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Abstract 

Background:  The sexual dimorphism represents one of the triggers of the metabolic disparities between the organ-
isms, advising about wild implications in research or diagnostics contexts. Despite the mounting recognition of the 
importance of sex consideration in the biomedical fields, the identification of male- and female-specific metabolic 
signatures has not been achieved.

Main body:  This review pointed the focus on the metabolic differences related to the sex, evidenced by metabo-
lomics studies performed on healthy populations, with the leading aim of understanding how the sex influences the 
baseline metabolome. The main shared signatures and the apparent dissimilarities between males and females were 
extracted and highlighted from the metabolome of the most commonly analyzed biological fluids, such as serum, 
plasma, and urine. Furthermore, the influence of age and the significant interactions between sex and age have been 
taken into account.

Conclusions:  The recognition of sex patterns in human metabolomics has been defined in diverse biofluids. The 
detection of sex- and age-related differences in the metabolome of healthy individuals are helpful for translational 
applications from the bench to the bedside to set targeted diagnostic and prevention approaches in the context of 
personalized medicine.

Highlights 

•	 Metabolomics is the gold-standard analytical approach to detect metabolic signatures in human biofluids.
•	 Analyzing the metabolome at the baseline in healthy individuals is important to identify metabolite signatures to 

be attributed to one sex or both.
•	 Differences in the metabolome of biofluids are sex- and age-dependent.
•	 Sex is not still adequately considered in metabolomics-based investigations.
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Introduction
The influence of sexual dimorphism or gender-related 
dichotomies is gaining mounting interest among sci-
entists in human/animal research or diagnostics fields. 
The scientific community commonly uses the terms sex 
and gender as interchangeable, even if they describe spe-
cific individual features. Gender specifically outlines the 
behavioral, psychological, and cultural features of an 
individual, referring to either social roles (gender role) 
or personal identification (gender identity). On the other 
hand, the sex of an individual groups the anatomy of its 
reproductive system, genitalia, and secondary sex charac-
teristics, defining the elementary biological and dichoto-
mous variables found in most living organisms. Without 
any social or behavioral consideration, sex represents the 
trigger of the metabolic disparities between the organ-
isms [1–4].

Metabolomics is the systematic qualitative and quan-
titative study of the complete set of metabolites in a 
biological sample. As matter of fact, the metabolome is 
constituted by several different classes of “small mole-
cules” (80–1200 Da molecular mass) with different chem-
ical and physical properties. The metabolome includes 
amino acids, peptides, oligonucleotides, sugars, organic 
acids, ketones, aldehydes, lipids, steroids, alkaloids, xeno-
biotics, and the small molecules deriving from biosyn-
thetic processes and cell reactions [5]. Metabolomics is 
able to provide information deriving from healthy and 
altered metabolic profiles, allowing to understand even-
tual pathophysiological conditions and the mechanisms 
that stand behind the metabolic disturbance [6–14].

The variations of the human metabolome might be 
influenced by numerous factors including methodologi-
cal issues (i.e., sample collection and technical proce-
dures), genetics, ethnicities, age, lifestyles, hormonal 
status, and sex [15–18]. The huge amount of data gener-
ated by the omics sciences requires particular attention 
in the steps of data analysis to ensure the accuracy of the 
results [19, 20]. Thus, the male and female metabolic phe-
notypes can be investigated through the in-depth analysis 
of the metabolome in biological fluids [16, 21–25].

In particular, in the current era of the precision medi-
cine, the need to use the so-called “liquid biopsy” like eas-
ily accessible body fluids provides great advantages since 
the collection process is less invasive than tissue collec-
tion, and can be reiterated over the time in the processes 
of follow-up and real-time monitoring of the patients. In 
addition, the metabolites contained in the liquid biopsies 
have the power of mirroring multiple biochemical pro-
cesses and pathways happening in tissues [26–28].

Research evidences endorse the strong differences 
existing between women and men in the incidence or 
severity of diseases, the metabolism, and the therapy 

owing to the different dosage or response to treatments 
[16, 17, 29–31]. However, many published studies did not 
stratify the data by sex and did not analyze the data by 
sex. Even from the current COVID-19 research are per-
ceivable a scarce enrollment of women and a poor strati-
fication of the subjects, and any further analysis based 
on the sex [32], providing collective results and conclu-
sions valid for both the sexes [33, 34]. Furthermore, the 
sex differences found in the metabolome vary consist-
ently across different age ranges, from infants to young 
adults, to the elderly [24, 35–38], underlining the impor-
tance of age in determining the sex differences. Finally, it 
is important to underline that the results based on one-
sex analyses alone are not sufficient for drawing general 
conclusions to be extended to the whole population [39].

Therefore, in this article, the scientific literature was 
systematically reviewed to evaluate similarities and dif-
ferences between the human male and female metabo-
lomes of diverse biological fluids (plasma, serum, and 
urine). Due to the noteworthy technological innovations 
in metabolomics, the collection of studies published dur-
ing the last 15  years of research would provide a step 
forward to understand how sex and age differentially 
influence the baseline metabolome in healthy individuals.

Materials and methods
The systematic review of the literature selected in this 
manuscript was carried out by following the guidelines 
of the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) system [40, 41].

Search strategy
The search of literature articles was performed in Sep-
tember 2021, using the MEDLINE/PubMed and ISI Web 
of Knowledge databases. The search was focused on 
three main fields/areas that included: (1) metabolomics, 
(2) sex/gender, (3) healthy populations. In particular, 
the search was conducted in both the databases using a 
combination of MeSH terms and variation terms for the 
above-mentioned fields, using the Boolean search opera-
tors “AND” and “OR”. The performed search was set as 
follows: “(metabolomics OR metabolome) AND (healthy 
individuals OR control OR sane OR children OR adults) 
AND (sex OR gender OR sex difference)”. The search 
looked at the articles published from 2005 to 2021.

Inclusion and exclusion criteria
The published studies selected by the search were first 
screened according to the information included in the 
title and the abstract. Two authors have performed this 
kind of work independently and then the results were 
matched. Then, the full-text version of the pertinent arti-
cles was taken into account for further consideration. The 
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studies responding to the following criteria were consid-
ered: (i) human subjects as total or part of the samples 
analyzed; (ii) studies including only healthy individu-
als (or with the main focus on them); (iii) metabolomic 
analyses (by both NMR and MS techniques) performed 
on any biological matrix; (iv) articles with main focus on 
sex-related differences. Analyses performed on only one 
or few metabolites, on only one sex, lipidomics-based 
research, methods not based on MS or NMR technolo-
gies, articles including disease-state individuals or animal 
models or in  vitro systems, non-English articles, review 
articles, book chapters, and editorials were excluded. 
Duplicate publications were deleted.

Data extraction
The data from the selected studies were extracted and 
reported, considering: the name of the first author, year 
of publication, country or ethnicity of the individuals, 
and the main characteristics of the subjects studied (such 
as sample size, sex/gender, age), the biological matrices 
used, and the analytical platforms employed for metabo-
lomics analyses, including details of the downstream sta-
tistic tests.

Studies quality assessment
The quality assessment of the selected studies was per-
formed by two authors independently, using a scoring 

Table 1  Classification of the 32 eligible studies selected for the review according to the score system

First author and year Experimental design Methodology Novelty Final score Classification

N of subjects 
(per sex)

Age 
stratification

Analytical 
platform

Statistical 
support

Validation

Chekmeneva E. 2018 [65] 2 1 3 2 1 1 10 Excellent

Dunn W. B. 2014 [38] 2 2 3 2 0 1 10 Excellent

Lawton K. A. 2008 [55] 2 2 3 1 0 1 9 Excellent

Saito K. 2016 [58] 1 2 3 2 0 1 9 Excellent

Andraos S. 2021 [64] 2 2 2 1 0 1 8 Good

Caterino M. 2021 [36] 2 1 2 2 0 1 8 Good

Lau C.-H. E. 2018 [54] 2 1 3 2 0 0 8 Good

Rist M. J. 2017 [56] 2 0 3 2 0 1 8 Good

Ruoppolo M. 2015 [57] 2 1 2 2 0 1 8 Good

Trabado S. 2017 [62] 2 1 2 2 0 1 8 Good

Zaura E. 2017 [49] 2 1 2 2 0 1 8 Good

Bell J. A. 2021 [48] 2 2 1 1 0 1 7 Good

Caterino M. 2020 [35] 2 2 1 1 0 1 7 Good

De Paepe E. 2018 [66] 0 1 2 2 1 1 7 Good

Jovè M. 2016 [68] 2 0 2 2 0 1 7 Good

Liang Q. 2015 [51] 0 1 2 2 1 1 7 Good

Mittelstrass K. 2011 [24] 2 0 2 2 0 1 7 Good

Scalabre A. 2017 [59] 2 2 1 2 0 0 7 Good

Thévenot E. A. 2015 [61] 2 1 2 2 0 0 7 Good

Yu Z. 2012 [53] 2 0 2 2 0 1 7 Good

Fan S. 2018 [67] 2 0 1 2 0 1 6 Good

Gallart-Ayala H. 2018 [52] 0 1 2 1 1 1 6 Good

Li Z. 2018 [50] 2 1 2 1 0 0 6 Good

Ruoppolo M. 2014 [15] 2 1 2 1 0 0 6 Good

Slupsky C. M. 2007 [60] 2 0 1 2 0 1 6 Good

Tsoukalas D. 2019 [47] 2 2 1 1 0 0 6 Good

Vignoli A. 2018 [63] 2 1 1 2 0 0 6 Good

Das M. K. 2014 [46] 0 1 1 2 0 1 5 Fair

Hirschel J. 2020 [45] 2 0 2 1 0 0 5 Fair

Jarrell Z. R. 2020 [44] 2 0 2 1 0 0 5 Fair

Reavis Z. W. 2021 [42] 2 1 0 2 0 0 5 Fair

Takeda I. 2009 [43] 1 0 1 2 0 1 5 Fair
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system specifically created for this analysis (Additional file 1: 
Table  S1). Then, the results were matched and compared 
for agreement. The studies were classified according to the 
scores as excellent (11–9), good (6–8), fair (5–4), and poor 
(< 4). Table 1 summarizes the variables of the score setting 
used to assess the quality of metabolomics data, according 
to the experimental design (considering the size and age 
stratification of the populations), the methodology (includ-
ing the metabolomic platforms, the statistical analyses, and 
eventual validation experiments), and the novelty of the 
research. A score equal to or higher than 6 was considered a 
minimum for inclusion in the review. Few articles that were 
difficult to integrate or poorly focused on the main aim of 
this review were excluded despite the good attributed score.

Results
Literature search and selection process
The selection process of the articles searched in the lit-
erature is resumed in the flow diagram (Fig. 1). The litera-
ture search was performed using the MEDLINE/PubMed 
and ISI Web of Knowledge databases, leading to the iden-
tification of 1172 and 759 research records, respectively. 
During the screening process, the results from both the 
databases were merged, deleting the duplicate publica-
tions, and 32 articles were selected for the eligibility, 
undergoing full-text examination. Table 1 globally reports 
the scores attributed to each of the 32 studies according 
to pre-established criteria concerning the experimental 
design, methodology, and novelty of the research.

After full-text examination, 5 out of 32 studies [42–46] 
were excluded because the quality score was below 6. 
Despite the good scores,  other 7 articles  [47–53] were 
excluded because they were considered dispersive, or 
poorly focused on the main aim of this review work, 
which is to underline sex differences.

Finally, 20 articles [11, 18, 24, 25, 27, 43–57] were 
selected to be included in the review and summarized 
in Table  2, reporting the main characteristics retrieved 
from each manuscript. The 20 selected papers endorse 
different metabolomic approaches and different matri-
ces, highlighting statistically significant sex-related dif-
ferences in the plasma, serum, or urine metabolome of 
healthy patients. In addition, among them, 19 studies 
reported the age of the participants, with highly variable 
ranges going from 2 days to 100 years.

Overall, amino acids (AA), which included canoni-
cal AA, their derivatives and analogs, and acylcarniti-
nes (AC) were the most frequently detected molecules 
in the majority of the works, probably because they are 
easily quantifiable by standardized targeted LC–MS/MS 
methods [4, 69–72]. Other metabolites such as OA or 
carbohydrates are more suitably identified by untargeted 
GC–MS or NMR-based approaches [73–75]. Consist-
ently with these observations, we decided to not include 
specifically lipid molecules or lipidomics-based research 
in the analysis of sex differences and age to dedicate a 
specific space for lipids in future work.

Sex differences in the plasma metabolome
The plasma metabolome was analyzed and described in 
7 out of 20 papers [55, 56, 62–64, 66, 68]. In particular, 
the sex differences in the plasma were investigated in the 
metabolome of healthy adult and old individuals, while 
one paper [64] focused on both boys and girls and their 
parents. All the main results are summarized in Table 3.

Overall, in adults, the changes are related to AA (and 
their derivatives). Most of the authors found higher levels 
of phenylalanine, glutamate [55, 63, 64], glutamine [63, 
64, 66], kynurenine [55, 68], methionine [55, 64], proline 
[63, 64], and tyrosine [63, 64, 66] in men than in women. 
Also, the branched-chain amino acids (BCAA) namely 
valine, leucine, and isoleucine were found more abundant 
in men [56, 62–64, 66]. On the other hand, 3 articles (2 
European and 1 Australian studies) showed that glycine 
was higher in females than in males [56, 64, 66]. No uni-
vocal results were found for tryptophan levels, however, 
the majority of studies found it increased in Caucasian, 
African-American, and Australian male adults [55, 64] 
while in the Hispanic population it was found higher or 
lower in Hispanic men compared to Hispanic women [55, 
68]. Finally, creatinine displayed higher concentrations in 
men in all four the studies that detected this metabolite 

Fig. 1  Schematic flow diagram of the entire review process
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Table 2  Summary of the characteristics of the 20 studies included in the review

First author 
and year

Country/
ethnicity

Subjects 
(total n)

Sex (total n) Age/age groups Biologic 
matrix

Analytical 
platform

Statistics Quality score

Andraos S. 
2021 [64]

Australia 1166
1324

565 M
601 F
174 M
1150 F

11.4 ± 0.5
11.5 ± 0.5
46.2 ± 6.4
43.6 ± 4.8
years
(mean ± SD)

Plasma UHPLC–MS/MS Linear mixed-
effects models
Pearson’s cor-
relation

8

Caterino M. 
2020 [35]

Italy 291 152 M
139 F

(1–36 months)
1–6 months
7–12 months
13–24 months
25–36 months

Urine GC–MS Dunn’s test
Kruskal–Wallis 
test
Mann–Whit-
ney U test

7

Caterino M. 
2021 [36]

Italy 311 174 M
137 F

48–72 h DBS LC–MS/MS Spearman’s 
correlation
PLS-DA
VIP

8

Chekmeneva 
E. 2018 [65]

USA 132 N. F. 40–59 years Urine 1H NMR
DI-nESI-HRMS
UPLC–HRMS

PCA
OPLS-DA

10

De Paepe E. 
2018 [66]

Belgium 10 5 M
5 F

25–41 years Plasma
Urine

UHPLC–MS/MS CV-ANOVA
PCA
OPLS-DA

7

Dunn W. B. 
2014 [38]

UK 1200 N. F. (19–81 years)
 < 40 years
40–49 years
50–64 years
 > 64 years

Serum UPLC–MS (+)
UPLC–MS (−)
GC–MS

ANOVA
Kruskal–Wallis 
test
Mann–Whit-
ney U test
PLS-DA
Random 
Forests

10

Fan S. 2018 
[67]

USA 120 60 M
60 F

N. F. Urine GC–MS Mann–Whit-
ney U test
PLS-DA
PCA

6

Jovè M. 2016 
[68]

Spain 146 68 M
78 F

30–100 years Plasma LC–MS/MS (+)
LC–MS/MS (−)

ANOVA
PCA
Student’s t-test

7

Lau C.-H. E. 
2018 [54]

UK
France
Spain
Lithuania
Norway
Greece

(1192)
199
157
207
201
229
199

(54.6% M
45.4% F)

6–11 years Serum
Urine

1H NMR
FIA-MS/MS
LC–MS/MS

MWAS with 
multiple linear 
regression
PCA
Pearson’s cor-
relation

8

Lawton K. A. 
2008 [55]

Caucasian
African-Amer-
ican
Hispanic

(269)
61
135
73

(131 M, 138 F) 
20M, 41 F
69 M, 66 F
42 M, 31 F

(20–65 years)
20–35 years
36–50 years
51–65 years

Plasma LC–MS (+)
LC–MS (−)
GC–MS

ANCOVA
ANOVA

9

Mittelstrass K. 
2011 [24]

Germany 3080
377

1452 M, 
1552 F
197 M, 180 F

32–81 years
55–79 years

Serum LC–MS/MS PLS
Linear regres-
sion
Partial correla-
tion analysis

7

Rist M. J. 2017 
[56]

Germany 200 99 M
101 F

36–80 years Plasma
Urine

1H NMR
FIA-MS/MS
GC(xGC)-MS
HILIC-MS/MS
UHPLC–MS/MS

Glmnet
PLS
SVM

8
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as differentially abundant between the sexes [55, 56, 62, 
63]. Instead, creatine was identified in three out of the 
four studies as increased in women [55, 56, 63], whereas 
in Jovè’s study (see supplementary material of [68]) cre-
atine seems to be upregulated in males.

The sole study performed on parents and their children 
[64] showed that children and adults present the follow-
ing concordance: BCAA, citrulline, cysteine, phenyla-
lanine, and tryptophan were higher in males, whereas 
glycine and serine were higher in females. Opposite 
variation trends were observed for alanine, glutamine, 
and OH-proline, being higher in male adults and female 
children.

Furthermore, Trabado and colleagues’ paper [62] was 
the only one that evidenced significantly changed plasma 
AC levels, with a significant increase of the small-chain 
AC, namely free carnitine (C0), propionylcarnitine (C3), 

and isovalerylcarnitine (C5) in men versus women [62]. 
A complete list of the full names for AC is reported in 
Additional file 1: Table S2.

Sex differences in the serum metabolome
Seven out of the 20 selected papers with a focus on the 
serum metabolome detected sex differences and the main 
findings for serum AA and AC are resumed in Tables 4 
and 5, respectively. The high heterogeneity of the results 
observed was probably related to an effect due to the 
different ages of the selected cohorts. In particular, 2 
publications were focused on cohorts of at-term and pre-
mature newborns [36, 57], 1 publication on children [54], 
and 4 articles on adult cohorts [15, 24, 38, 58].

Most of the categories/terms in the table were ordered alphabetically. Whereas not specified in the papers, the generic LC–MS/MS term was reported for targeted 
metabolomic analyses; ( +) and (-) refer to positive and negative ionization modes, respectively. Missing information are reported as N.F. (not found). mo = months, 
y = years, SD = standard deviation

Table 2  (continued)

First author 
and year

Country/
ethnicity

Subjects 
(total n)

Sex (total n) Age/age groups Biologic 
matrix

Analytical 
platform

Statistics Quality score

Ruoppolo M. 
2014 [15]

Italy 76 35 M
41 F

20–45 years Serum HPLC
LC–MS/MS

SAM
Pearson’s cor-
relation
Spearman’s 
correlation

6

Ruoppolo M. 
2015 [57]

Italy 3680 1856 M
1824 F

48–72 h DBS LC–MS/MS Mann–Whit-
ney U test
Linear regres-
sion
PCA

8

Saito K. 2016 
[58]

Japan 60 15 M
15 F
15 M
15 F

25–35 years
25–35 years
55–64 years
55–65 years

Serum GC–MS
HILIC–MS (−)
UHPLC–MS (+)
UHPLC–MS (−)

Welch’s two-
factor t-tests
PCA

9

Scalabre A. 
2017 [59]

France 90 66 M
24 F

(< 4 mo)
 < 1 mo
1 months
2 months
3 months

Urine 1H NMR PCA
O-PLS
CV-ANOVA
SRV

7

Slupsky C. M. 
2007 [60]

Canada 60 30 M
30 F

16–69 years Urine 1H NMR ANOVA
Mann–Whit-
ney U test
PCA
PLS-DA

6

Thévenot E. A. 
2015 [61]

France 183 100 M
83 F

40.9 ± 10.3 years
(mean ± SD)

Urine UHPLC–MS(/
MS)

Mann–Whit-
ney U test
O-PLS
Spearman’s 
correlation

7

Trabado S. 
2017 [62]

France 800 417 M
383 F

18–86 years
37.6 ± 17.2
(mean ± SD)

Plasma FIA-MS/MS
LC–MS/MS

CV-ANOVA
OPLS-DA
PCA

8

Vignoli A. 2018 
[63]

Italy 844 661 M
183 F

41.0 ± 12.0 years
(median ± SD)

Plasma 1H NMR PLS-DA
Wilcoxon rank-
sum test

6
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In adults, Ruoppolo (2014) and Saito detected higher 
levels of methionine, asparagine, proline, tyrosine, glu-
tamate, citrulline, and BCAA in men than in women 
[15, 58], whereas tryptophan was significantly lower and 
higher in men in [15] and [58], respectively. Mittelstrass 
and co-workers [24] found that serine and glycine were 
more abundant in adult women, whereas glutamine, 
ornithine, and arginine resulted higher in men. Dunn 
et al. described high levels of tyrosine in women, as well 
as methionine sulfoxide and caffeine [38]. In addition, 
Dunn et al. also found that serum creatinine levels were 
higher in females, and vice versa Saito detected increased 
levels for this metabolite in males [58].

In a single study performed on children (6–11  years), 
Lau et  al. [54] discovered higher levels of serine, lysine, 
ornithine, and putrescine in girls, while serotonin was 
higher in boys.

Finally, Ruoppolo et  al. [57] and Caterino et  al. [36] 
found that both at-term female newborns and premature 
female infants had higher levels of alanine, aspartate, cit-
rulline, glycine, and tyrosine.

The review of the serum metabolome retrieved some 
conflicting results on the sex-related distribution of AC, 
with most of the divergency accounting for a single-sex 
according to each author. Ruoppolo et al. [15] found that 
only C0 was higher in men than in women in the follicu-
lar phase. All the AC found by Saito [58] and Mittelstrass 

Table 3  Sex differences identified in the plasma metabolome for AA and AC

M, higher levels of the metabolite identified in male individuals; F, higher levels of the metabolite identified in female individuals. Hereon, whereas not specified, the 
age of the individuals treated in the papers is referred to adults

First author and year De Paepe E. 
2018 [66]

Jovè M. 
2016 [68]

Lawton K. A. 
2008 [55]

Rist M. J. 
2017 [56]

Trabado S. 
2017 [62]

Vignoli A. 
2018 [63]

Andraos S. 2021 
[64]

Metabolite Adults Children

AA and analogues Alanine M F

Arginine M

Asparagine M

Aspartate M

BCAA​ M M M M M M

Citrulline M M

Creatine M F F F

Creatinine M M M M

Cysteine M M

Glutamate M M M

Glutamine M M M F

Glycine F F F F

Histidine M

Homocysteine M

Kynurenine M M

Lysine F

Methionine M M

N-Acetyl-L-Methionine M

Phenylalanine M M M M

OH-proline M M F

Oxoproline M

Proline M M

Sarcosine F

Serine F F

Threonine F

Tyrosine M M M

Tryptophan F M M M

AC C0 M M

C3 M

C5 M
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[24] displayed higher concentrations in male individuals. 
However, according to Lau et al. [54], the analysis of AC 
levels in children perceived higher levels in females.

In the cohort of male and female at-term newborns 
aged 48–72  h, Ruoppolo et  al. [57] showed that the 
adjustment of metabolites levels for  newborns’ body 
weight modifies the sex differences displayed with-
out. Body weight adjustment had an amplified effect 
on alanine, methionine, glycine, valine, and tyrosine 
that were maintained higher in female babies, whereas 
it overall reduced or eliminated the sex differences 
highlighted for AC, with some exceptions. Precisely, 
the levels of C0 and total esterified carnitine remained 
higher in male infants also after the adjustment for 
body weight. The levels of C8, C10, C12, C14, C16, 
C8DC, and C10DC were significantly higher in male 
infants, while C4 and C5 in female ones. Additionally, 

the sex differences in C4OH, C14OH, C16OH, 
C18:1OH were maintained in male infants, as well as 
for C10:1, C14:1, C16:1, C18:1, C18:2. On the other 
hand, the differences concerning C5:1, C6:1, C8:1, and 
C10:2 levels were accounted to female babies. At last, 
the second study by Caterino et al. [36] performed on 
DBS (dried blood spots) agreed with the increased 
levels of C18:1 and C18:2 in male infants as shown by 
Ruoppolo et  al. [57]. Accordingly, also C2, C6, C18:1, 
C18:2, C4DC, and the total esterified carnitine were 
significantly higher in male infants.

Sex differences in the urine metabolome
Sex differences in the urine metabolome have been found 
in 9 publications [35, 54, 56, 59–61, 65–67]. In urine 

Table 4  Sex differences identified in the serum metabolome for AA

M, higher levels of the identified metabolite in male individuals; F, higher levels of the identified metabolite in female individuals

Adults Children Infants

First author and year Dunn W. B. 
2014 [38]

Mittelstrass 
K. 2011 [24]

Ruoppolo 
M. 2014 [15]

Saito K. 
2016 [58]

Lau C.-H. E. 
2018 [54]

Caterino M. 
2021 [36]

Ruoppolo 
M. 2015 
[57]Metabolite

AA and analogues Alanine F F

Arginine M

Asparagine M M

Aspartate F F

BCAA​ M M F

Citrulline M M F F

Creatine F

Creatinine F M

Cysteine M

Glutamine M M F

Glutamate M M F

Glycine F F F

Histidine M

Lysine M F

Methionine M M F

Methionine sulfoxide F

Ornithine M M F F

Phenylalanine M F

Proline M M

Serine F F

Threonine M

Tryptophan F M

Tyrosine F M M F F

Putrescine F

S-Adenosyl homocysteine M

Serotonin M M

Caffeine F
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samples, the spectrum of the metabolite classes identified, 
including AA, AC, OA, carbohydrates, and other organic 
compounds, showed higher heterogeneity if compared to 
plasma or serum, with expected lower similarities within 
the selected articles. Tables 6 and 7 resume the sex-pattern 
recognition for the urinary metabolites described hereon.

Lau et  al. showed sex differences in urine from 
children: isoleucine was increased in females, while 
5-oxoproline and tyrosine were found at higher concen-
trations in males [54]. Caterino et al. discovered several 
sex differences by analyzing four age groups of infants 
from 1 to 36 months [35] (Additional file 1: Table S3), 

while Scalabre and colleagues did not find any sex-
specific pattern in the urinary metabolome of infants 
under the age of 4 months [59].

In the adult population, a small number of AA was 
found divergent according to sex. In particular, proline 
[61], leucine [56], l-carnosine, and 2,6-diaminopimelic 
acid [66] were found increased in males, while higher 
concentrations of glycine [67] and other non-canonical 
AA (acetylphenylalanine, 2-aminoadipic acid, N-acety-
laspartic acid, nicotinuric acid, aminosalicyluric acid) 
[61] were detected in females. Nonetheless, accord-
ing to the findings reviewed from plasma and serum 

Table 5  Sex differences identified in the serum metabolome for AC

M, higher levels of the metabolite identified in male individuals; F, higher levels of the metabolite identified in female individuals

Adults Children Infants

First author and year Dunn W. B. 
2014 [38]

Mittelstrass K. 
2011 [24]

Ruoppolo M. 
2014 [15]

Saito K. 2016 
[58]

Lau C.-H. E. 
2018 [54]

Caterino M. 
2021 [36]

Ruoppolo 
M. 2015 
[57]Metabolite

AC C0 M M

C2 M

C3 M

C4 F

C5 M F

C6 M

C8 M

C10 M M F M

C12 M F M

C14 M M

C16 M M

C18 M

C5:1 M F

C6:1 F

C8:1 F

C10:1 M M

C10:2 F

C14:1 F M

C14:2 F

C16:1 F M

C18:1 M M M

C18:2 M M M

C4OH M

C14OH M

C16OH M

C14:1OH F

C18:1OH M

C3DC M

C4DC M

C5DC M

C8DC M

C10DC M
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metabolomes, also the urinary metabolome appears to 
be characterized by an increased amount of creatinine 
in males [56, 60, 65] and creatine in females [60, 61, 65].

Essentially, the analysis of the AC levels has found 
the agreement of most of the selected papers for their 

distribution to one sex. In particular, AC molecules were 
higher in the male urine if compared to the female one 
[60, 61, 65], with exception of the methylglutarylcarnitine 
(C5-M-DC), which was higher in females [61].

Table 6  Sex differences identified in the urine metabolome (part 1)

M, higher levels of the metabolite identified in male individuals; F, higher levels of the metabolite identified in female individuals

Adults Children Infants

First author and year Chekmeneva 
E. 2018 [65]

De Paepe 
E. 2018 
[66]

Fan S. 2018 
[67]

Rist M. 
J. 2017 
[56]

Slupsky C. 
M. 2007 
[60]

Thévenot 
E. A. 2015 
[61]

Lau C.-H. 
E. 2018 
[54]

Scalabre 
A. 2017 
[59]Metabolite

AA and ana-
logues

2-Aminoadipic 
acid

F

2,6-Diami-
nopimelic acid

M

5-Oxoproline M

Acetyl phenyla-
lanine

F

Aminosalicyluric 
acid

F

Creatine F F F

Creatinine M M M

l-Carnosine M

Glycine F

Isoleucine F

Leucine M

N-Acetylaspartic 
acid

F

Nicotinuric acid F

Proline M

Tyrosine M

AC C0 M

C2 M

C3 M

C5 M

C6 M

C8 M

C9 M

C10 M M

C7:1 M

C8:1 M M

C9:1 M

C10:1 M M

C10:2 M

C10:3 M

C11:1 M

C8OH M

C6:1OH M

C10:2OH M

C5-M-DC F

C6DC M
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Table 7  Sex differences identified in the urine metabolome (part 2)

M, higher levels of the metabolite identified in male individuals; F, higher levels of the metabolite identified in female individuals. Xen, xenobiotics

Adults Children Infants

First author and year Chekmeneva E. 
2018 [65]

De Paepe E. 
2018 [66]

Fan S. 2018 [67] Rist M. J. 
2017 [56]

Slupsky C. M. 
2007 [60]

Thévenot E. 
A. 2015 [61]

Lau C.-H. E. 
2018 [54]

Scalabre 
A. 2017 
[59]Metabolite

OA 2-Hydroxyglutaric 
acid

F

2-Hydroxyphenyl 
acetic acid

M

3,4-Dihydroxy phe-
nylacetic acid

M

4-Hydroxybutyric 
acid

M

4-Deoxythreonic 
acid

M

α-Ketoglutaric acid M F F

Capric acid M

Caprylic acid M

Citric acid F F F F F

Fumaric acid F F F

Heptadecanoic acid M

Malic acid F F

Mevalonic acid F

Oxoglutaric acid F

Pantothenic acid F

Pelargonic acid M

Pyruvic acid F

Stearic acid M

Succinic acid F

carbohydrates D-Fructose F F

Acetaminophen 
glucuronide

F

Galactonic acid F

Gluconic acid F

Glucuronic acid F

Glyceric acid F

Lyxose F

Maltose F

Pentose F

Threonic acid F

UDP-glucuronic acid M

Xylose F

Acylglycines 2-Methylhippuric 
acid

F

3-Methylcrotonyl 
glycine

F

Cinnamoylglycine F

Hippuric acid F

p-Hydroxyhippuric 
acid

F

Tiglylglycine F

Valerylglycine F

Xen 1-Methylurate M

1-Methylxantine M

Caffeine F
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An even higher heterogeneity was found concerning 
the sex differences accounting for the class of the OA. 
Precisely, several authors found in the female urine a 
specific increase in citric acid [56, 60, 61, 65, 67], fuma-
ric acid [60, 61, 67], malic acid [61, 67], succinic acid, and 
2-hydroxyglutaric acid [67], mevalonic acid, pyruvic acid, 
oxoglutaric acid, and pantothenic acid [61]. A divergence 
of α-ketoglutaric acid levels was accounted both for 
females [56, 61] and males [67]. Instead, several other OA 
were detected in the urine of males, such as stearic acid, 
pelargonic acid, heptadecanoic acid, caprylic acid, capric 
acid, 4-hydroxybutyric acid [67], 4-deoxythreonic acid, 
2-hydroxyphenylacetic acid [56], and 3,4-dihydroxyphe-
nylacetic acid [66].

Concerning the other classes of metabolites, the major-
ity of carbohydrates were found in the urine of female 
individuals, such as d-fructose [56, 66], xylose, maltose, 
lyxose, galactonic acid [67], pentose, acetaminophen glu-
curonide, gluconic acid, glucuronic acid, threonic acid/
erythronic acid, glyceric acid [61]. By contrast, UDP-glu-
curonic acid was present only in male urine [67].

Finally, Thévenot identified an entire group of acylg-
lycines, including hippuric acid, 2-methylhippuric acid, 
p-hydroxyhippuric acid, tiglylglycine, cinnamoylglycine, 
3-methylcrotonylglycine, valerylglycine, as more abun-
dant in female urines, as well as for caffeine [61]. On the 
other hand, caffeine metabolites, namely 1-methylxan-
thine and 1-methylurate, were found higher in males by 
Chekmeneva [65].

Sex differences are age‑dependent
The evaluation of the sex-related differences in the 
metabolome should take into account another important 
factor represented by the age, with males and females at 
different age stages possibly showing age-specific meta-
bolic signatures. Among the selected articles, 11 of them 
identified age-dependent metabolomics profiles [18, 27, 
44, 45, 47, 49–53, 57], but only 8 publications identified 
an interaction between sex and age or performed analy-
ses for such evaluation [38, 55, 56, 58, 60, 61, 63, 68].

In detail, concerning the analyses of the plasma metab-
olome, Jovè and colleagues identified a significant sepa-
ration between the age groups 30–49  years old and the 
50–59  years old in females, while the 90–99  years age 
group was the only one that clustered in men, suggest-
ing for a specific metabolic pattern for nonagenarian 
male subjects [68]. In addition, a significant interaction 
between age and sex was shown by Lawton and co-work-
ers: in particular, urea and α-tocopherol significantly 
increased with the age more in females than in males, 
while the age-dependent increase in kynurenine and the 
age-dependent decrease in glycerol-3-phosphate were 
more pronounced in males [55]. Rist and colleagues 

observed that phosphate and methionine have generally 
higher plasma concentrations in younger men. In con-
trast, ornithine, tyrosine, isocitric acid, glucuronic acid, 
hippuric acid, choline, and pseudouridine have higher 
concentrations in older men. For women, the associa-
tions of the metabolite profiles with the age were less 
strong than for men. Ornithine, phenylalanine, glucose, 
mesoerythritol, glucuronic acid, hippuric acid, choline, 
and pseudouridine were higher in the plasma of older 
women, whereas isoleucine, tryptophan, aspartic acid, 
and malic acid tended to be higher in younger women 
[56]. Vignoli and colleagues reported greater age-related 
plasma differences in males than in females: histidine 
and acetate showed statistically higher concentrations in 
young males, while alanine and creatine were increased 
in old males. In females, glucose, glutamine, glycine, 
tyrosine, and creatine were statistically higher in old 
females [63].

With regard to the serum, Dunn et al. reported a signif-
icant interaction between sex and age for urate, glycerol, 
hexadecenoic acid, and caffeine [38]. The study by Saito 
et  al. on the serum metabolome of two age-stratified 
(young and old) Japanese population revealed metabo-
lites and metabolic pathways specifically associated with 
a single sex in both age ranges. In total, 158 and 130 
metabolites showed a statistically significant difference 
between males and females in the young and old popu-
lations, respectively. Specifically, 138 and 113 metabo-
lites were divergent in males in the young (25–35 years) 
and old (55–64 years) groups, respectively, while only 20 
and 17 metabolites were more abundant in the female 
young (25–35 years) and old (55–65 years) populations, 
respectively. Moreover, 35 metabolites in males and 41 
in females were increased in the young population when 
compared to the old, while 84 and 81 metabolites were 
more abundant in males and females, respectively, in the 
old than the young population [58].

Finally, in the analyses of the urinary metabolome, 
Rist and co-workers observed glutaric acid, 4-hydroxy-
mandelic acid, N-acetylaspartic acid, creatinine, and 
sedoheptulose being higher in younger men, whereas 
hippuric acid, citric acid, 2,5-furandicarboxylic acid, 
3-aminoisobutyric acid, and quinolinic acid showed 
higher concentrations in older men. On the other hand, 
glutaric acid, succinic acid, N-acetylaspartic acid, tiglyl-
glycine, uracil, 1,5-anhydro-d-sorbitol, sedoheptulose, 
and creatinine were higher in younger women. By con-
trast, formic acid, tartaric acid, 2-O-methylascorbic 
acid, 2,5-furandicarboxylic acid, and 4-hydroxyphenyl-
lactic acid were higher in older women [56]. Moreover, 
according to Slupsky and colleagues, alanine, trigonelline, 
carnitine, 3-hydroxy-isovalerate, and creatinine were sig-
nificantly different between the younger and older groups 
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both in the urine of men and women [60], while aspartic 
acid, oxoglutaric acid, malic acid, methylinosine, dimeth-
ylguanosine, aminosalicyluric acid, hydroxyanthranilic 
acid, 5-hydroxyindolacetic acid, threonic acid, and pyru-
vic acid showed a significant sex–age interaction in the 
analyses performed by Thevenot et al. [61].

Discussion
The metabolomes of serum, plasma, and urine contain 
a multitude of molecules that can be intrinsic or extrin-
sic factors, of which most may have clinical relevance 
as used as biomarkers. Thus, metabolomics is easily 
included in any experimental design to provide support 
for disease diagnosis, and verify the severity and eventu-
ally the efficacy of treatments with the aim of transferring 
the metabolomics signatures into the clinical care, espe-
cially in the perspective of applying approaches to per-
sonalized medicine [76–78].

Here, we decided not to take into account the studies 
predominantly based on lipidomics investigations. Origi-
nally, the lipidome was considered a subcategory of the 
metabolome, being referred to as “the full characteriza-
tion of lipid molecular species and their biological roles 
with respect to expression of proteins involved in lipid 
metabolism and function, including gene regulation” [79]. 
The huge biochemical complexity of lipids and the initial 
lack of analytical tools for their large-scale analysis have 
empowered the technologies behind lipid identification 
and quantification [79–82]. Thus, next to metabolomics, 
lipidomics science emerged as an additional disci-
pline, deserving an appropriate space and independent 
consideration.

Globally, this systematic review attempted at categoriz-
ing the abundance of many metabolites to one sex or the 
other, also considering possible variations related to the 
age of the analyzed individuals. As demonstrated by the 
critical selection of only a small number of articles, our 
work showed that sex is not still adequately considered in 
metabolomics-based investigations, despite the mount-
ing evidence of its clinical importance for diagnosis, ther-
apy, and outcome [83]. In particular, the low number of 
eligible manuscripts that consider the baseline metabo-
lome in healthy individuals, in combination with the high 
heterogeneity of their data owing to the different metab-
olomics platforms, statistical approach, and population 
size, have hindered any process of meta-analysis that was 
initially planned. Thus, we decided in the first instance 
to rely on the qualitative synthesis of the findings from 
each study. Nonetheless, the common tendency for each 
metabolite to be quantitatively more represented in one 
sex, according to  authors’ criteria, was considered. This 
allowed the semi-quantitative recognition of metabolites 

distribution across the sexes considering individuals 
within similar age ranges.

Thus, amongst the major sex-discriminatory metabo-
lites, creatine was commonly identified as more abun-
dant in females and creatinine as more abundant in male 
individuals, in all the biofluids analyzed and regardless 
of age. The amount of creatine and creatinine are often 
associated with the diet intake and the nutritional state, 
albeit creatine is also synthesized in  vivo in the liver 
[84]. Creatine is detectable in multiple tissues, despite 
its concentrations and distributions vary consistently. 
Skeletal muscle, heart, and spermatozoa show the high-
est levels of creatine; an intermediate pool of creatinine 
is found in the brain, brown adipose tissue, and intes-
tine, while low levels are tracked in lung, spleen, kidney, 
liver, white adipose tissue, and serum [84–86]. The lev-
els of free creatine in vertebrates depend on the creatine 
kinase enzyme, which catalyzes the reversible transfer of 
the phosphate group from ATP to the creatine. The flex-
ibility of creatine kinase in adapting its function accord-
ing to the physiological state of each tissue is enabled 
by the energy demand [86]. According to the mounting 
consideration in the field of biochemistry of the relevance 
of the creatine/creatine kinase system for energy metabo-
lism, sex differences lean toward an accumulation of cre-
atine in female individuals. Besides a probable increased 
endogenous synthesis [60] and a lower creatine loss in 
females [84], this sex pattern might be also associated 
with the increased levels of circulating creatine kinase in 
males [87–89], which could diminish the amount of free 
creatine, enriching the pool of phosphocreatine.

The first step of creatine synthesis takes place in the 
kidney requiring glycine, methionine, and arginine. The 
entire glycine molecule is metabolized for the synthesis 
of creatine but only the methyl group from methionine 
and the amidino group from arginine are consumed [84]. 
While the latter amino acids showed from our review a 
distribution toward the male sex, glycine burden is pre-
dominant in females in all the biofluids analyzed, possibly 
justifying the need for a prompt synthesis of creatine.

The creatine synthesized de novo in the liver, together 
with the dietary creatine absorbed by the intestine, is 
transported through the blood to the creatine-requiring 
tissues, such as the muscle that takes up to 94% of the 
total creatine, being not able to make it by synthesis. The 
muscle creatine is non-enzymatically transformed into 
creatinine at a virtually steady rate (∼2% of the total cre-
atine per day). Then, creatinine by diffusing out of the 
muscle cells is excreted by glomerular filtration into the 
urine [86]. Accordingly, we found a tendency of creati-
nine accumulation in biofluids from male individuals, 
including urine. Therefore, higher creatinine levels in 
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men are reasonable considering that they are typically 
endowed with increased muscle mass than women.

Moreover, a robust tendency of BCAA to be distrib-
uted in the biofluids of male subjects was evidenced. As 
for creatinine, the differences in the muscle metabolism, 
muscle size, and the higher dietary protein intake of men 
may easily justify this tendency as compared to women 
[63].

In the mitochondria, the free carnitine can be conjugated 
to acyl-CoA molecules to produce AC, whose synthesis is 
sustained by the metabolism of fatty acids, AA, and glucose. 
Hence, the concentrations of circulating AC are dependent 
on the dietary regimen and may reflect the contribution of 
specific organs [90]. The levels of AC in the metabolomes 
analyzed in this review did not show a sharp sex distribu-
tion, despite only few authors found some AC predomi-
nantly increased in men biofluids. This could be partially 
legitimated by higher food intake in men. In addition, since 
AC variations are markers of metabolic and mitochondrial 
impairment in inborn errors of metabolism (including fatty 
acid β-oxidation disorders and organic acidemias, among 
others) [70, 91], and are associated with increased risk of 
obesity, type-2 diabetes, and cardiovascular diseases [90, 
92, 93], individuals in a good healthy state may not show a 
significant sexual dimorphism in AC patterns.

Finally, the high heterogeneity of the organic com-
pounds identified by each author, especially in urine, did 
not allow to track specific sex patterns for the majority 
of the metabolites here reviewed. Notwithstanding, cit-
ric acid levels were more elevated in women, as already 
accredited in the literature [56, 94–96]. Given that also 
other Krebs cycle intermediates, namely α-ketoglutaric 
acid and fumaric acid, showed sex divergency being 
increased in women, one may conceive of general sex 
differences in the Krebs cycle route, although the reason 
behind this explanation remains largely speculative [56].

What is more, here is provided some evidence that 
sex can highly affect the metabolome of diverse biologi-
cal fluids in an age-dependent way, as already suggested 
for some serum or plasma biomarkers [97]. Indeed, from 
a critical analysis of our review work, the data here dis-
cussed present some variability in the metabolome of 
each biofluid analyzed, which could depend on the differ-
ent age ranges of the participants. Hence, the sex strati-
fication in every single class of age is highly advisable for 
the validation of reference values to increase their diag-
nostic and therapeutic appropriateness.

Moreover, we advise that different ethnicity, geographi-
cal localization, microbiome, and lifestyles such as the 
particular choice of foods or beverages, the smoking 
habit, and the use of hormonal therapies or other drugs 
are certainly able to differently influence the distribution 
of metabolites within both sexes. In fact, it is established 

that the serum metabolome of women is highly influ-
enced by the sex hormones, including the exogenous hor-
mones derived from oral contraceptives [15] or hormone 
replacement therapy, as well as the endogenous physi-
ological changes occurring during menopause [98, 99].

In conclusion, sex and age should be strongly consid-
ered in the planning and the execution of metabolomic 
investigations, being such differences among the individ-
uals the result of the influence of genome, transcriptome, 
and proteome. Thus, cumulative intrinsic and extrinsic 
factors affect the quantitative changes in the metabo-
lome, differentially influencing the individual response of 
every single subject. Therefore, all the possible variables 
influencing the human metabolome should be carefully 
considered in order to reach an authentic personalized 
medicine.

Perspectives and significance
The outreach inspired by this review relies on the impor-
tant consideration of sex patterns in all the aspects of 
research in health and disease, including  metabolomics. 
In this review, several manuscripts were screened, but 
only a small number responded to the need of investi-
gating the sex dichotomies in the metabolome of healthy 
subjects. Thus, we recognized that sex is not still ade-
quately considered in metabolomics-based investigations. 
Historically, the female sex has been under-represented 
in both human and animal experimentations, being con-
sidered a confounding variable [83, 100]. This outlook can 
draw misleading evidences that are not equally applicable 
to both sexes. Accordingly, the same inaccurate interpre-
tation of the results could follow when male- or female-
dominant, and mixed-sex data are analyzed, giving rise 
to false positives and negatives accounting for one or the 
other sex, or masking existing differences [39].

Instead, nowadays, the differences between males and 
females undergo magnification, in order to understand 
the bases of sex dissimilarities [1]. This gains extreme 
power when healthy cohorts are analyzed, aiming at dis-
secting the differences in the metabolome at the baseline, 
and consequently acting on the bases of such considera-
tions in the medical- or disease-related contexts. Thus, 
sex consideration should be encouraged in the phases of 
research planning and actuation, designing studies equally 
representing both sexes as subjects and eventually per-
forming omics investigations in mixed-sex, and male- and 
female-separated cohorts [39]. The evidences reviewed 
in this manuscript do not allow drawing general and spe-
cific conclusions to be extended to the whole population. 
Nonetheless, strong indications were given on the sex-pat-
tern recognition of several metabolites in men or women, 
which can help outlining the bases of future research.
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