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Abstract 

Biological processes involving environmental and genetic factors drive the interplay between age- and sex-regulat‑
ing lipid profile. The relation between variations in the LPA gene with increasing the risk of coronary heart disease 
is dependent on population differences, sex, and age. The present study tried to do a gene candidate association 
analysis in people with myocardial infarction (MI) in a 22 year cohort family-based longitudinal cohort study, Tehran 
Cardiometabolic Genetic Study (TCGS). After adjusting p value by the FDR method, only the association of rs6415084 
with the MI probability and the age-of-CHD-onset was significant in males in their middle age (p < 0.005). Surprisingly, 
a lack of association was observed for the rest of the markers (16 SNPs). These results revealed the moderator effects 
of age and sex on the association between the genetic variants (SNPs) of LPA and heart disease risk. Our observations 
may provide new insights into the biology that underlies lipid profile with age or the sexual dimorphism of Lp(a) 
metabolism. Finally, Lp(a) appears to be an independent risk factor; however, the role of sex and ethnicity is important.

Keywords:  TCGS, Lipoprotein (a), Lp(a), LPA locus, Single nucleotide polymorphism, Myocardial infarction (MI), Age-
of-onset, Sex, Age

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Elevated lipoprotein (a) is associated with incidence 
and severity increasing of cardiovascular diseases 
[1, 2]. In the Chinese Han population, the associa-
tion of five SNPs (rs1367211, rs3127596, rs9347438, 
rs6415085, and rs9364559) in the LPA gene with the 
development of coronary artery disease (CAD) were 

evaluated and also rs10455872 in predicting the risk 
of CHD events in statin therapy plays a significant 
role [3, 4]. Among these variants, rs6415085 was also 
associated with the increased LPA  expression level 
and coronary artery disease (CAD) [5]. Rs3798220 
and rs10455872 were associated with Lp(a) concen-
tration and CAD prevalence [6, 7]. In assessing the 
prevalence of rs3798220 and rs10455872 polymor-
phisms of LPA gene in the subpopulation of patients 
with symptomatic and asymptomatic carotid stenosis, 
only a significant association was observed between 
rs3798220 polymorphism and carotid artery stenosis 
incidence. Contrastingly, no association was detected 
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for rs3798220 and rs10455872 and atherogenic stroke 
[8]. A study in a large sample of Brazilian patients con-
firmed the association of rs10455872 with CAD devel-
opment, while it showed a lack of association of the 
rs3798220 with this disease [9]. Heinz Nixdorf Recall’s 
study provided evidence for the association of LPA 
rs10455872 with higher Lp(a) and Coronary artery 
calcification (CAC), a well-proven marker for coro-
nary artery disease and a risk factor for cardiovascular 
events. [10].

However, the investigation of tertiles Lipoprotein (a) 
concentration, rs10455872, and rs3798220 with all-
cause mortality and cardiovascular mortality with the 
severity of disease in a large-scale study showed that 
lipoprotein (a) concentrations and the genetic variants 
have no associations with mortality in patients with 
prevalent coronary heart disease. The results showed 
that these variables are not useful risk factors to pre-
dict progression to death after coronary heart disease is 
established [11].

The Lv et al. study did not display any significant evi-
dence of four SNPs’ associations (rs2048327, rs3127599, 
rs7767084, and rs10755578) SLC22A3-LPAL2-LPA gene 
cluster with CAD in a large Chinese Han sample [12].

Lack of association between lipoprotein (a) genetic 
variants (rs6415084 and rs3798220) and subsequent 
cardiovascular events in Chinese Han patients with 
coronary artery disease after the percutaneous coro-
nary intervention has also been reported [13].

To resolve ambiguity and investigate the between-
population differences in Lp(a) levels, we refer to 
the Dumitrescu et  al. study, which genotyped 19 
LP(A) tag SNPs in 7159 participants from the Third 
National Health and Nutrition Examination Sur-
vey (NHANES III). Notably, there were more signifi-
cant associations between Lp(a) and LP(A) SNPs in 
non-Hispanic blacks than non-Hispanic whites and 
Mexican Americans. Moreover, nearly, half of these 
associations were exclusive to non-Hispanic blacks 
[14]. LPA SNPs’ prevalence and association with the 
size of apolipoprotein(a) isoforms, Lp(a), and OxPL-
apoB levels are highly variable and ethnicity-specific. 
LPA SNP rs3798220 was most prevalent in Hispan-
ics (42.38%), rs10455872 in whites (14.27%), and 
rs9457951 in blacks (32.92%). The correlation of each 
of these SNPs with the major apolipoprotein(a) iso-
form size was highly variable and in different direc-
tions among ethnic groups [15].

The current case–control study examines the asso-
ciation between 17 observed LPA polymorphisms with 
myocardial infarction (MI) risk across the Tehran Car-
diometabolic Genetic Study (TCGS) participants. Our 

analysis considered the effect of age and sex in the pro-
cess of evaluating this relationship.

Material and methods
In the present case–control study, 783 unrelated individ-
uals with MII were selected and compared with the same 
number of controls. These individuals were assigned 
from the Tehran Cardiometabolic Genetic Study (TCGS), 
which is a large-scale family-based longitudinal cohort 
study [16] that is a subpopulation of the Tehran Lipid and 
Glucose Study (TLGS) [17]. TLGS is and community-
based cohort study on fifteen thousand people launched 
in 1999 in the 13th district of Tehran. The first survey of 
the TLGS was initiated from 1999 to 2001 on 15,005 indi-
viduals aged 3 years, and subjects were genotyped and 
followed up to identify recently developed diseases every 
3 years. The research council of the Endocrine Research 
Center of the Shahid Beheshti University of Medical Sci-
ences approved the study.

At each survey of TLGS, participants signed a consent 
form. A standardized questionnaire collected informa-
tion for age, sex, and history of using medication for 
diabetes, hypertension, and lipid disorders. Anthro-
pometric measurements, including weight (kg), height 
(cm), and waist circumference (cm) recorded using 
standard protocols. Body mass index (BMI) is calcu-
lated as weight in kilograms divided by height in square 
meters. Systolic blood pressure (SBP), diastolic blood 
pressure (DBP) were measured as described previously 
[18]. A blood sample draws after 12–14 h overnight 
fasting. Samples were centrifuged within 30–45  min 
of collection, and the sera were used for biochemical 
measurements. Serum glucose, TC, TG, and HDL-C 
were measured using commercial kits using the enzy-
matic colorimetric method (Pars Azmoon, Tehran, 
Iran). Coefficients of variation (CV) for total cholesterol, 
HDL_C, and triglyceride measurements were below 5%. 
LDL_C concentrations were calculated using a modified 
Friedewald equation. Fasting plasma glucose (FPG), tri-
glycerides (TG), total cholesterol (TC), and high-density 
lipoprotein cholesterol (HDL_C) levels were measured 
by Pars AzmunCo (Iran); also, coefficients of varia-
tion (CV) for total cholesterol, HDL_C and triglyceride 
measurements were below 5%. Non-HDL_C calculate 
by subtracting HDL_C from TC. LDL_C concentrations 
were computed using a modified Friedewald’s equation 
[19].

In this study, to evaluate the associations between these 
factors and genetic markers, the obtained values in the 
last measurement phase before the MI of each case (pre-
MI phase) were considered.
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Genetic analysis
Genomic samples were extracted from the buffy coat 
using the standard Proteinase K, the salting-out method. 
DNA samples were genotyped with HumanOmniEx-
press-24-v1-0 bead chips (containing 649,932 SNP loci 
with an average mean distance of 4  kb) at the deCODE 
genetics company (Iceland) according to the manu-
facturer’s specifications (Illumina Inc., San Diego, 
CA, USA). The PLINK program (V 1.07) [20] and 
R statistic (V 3.2) performed quality control proce-
dures. The genotype information for 17 selected mark-
ers in LPA gene (rs7449650, rs11751605, rs7761293, 
rs6415084, rs9365171, rs7770628, rs6926458, rs6930542, 
rs13202636, rs7761377, rs10945682, rs7756317, 
rs1321196, rs1367211, rs9346833, rs783149, and 
rs1084651) was extracted for the studied population after 
performing quality control procedures.

The participants diagnosed with coronary heart dis-
ease until 2017 were selected as the case group (CHD) 
for the current study during the follow-up time [21]. We 
selected an unrelated participant of the same sex and 
age for each case by in-house python programming to 
control selection (non-CHD). The control participants 
also had no history of cardiovascular disease, diabetes 
mellitus, or metabolic syndrome. All of the controls and 
cases are unrelated, and they were not belong to the 
same big family since nearly all of these participants live 
in a specific region of the Tehran capital city, so they 
experienced the same environmental and pollution con-
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Statistical analysis
Kolmogorov–Smirnov tests were used to determine 
deviations from the normal distribution for all continu-
ous variables, and 0.05 was regarded as a significant level 
for this test. After that, continuous variables with normal 
distribution were expressed as mean ± standard deviation 
(SD) and compared two groups using the student’s t-test. 
Deviation from Hardy–Weinberg equilibrium (HWE) 
and allele frequency were checked using PLINK (version 
1.9) [20]. Linkage disequilibrium (LD) heatmap was made 
by the LDheatmap package [22]in the R software.

By python programming, Fisher exact test analysis 
for comparing the allele frequency and Cox analysis for 
assessing the age of MI of participants carrying out the 
different alleles was done. Four different age classes, early 
(20–45  years), middle (45–65  years), late (65–80  years), 
and (80 < years), and two different sexes for all 17 SNPs 
were investigated by considering four genetics models 
(Additive, Dominant, Recessive, and Overdominant). The 

adjusted odds ratio (OR) was calculated, and the FDR 
adjusted p  value (or q  value) of 0.05 was applied [23]. 
The statistical analyses were performed with python pro-
gramming and SPSS 24.0 (SPSS, Chicago, IL, USA).

Results
Among TCGS study participants, 783 individuals (459 
Men and 323 Women; 21 to 92  years old) had expe-
rienced MI (men: 62.7 ±  11.1  years; women: 62.2  ± 
10.5  years). The descriptive table of demographics and 
biochemical characteristics of the case and control 
groups is presented in Table  1. Table  2 describes differ-
ent age classes. The genomic (intron/exome) structure of 
the LPA locus and location of the investigated Rs are also 
presented in Fig. 1. Moreover, the frequencies of the dif-
ferent alleles of the SNPs are shown in Table 3 for males 
and females.

Table  4 shows the results of univariate analysis of the 
association between MI incidence with risk factors, 
including the allele frequencies of the variantrs6415084 
in the OverDominant genetical model, sex, and age.

FDR adjusted p value (or q value) of 0.05 level of statis-
tical significance put aside 16 SNPs. The only rs6415084 
in the overdominant genetic model showed significant 
association with the MI probability. The statistical results 
of this association are reported in Table 5.

Cox analysis results revealed that the same marker also 
showed a statistically significant association with age-of-
CHD-onset. Our results showed an association between 
MI incidence and the rs6415084 variant in the overdomi-
nant genetic model. In addition, as presented in Table 6, 
there is a strong association between the frequency of 
different alleles of rs6415084 with age-of-CHD-onset and 
MI incidence in middle-aged men. Thus, this association 
depends on the age and sex of cases.

rs6415084 did not show any significant linkage disequi-
librium (LD) with other studied markers. Figure  2 and 
Additional file 1: Table S1.

To evaluate the associations between this genetic 
marker and other risk factors, univariate analysis results 
of the association between allele frequencies of the 
variant rs6415084 in OverDominant genetical model 
with risk factors including BMI, Cholesterol, TG, HDL, 
NHDL, and LDL. The parameters were obtained from 
the Pre-MI phase of each case.

Discussion
The influence of age on Lp(a) concentrations is contro-
versial. In the other studies, both older age and female 
sex are independent significant predictors of higher 
plasma Lp(a) [24, 25].
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Base on our results, even the rs6415084 variants in 
the males that showed association with the largest age 
category did not show association with the early age-
class variables. Thus, it is not only a sex-dependent but 
also an age-dependent association. The frequencies of 16 
variants (rs7449650, rs11751605, rs7761293, rs9365171, 
rs7770628, rs6926458, rs6930542, rs13202636, 
rs7761377, rs10945682, rs7756317, rs1321196, 

rs1367211, rs9346833, rs783149, and rs1084651) did not 
associate with any of examined age–sex classes. These 
results confirmed the inter-population difference in 
genetics markers in agreement with our previous findings 
on the other genes variation on the TCGS data.

The importance of rs10455872 and its association 
with Lp(a) level reported on pharmacogenetics, CAD 
development in Brazilian patients, familial hypercho-
lesterolemia studies, and Coronary artery calcification 
(CAC) [4, 6, 7, 9, 10]. In addition, the association of LPA 
polymorphism and carotid artery stenosis incidence, 
a significant association was observed for rs3798220. 
Contrastingly, no associations were detected for 
rs3798220 and rs10455872 and atherogenic stroke [8], 
carotid artery stenosis incidence with rs10455872, 
and CAD in Brazilian patients with rs3798220 [8, 9]. 
In addition, in a large-scale study, rs10455872 and 
rs3798220, have shown no associations with mortality 
in patients with prevalent coronary heart disease [11]. 

Table 1  Baseline demographic and biochemical characteristics of the population

a Characteristics based on Mean ± SE
b P value of t student or chi-square test between case and control groups, SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; LDL, low-
density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol. Indicates statistical significance (P < 0.05)

Unrelated individuals

Characteristics Male (n = 918) Female (n = 646) All (n = 1564)

Non-CHD (n =) CHD (n =) P valueb Non-CHD (n =) CHD (n =) P valueb Non-CHD (n =) CHD (n =) P valueb

Age (years) 57 ± 11 57 ± 11 1 57 ± 9 57 ± 9 1 57 ± 10 57 ± 10 1

SBP (mm Hg) 122 ± 27 128 ± 30 0.001 123 ± 27 126 ± 30 0.26 122 ± 27 127 ± 30 0.001

DBP (mm Hg) 76 ± 15 79 ± 17 0.013 77 ± 15 79 ± 18 0.18 77 ± 15 79 ± 17 0.006

BMI (kg/m2) 25 ± 7 27 ± 6 0.002 27 ± 5 27 ± 6 0.86 26 ± 6 27 ± 6 0.01

Cholesterol (mg/dl) 220 ± 46 232 ± 48  < 0.001 218 ± 40 234 ± 49  < 0.001 219 ± 44 233 ± 49  < 0.001

Triglyceride (mg/dl) 193 ± 130 228 ± 140 0.001 168 ± 91 224 ± 147  < 0.001 183 ± 123 226 ± 156  < 0.001

LDL (mg/dl) 141 ± 35 150 ± 39 0.001 138 ± 34 151 ± 41 0.001 140 ± 35 150 ± 39  < 0.001

HDL (mg/dl) 42 ± 11 38 ± 9  < 0.001 43 ± 10 40 ± 11  < 0.001 42 ± 11 39 ± 10  < 0.001

Table 2  Different age class range and case and control 
frequencies in each class

Age categories Years old range Male = 919 Female = 646

Case Control Case Control

Early 20–45 29 29 15 15

Middle 45–65 231 231 180 180

Late 65–80 175 175 120 120

Old  > 80 25 24 8 8

Fig. 1  Genomic(intron/exome) structure of the LPA locus. Positions of the investigated Rs in this study are also marked on this locus
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Moreover, a lack of associations between rs2048327, 
rs3127599, rs7767084, and rs10755578 with CAD in 
Chinese Han samples has also been reported [12, 13]. 
Besides, the Dumitrescu et al.’s study, which genotyped 
19 LPA tag SNPs in 7,159 participants from the Third 
National Health and Nutrition Examination Survey 
(NHANES III), showed significant associations between 
Lp(a) concentration and LPA SNPs in non-Hispanic 
blacks than non-Hispanic whites and Mexican Ameri-
cans. [14]. Interestingly, a lack of association between 
rs6415084 and subsequent cardiovascular events after 
the percutaneous coronary intervention has also been 
reported [13] in Chinese Han patients with coronary 
artery disease.

Genetic variation-based studies revealed the signifi-
cant associations of variants in or near the LPA gene, 
with CHD risk incidence. Moreover, numerous case–
control studies have confirmed that hyper-Lp(a) is a 
risk factor for premature cardiovascular disease [1, 
2, 26]. Another study has shown that overweight and 

obesity are associated with significantly higher plasma 
Lp(a) [24]. Figure  3 shows the effect of the polymor-
phism on the plasma level of other risk factors such as 
obesity, LDL, HDL, etc. There was no statistically sig-
nificant association between this polymorphism and 
these factors. This result proposes an independent rela-
tionship between the LP(a) factor and MI. This result 
is in agreement with the Paré et al. they also concluded 
that the LPA polymorphism association is independent 
of established MI risk factors, including diabetes mel-
litus, smoking, high blood pressure, and apolipoprotein 
B and A ratio. [27].

However, previous studies report the association 
of this polymorphism with the LP(a) level [28–30]; 
unfortunately, the Lp(a) level was not measured in this 
study.

These reports show a big controversy between 
the results of different studies and the importance 
of investigation of between-population differences 
in LPA genetic markers; in the same way, our results 

Table 4  Univariate analysis results of the association between MI incidence with risk factors including the allele frequencies of the 
variant rs6415084 in OverDominant genetical model, sex, and age

Variables in the Equation

B SE Wald df Sig Exp(B)

Sex − 0.066 0.073 0.83 1 0.362 0.936

AgeClass_In_selexted_phase − 1.242 0.072 297.095 1 0 0.289

rs6415084_OverDominant 0.197 0.072 7.582 1 0.006 1.218

Table 5  Fisher_exact statistical analysis of the association of the allele frequencies of the variant rs6415084 in OverDominant genetical 
model with a statistically significant impact on MI incidence

AgeClass HomoRef Het HomoAlt p_value Odds_Ratio (OR)

Female Early 6 14 10 1.000 1

Middle 90 177 93 1.000 1.02248

Late 48 119 73 0.606 1.18149

Old 9 5 2 0.282 7

Male Early 12 25 21 1.000 0.86878

Middle 107 209 146 0.000 2.13976

Late 70 169 111 0.134 1.41073

Old 10 21 17 0.244 0.42308
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on the TCGS cohort also show specific association 
results; however, we found a sex and age dependency 
in the results.

Perspectives and significance
This study emphasizes the population, age, and sex 
dependency of the associations, and none of the 17 
SNPs showed significant differences between the case 
and control groups independent of age and sex.

Conclusion
However, older patients are at an increased risk due to 
the human lifespan’s natural limits. Still, our results show 
the genetic variation on the incidence of MI and the age-
of-CHD-Onset. In addition, the population, age, and sex 
dependency of the association between the LPA varia-
tions and heart disease risk confirm that finding the effec-
tive variation in precision medicine is required to evaluate 
these factors in well-established cohorts. Thus, we pro-
pose the effects of these variants not only have differences 
among ethnic groups but also are sex and age-dependent.

Fig. 2  Linkage disequilibrium (LD) heatmap plot for all investigated SNPs in this study. This figure was produced by LDheatmap package in R 
software
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