 466. Albany: New York Bull; 1989. p. 289–302.
Google Scholar
Plötner J. Die westpaläarktischen Wasserfrösche. Beih Z Für Feldherpetologie Laurenti-Verl Bielef;2005.
Google Scholar
Günther R, Plötner J. Zur Problematik der klonalen Vererbung bei Rana kl esculenta (Anura). Beitr Zur Biol Bibliogr. 1960-1987 Eur Wasserfrösche; 1988. p. 23–46.
Google Scholar
Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet. 2016;17(1):100.
Article
PubMed
PubMed Central
Google Scholar
Berger L, Günther R. Inheritance patterns of water frog males from the environments of nature reserve Steckby, Germany. Zool Pol. 1991;37:87–100.
Google Scholar
Tunner H, Heppich-Tunner S. A new population system of water frogs discovered in Hungary. Proc Sixth Ordinary Gen Meet Soc Eur Herpetol. 1992;19-23:453-460.
Rybacki M. Diploid males of Rana esculenta from natural populations in Poland producing diploid spermatozoa. Zool Pol. 1994;39(3-4).
Rybacki M. Structure of water frog populations [Rana esculenta complex] of the Wolin Island, Poland. Zool Pol. 1994;39(3-4):345-64.
Rybacki M, Berger L. Types of water frog populations (Rana esculenta complex) in Poland. Mitt Mus Nat.Kd Berl. Zool R. 2001;77:51–7.
Vinogradov AE, Borkin LJ, Günther R, Rosanov JM. Two germ cell lineages with genomes of different species in one and the same animal. Hereditas. 1991;114(3):245–51.
Article
CAS
PubMed
Google Scholar
Pruvost NBM, Hoffmann A, Reyer HU. Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus). Ecol Evol. 2013;3(9):2933–46.
Article
PubMed
PubMed Central
Google Scholar
Günther R. Die Wasserfrösche Europas. Neue Brehm-Bücher. 1990;600:1–228.
Google Scholar
Beerli P. Genetic isolation and calibration of an average protein clock in western Palearctic water frogs of the Aegean region. Ph.D. dissertation. Switzerland: Universität Zürich; 1994.
Valenta M, Hyldgaard-Jensen J, Jensen S. Interaction of veronal pyrophosphate citrate and protein with lactate dehydrogenase isoenzyme determination and kinetics. Acta Vet Scand. 1971;12:15.
CAS
PubMed
Google Scholar
Harris H, Hopkinson D. Handbook of enzyme electrophoresis in human genetics. 1976.
Google Scholar
Buth DG, Murphy RW. Use of nicotinamide adenine dinucleotide (NAD)-dependent glucose-6-phosphate dehydrogenase in enzyme staining procedures. Stain Technol. 1980;55(3):173–6.
Article
CAS
PubMed
Google Scholar
Pasteur N, Pasteur G, Bonhomme F. Manuel technique de génétique par électrophorèse des protéines. Paris: Techn and Doc; 1987.
Google Scholar
Arioli M, Jakob C, Reyer H-U. Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Mol Ecol. 2010;19(9):1814–28.
Article
PubMed
Google Scholar
Garner TWJ, Gautschi B, Röthlisberger S, Reyer HU. A set of CA repeat microsatellite markers derived from the pool frog, Rana lessonae. Mol Ecol. 2000;9(12):2173–5.
Article
CAS
PubMed
Google Scholar
Christiansen DG, Reyer HU. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution. 2009;63(7):1754–68.
Article
CAS
PubMed
Google Scholar
Zeisset I, Rowe G, Beebee TJC. Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessonae. Mol Ecol. 2000;9:1173–4.
Article
CAS
PubMed
Google Scholar
Hotz H, Uzzel T, Guex G-T, Alpers D, Semlitsch RD, Beerli P. Microsatellites: a tool for evolutionary genetic studies of western Palearctic water frogs. Mitt Mus Natkd Berl, Zool R. 2001;77(1):43–50.
Google Scholar
Hermaniuk A, Pruvost NBM, Kierzkowski P, Ogielska M. Genetic and cytogenetic characteristics of pentaploidy in water frogs. Herpetologica. 2013;69(1):36–45.
Article
Google Scholar
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4(3):535–8.
Article
CAS
Google Scholar
Brookfield JF. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol. 1996;5(3):453–5.
Article
CAS
PubMed
Google Scholar
Wagner AP, Creel S, Kalinowski ST. Estimating relatedness and relationships using microsatellite loci with null alleles. Heredity (Edinb). 2006;97(5):336–45.
Article
CAS
Google Scholar
Dieringer D, Schlötterer C. MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes. 2003;3(1):167–9.
Article
CAS
Google Scholar
Pruvost NBM, Mikulíček P, Choleva L, Reyer HU. Contrasting reproductive strategies of triploid hybrid males in vertebrate mating systems. J Evol Biol. 2015;28(1):189–204.
Article
CAS
PubMed
Google Scholar
Vinogradov AE, Borkin LJ, Günther R, Rosanov JM. Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome. 1990;33(5):619–27.
Article
CAS
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
CAS
PubMed
PubMed Central
Google Scholar
Peakall R, Smouse PE. GenALEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28(19):2537–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langella O. Populations version 1.2.30. Distributed by the author. Gif Sur Yvette: CNRS UPR9034; 1999.
Arnaud-Haond S, Belkhir K. GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes. 2007;7(1):15–7.
Article
CAS
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.
Article
CAS
PubMed
Google Scholar
Earl DA, BM vH. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2001;4:359–61.
Article
Google Scholar
Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrão EA, Duarte CM. Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Hered. 2005;96(4):434–40.
Article
CAS
PubMed
Google Scholar
Young AG, Hill JH, Murray BG, Peakall R. Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol Conserv. 2002;106(1):71–8.
Article
Google Scholar
Sokal R, Michener C. A statistical method for evaluating systematic relationships. University of Kansas Science Bull. 1958;38:1409–38.
Google Scholar
Takezaki N, Nei M. Empirical tests of the reliability of phylogenetic trees constructed with microsatellite DNA. Genetics. 2008;178(1):385–92.
Article
PubMed
PubMed Central
Google Scholar
Plötner J, Grunwald C. A mathematical model of the structure and the dynamics of Rana ridibunda/esculenta-♂ ♂-populations (Anura, Ranidae). J Zool Syst Evol Res. 1991;29(3):201–7.
Article
Google Scholar
Wu CI, Johnson NA, Palopoli MF. Haldane’s rule and its legacy: why are there so many sterile males? Trends Ecol Evol. 1996;11:281–4.
Article
CAS
PubMed
Google Scholar
Vasil’ev VP, Akimova NV, Emel’yanova NG, Pavlov DA, Vasil’eva ED. Reproductive capacities in the polyploid males of spined loaches from the unisexual-bisexual complex, occurred in the Moscow river. Folia Biol. 2003;51:67–73.
Google Scholar
Christiansen DG. Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evol Biol. 2009;9(1):135.
Article
PubMed
PubMed Central
Google Scholar
Abbott JK, Morrow EH. Obtaining snapshots of genetic variation using hemiclonal analysis. Trends Ecol Evol. 2011;26:359–68.
Article
PubMed
Google Scholar
Janko K, Kotusz J, de Gelas K, Šlechtová V, Opoldusová Z, Drozd P, et al. Dynamic formation of asexual diploid and Polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS One. 2012;7(9):e45384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angus RA, Schultz RJ. Clonal diversity in the unisexual fish Poeciliopsis monacha-lucida: a tissue graft analysis. Evolution. 1979;33(1):27–40.
Article
PubMed
Google Scholar
Angers B, Schlosser IJ. The origin of Phoxinus eos-neogaeus unisexual hybrids. Mol Ecol. 2007;16(21):4562–71.
Article
CAS
PubMed
Google Scholar
Stöck M, Lampert KP, Möller D, Schlupp I, Schartl M. Monophyletic origin of multiple clonal lineages in an asexual fish (Poecilia formosa). Mol Ecol. 2010;19(23):5204–15.
Article
PubMed
Google Scholar
Mikulíček P, Kautman M, Demovič B, Janko K. When a clonal genome finds its way back to a sexual species: evidence from ongoing but rare introgression in the hybridogenetic water frog complex. J Evol Biol. 2014;27(3):628–42.
Article
PubMed
Google Scholar
Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5(6):435–45.
Article
CAS
PubMed
Google Scholar
Beukeboom LW, Vrijenhoek RC. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J Evol Biol. 1998;11(6):755–82.
Article
Google Scholar
Rice WR, Linder JE, Friberg U, Lew TA, Morrow EH, Stewart AD. Inter-locus antagonistic coevolution as an engine of speciation: assessment with hemiclonal analysis. Proc Natl Acad Sci. 2005;102:6527–34.
Article
CAS
PubMed
PubMed Central
Google Scholar