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Abstract 

Background:  Sex differences in COVID-19 are increasingly recognized globally. Although infection rates are similar 
between the sexes, men have more severe illness. The mechanism underlying these sex differences is unknown, but 
a differential immune response to COVID-19 has been implicated in several recent studies. However, how sex differ-
ences shape the immune response to COVID-19 remains understudied.

Methods:  We collected demographics and blood samples from over 600 hospitalized patients diagnosed with 
COVID-19 from May 24th 2020 to April 28th, 2021. These patients were divided into two cohorts: Cohort 1 was further 
classified into three groups based on the severity of the disease (mild, moderate and severe); Cohort 2 patients were 
longitudinally followed at three time points from hospital admission (1 day, 7 days, and 14 days). MultiPlex and con-
ventional ELISA were used to examine inflammatory mediator levels in the plasma in both cohorts. Flow cytometry 
was conducted to examine leukocyte responses in Cohort 2.

Results:  There were more COVID+ males in the total cohort, and the mortality rate was higher in males vs. females. 
More male patients were seen in most age groups (in 10-year increments), and in most ethnic groups. Males with 
severe disease had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) than females; levels of 
IL-8, GRO, sCD40L, MIP-1β, MCP-1 were also significantly higher in severe vs. mild or control patients in males but not 
in females. Females had significantly higher anti-inflammatory cytokine IL-10 levels at 14 days compared to males, and 
the level of IL-10 significantly increased in moderate vs. the control group in females but not in males. At 7 days and 
14 days, males had significantly more circulating neutrophils and monocytes than females; however, B cell numbers 
were significantly higher in females vs. males.

Conclusion:  Sex differences exist in hospitalized patients with acute COVID-19 respiratory tract infection. Exacer-
bated inflammatory responses were seen in male vs. female patients, even when matched for disease severity. Males 
appear to have a more robust innate immune response, and females mount a stronger adaptive immune response to 
COVID-19 respiratory tract infection.
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Background
Coronavirus Disease 2019 (COVID-19) caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has been a worldwide pandemic, with over 32 
million people in the US infected as of May 2021 [1]. 
About 20% of those infected with COVID-19 require 
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hospitalization, of which 5–10% require intensive care 
therapy. The COVID-19 virus is transmitted through res-
piratory droplets from coughing and sneezing, and enters 
the nasal system to replicate and propagate. There has 
been a lack of efficacious therapies for the virus, and thus 
the immune system remains the best defense [2]. Once 
the human body is infected, immune cells are mobilized, 
and in many cases “cytokine storm” occurs in an effort 
to combat the virus [3]. It is increasingly recognized that 
COVID-19 disproportionately affects men compared to 
women [4, 5]. Preliminary studies have suggested that 
while the prevalence of infection is the same in men and 
women, male patients are more likely to be hospitalized, 
have a more severe course of disease and higher mortality 
[6]. Sex differences are well known in innate and adaptive 
immunity with resultant sex-specific responses to vac-
cines and infections [7], which has been postulated as an 
important reason for the differential response across sex 
to COVID-19.

To better understand the profiles of sex differences in 
immune responses to COVID-19, in this study we exam-
ined the plasma inflammatory mediators and peripheral 
blood immune cells from hospitalized patients (both 
sexes) with COVID-19, and at multiple time points. We 
quantified immune cell mobilization not only based on 
the disease severity, but also longitudinally.

Methods
Sampling and cohorts
Samples were collected from consented healthy donors 
and hospitalized patients with acute COVID-19 respira-
tory tract infection (at the Memorial Hermann Hospital 
System) from May 24th 2020 to April 28th, 2021 (see 
Additional file  1 for the Inclusion/Exclusion Criteria). 
The average age of these patients was 53.49 ± 16.89, 
with the majority being between 41 and 65 years old 
(age ranged from 19 to 101). Males constituted 60.0% 
of the sample (N = 350 male and 276 females). Ameri-
can Indians or Alaska Natives constituted 0.16%, Asians 
3.14%, African Americans 21.9%, Hispanics 4.4%, Whites 
62.9%, and unable to determine (UTD) 7.5% of patients. 
All collected samples were divided into two cohorts as 
a smaller subset of patients were hospitalized for over 2 
weeks. Cohort 1 patients were graded for severity based 
on respiratory symptoms and the need for supplemental 
oxygen therapy according to the classification from the 
NIH COVID-19 spectrum [8] and the therapeutic man-
agement of COVID-19 [9]: mild, nasal cannula less than 
5 L and less than 5 days in the hospital; moderate, nasal 
cannula more than 5 L or high-flow oxygen therapy and 
more than 5 days in the hospital; severe, ventilator or 
died because of COVID-19. Blood samples from Cohort 
1 patients were collected within 3–4 days of hospital 

admission, and Cohort 2 samples were collected on day 
1, day 7, and day 14 from admission. Briefly, the blood 
sample (5 mL) was obtained by venipuncture or from an 
existing line cleared of I.V. solution (venipuncture, arte-
rial or venous recorded) in 6-mL K2 EDTA Vacutainer 
tubes (BD, Franklin Lakes, NJ, USA). Samples were pro-
cessed within one hour of collection. Blood cells were 
removed by centrifugation (4 °C, 800×g for 10 min), and 
the platelet-poor plasma collected after another centrif-
ugation (4 °C, 10,000×g for 10 min) and stored at − 80 
°C until all samples were ready for analysis. All assess-
ments were performed blinded to the subject’s history of 
COVID-19. The study was approved by the Institutional 
Review Board (IRB) of University of Texas Health Science 
Center at Houston (HSC-MS-17-0452).

Multiplex and conventional ELISA
Multiplex enzyme-linked immunosorbent assays were 
performed on plasma of Cohort 1 for inflammatory 
mediators including cytokines and chemokines using 
a commercially available panel (MILLIPLEX® Human 
Cytokine/Chemokine/Growth Factor Panel A—Immu-
nology Multiplex Assay HCYTA-60K-08, Millipore 
Sigma) by following the manufacturer’s instructions. 
The inflammatory mediators in the panel of the kit are: 
sCD40L, EGF, Eotaxin, FGF-2, Flt-3 ligand, Fractalkine, 
G-CSF, GM-CSF, GROα, IFNα2, IFNγ, IL-1α, IL-1β, IL-
1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, 
IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IL-17E/
IL-25, IL-17F, IL-18, IL-22, IL-27, IP-10, MCP-1, MCP-3, 
M-CSF, MDC (CCL22), MIG, MIP-1α, MIP-1β, PDGF-
AA, PDGF-AB/BB, RANTES, TGFα, TNFα, TNFβ, and 
VEGF-A (see Additional file 2 for details).

Conventional ELISA was used to examine IL-6, 
IL-8, IL-10, TNF-α, and TGF-β1 in plasma of Cohort 2 
patients at three time points (1 day, 7 days, 14 days) by 
using human ELISA LEGEND MAX (IL-6_430507, 
IL-8_431507, IL-10_430607, TNF-α_430207, and TGF-
β1_436707; BioLegend). Signals were read at 450 nm in 
EnSpire™ Multimode Plate Reader (PerkinElmer, Inc.).

Flow cytometry
Flow cytometry assay was conducted on the blood 
samples of Cohort 2. Briefly, each human blood ali-
quot (100 µL) in autoclaved Eppendorf tube was added 
pre-chilled HBSS containing 2% FBS (1 mL), and then 
followed by centrifuging at 500×g for 5 min and at 4 
°C. The pellets (cells) were re-suspended by adding 
another pre-chilled HBSS containing 2% FBS (200 µL) 
and blocked in human Fc Block (422302, Biosciences) 
(1 µL/sample). For live/dead cell discrimination, a fixa-
ble viability dye lock, carboxylic acid succinimidyl ester 
was used (CASE-AF350, Invitrogen). Next, the cells 
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were stained by adding the antibody mix specific for 
each cell population (Tables 1, 2 and 3) and incubated 
for 30 min at 4 °C on a rotator in the dark and at 4 °C. 
Isotype control antibodies were used in parallel with 
the cell specific antibodies to remove the nonspecific 
signals in each panel. After antibody incubation, the 
samples were suspended in pre-chilled HBSS contain-
ing 2% FBS (1 mL) and centrifuged at 500×g for 5 min 
and at 4 °C. The pellets (cells) were suspended again 
and fixed in ice-cold 1% PFA (200 µL) for 10 min and in 
the dark. Following another wash, red blood cells were 
lysed by adding 2 mL of 1× RBC Lysis buffer (420302, 
BioLegend) at room temperature (Thermo Fisher Scien-
tific, Waltham, MA, USA) for 10 min. The samples were 
washed again and centrifuged at 500×g for 5 min and at 
4 °C, and then re-suspended in pre-chilled HBSS con-
taining 2% FBS (300 µL), and immediately assayed in a 
flow cytometer (CytoFLEX b75408, Beckman Coulter). 
Data were analyzed by using FlowJo_v10.7.2 (Tree Star 
Inc.).

Statistical analyses
Cytokine and immune cell data were presented as the 
mean ± standard error of the mean (SEM), and compar-
isons were made with the severity of COVID-19 and sex 
using two-way ANOVA plus Sidak’s post hoc correc-
tion. Prevalence of other organ involvement or comor-
bidities, in addition to pneumonia, were presented as 
% of patients with 95% confidence intervals according 
to the severity of COVID-19, time point since admis-
sion, and sex. Statistical differences between the sexes 
were determined using Chi-square tests and any trends 
across the levels of severity or follow-up time points 
were assessed using the extended Mantel–Haenszel 
Chi-square for linear trend. All statistical data analy-
sis was performed using Graph-Pad PRISM Version 9.0 
(GraphPad Software, CA, USA) and statistically signifi-
cance levels were set at p < 0.05 for 2-tailed tests.

Results
Male sex is a risk factor for acute COVID‑19 respiratory 
tract infection
A sex imbalance in the hospitalization and mortality 
from COVID-19 patients has been reported worldwide 
[10–14]. We examined the sex (self-identified) distribu-
tion in our hospitalized patients that were graded into 
three groups (mild, moderate and severe) [8]. There were 
more males than females in the mild and severe group 
(Fig.  1A, B). We also analyzed the male/female ratio by 
age in 10-year increments. In most age groups, the ratios 
were above one, indicating more male vs. female patients 
(Fig. 1C). Interestingly, when analyzed based on ethnicity, 
the male/female ratios were above one in almost all eth-
nicities except for African Americans (Fig. 1D). The over-
all mortality rate was higher in male vs. female patients 
(Fig. 1E).

Inflammatory mediator levels in plasma after acute 
COVID‑19 respiratory tract infection
Previous studies suggested that the severity of COVID-
19 is associated with an increased level of inflammatory 
mediators including cytokines and chemokines [15, 16]. 
Here, we examined 48 mediators (Additional file  2) in 
Cohort 1 patients, among which 38 were detectable 
by our Multiplex ELISA assay. We presented the data 

Table 1  Antibody panel for neutrophil flow

Antibody Source Catalog no.

BUV395 mouse anti-human CD45 
antibody

BD Biosciences 563792

BV421 mouse anti-human CD11b 
antibody

BD Biosciences 562632

6g8-AF568 anti-DEspR antibody LakePharma N/A

LIVE/DEAD™ fixable aqua dead cell stain 
kit

Thermo Fisher L-34966

Table 2  Antibody panel for lymphocyte flow

Antibody Source Catalog no.

BUV395 mouse anti-human CD45 
antibody

BD Biosciences 563792

BV421 mouse anti-human CD11b 
antibody

BD Biosciences 562632

Brilliant Violet 421™ anti-human CD3 
antibody

BioLegend 317344

PE anti-human CD19 antibody BioLegend 392506

LIVE/DEAD™ fixable aqua dead cell stain 
kit

Thermo Fisher L-34966

Table 3  Antibody panel for monocyte flow

Antibody Source Catalog no.

BUV395 mouse anti-human CD45 
antibody

BD Biosciences 563792

Brilliant Violet 785™ anti-human CD16 
antibody

BioLegend 302046

LIVE/DEAD™ fixable aqua dead cell stain 
kit

Thermo Fisher L-34966

APC anti-human CD14 antibody BioLegend 367118

PE anti-human CD24 antibody BioLegend 311106
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of TNF-α, IL-6, IL-8, Eotaxin, IL-10, MCP-3, MDC 
(CCL22), GROα, IP-10, sCD40L, MIP-1β, and Frac-
talkine only, as differences between groups were found. 
However, data of other mediators (EGF, FGF-2, Flt-3 
ligand, G-CSF, GM-CSF, IFNα2, IFNγ, IL-1α, IL-1β, IL-
1ra, IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-12 (p40), IL-12 
(p70), IL-13, IL-15, IL-17A, IL-17E/IL-25, IL-17F, IL-18, 
IL-22, IL-27, MCP-1, M-CSF, MIG, MIP-1α, PDGF-AA, 

PDGF-AB/BB, RANTES, TGFα, TNFβ, and VEGF-A) 
showed no group differences (data not shown). Over-
all (no disease severity grouping; Fig.  2A–J), IL-6 lev-
els were significantly higher in men vs. women in the 
COVID groups (Fig.  2B). When compared with con-
trols, Eotaxin in men, and MCP-3 in women were sig-
nificantly lower (Fig.  2C, E), and IL-10 in women was 
higher (Fig. 2D), a control vs. COVID-19 difference that 

Fig. 1  Male sex is a risk factor for acute COVID-19 respiratory tract infection. A Age distribution of COVID-19 patients. B Male and female patients 
based on clinical classification of severity of COVID-19. C Male-to-female ratios of COVID-19 cases in 10 years of age increments. D Male-to-female 
ratios of COVID-19 cases based on ethnicity. E Mortality rate in males vs. females
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was not seen in the counterpart sex, respectively. No 
sex differences were found in levels of MDC (CCL22), 
GROα, IP-10, and sCD40L, although males and females 
exhibited synchronous changes compared to controls 
(Fig. 2F–I). For samples from Cohort 2 patients, three 
pro- (IL-6, IL-8, TNF-α) and three anti-inflammatory 
mediators (IL-10, TGF-β1, CD200) were assayed by 
conventional ELISA. Sex differences were only seen in 
IL-10 levels, which were significantly higher in females 
vs. males at 14 days (Fig.  2J). Together with the data 
from the cohort 1 patients (Fig. 2D), this suggests that 
a more robust anti-inflammatory response was seen in 
female vs. male COVID-19 patients.

Sex differences in the levels of inflammatory markers are 
dependent on the severity of COVID‑19 illness
The symptoms of COVID-19 are variable, ranging from 
mild fever to severe illness and intensive care unit (ICU) 
admission. The severity of the disease may be responsi-
ble for the cytokine profiles. We examined if the sex dif-
ferences seen in the above overall data (Fig. 2) remained 

in patients with different disease severity (mild, moder-
ate and severe). Interestingly, we found that the most 
dramatic sex differences were seen in the severe groups, 
e.g., males in the severe group had significantly higher 
levels of IL-6, IL-8, and MCP-1 than females (Fig. 3B, C, 
L), a sex difference not seen in mild or moderate group. 
Males with severe disease also had significantly higher 
levels of GROα, sCD40L, and MIP-1β than control, mild, 
or moderate male groups, which was not seen in females 
(Fig.  3G, I, J). Of note, compared to controls, the anti-
inflammatory cytokine, IL-10, significantly increased 
in females with moderate and severe disease, but was 
not significantly elevated until the severe stage in males 
(Fig.  3E). For TNF-α, Eotaxin, MDC (CCL22), IP-10, 
and Fractalkine, the data revealed no sex differences. 
Taken together, male COVID-19 patients with severe ill-
ness have an exacerbated immune response compared to 
females with severe disease.

Fig. 2  Levels of inflammatory mediators in control vs. COVID-19 plasma samples. A–I Levels of TNF-α, IL-6, Eotaxin, IL-10, MCP-3, MDC (CCL22), 
GROα, IP-10, and sCD40L, respectively, in Cohort 1 patients measured by MultiPlex ELISA. J Levels of anti-inflammatory IL-10 cytokine in Cohort 2 
patients by conventional ELISA. N = 6–88 independent experiments assayed in duplicates. *p < 0.05; **p < 0.01 ***p < 0.001, ****p < 0.0001; two-way 
ANOVA with Sidak’s post hoc correction
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Sex differences in circulating immune cells
To further evaluate the immune response to COVID-
19, we performed flow cytometry on fresh blood sam-
ples to examine leukocytes from Cohort 2 patients 
at three time points (24 h, 7 days, and 14 days) since 
hospital admission. A panel of antibodies to detect 
neutrophils (Table  1), monocytes (Table  2), and lym-
phocytic T and B cells (Table  3) was used to iden-
tify these leukocyte subsets. Active neutrophils were 
gated as CD11b+DEspR+ [17–19] (Fig.  4A), monocytes 
as CD11b+CD45+CD14+CD24− (Fig.  4B), T cells as 
CD45+CD3+ and B cells as CD45+CD19+ (Fig.  4C). 
Interestingly, sex differences were found in both myeloid 
cells (neutrophils/monocytes) and lymphocytes, but 
exhibited different patterns by sex. Male patients had 
more neutrophils and monocytes at each time point (all 
significant except a trend at 24 h for monocytes) than 
female patients (Fig. 4D, E). However, there was a signif-
icant elevation in B cells in females vs. males at both 7 
days and 14 days (Fig. 4F). No sex difference was seen in 
T cells (Fig. 4G).

Pneumonia and other organ involvement
After infection with COVID-19, patients often have signs 
of other organ involvement or comorbidities in addition 
to pneumonia. We reviewed the hospitalization history of 
our patients and analyzed organ involvement. Figure 5A 
shows the percentage of pneumonia, sepsis, acute kidney 
injury (AKI), deep vein thrombosis (DVT), and myocar-
dial infarction in all patients. Overall, more male patients 
develop these complications than females, with signifi-
cant differences in pneumonia and AKI. Figure 5B and C 
shows the percentages of these diseases in Cohort 1 and 
Cohort 2 patients, respectively. In males with moderate 
disease, the percentage of pneumonia was significantly 
higher than that of females. Prevalence of sepsis showed 
an increasing trend across the severity of COVID-19 
infection in males (p = 0.012) but not in females.

Discussion
The immune response to viral infection plays an impor-
tant role in tissue damage caused by COVID-19 [20]. In 
the present study, we analyzed the immune response in 
patients with acute COVID-19 respiratory tract infection 

Fig. 3  Levels of inflammatory mediators in control vs. COVID-19 plasma samples based on disease severity. A–L levels of TNF-α, IL-6, IL-8, 
Eotaxin, IL-10, MDC (CCL22), GROα, IP-10, sCD40L, MIP-1β, Fractalkine, and MCP-1, respectively, in Cohort 1 patients by MultiPlex ELISA. N = 6–33 
independent experiments assayed in duplicates. *p < 0.05; **p < 0.01 ***p < 0.001, ****p < 0.0001; two-way ANOVA with Sidak’s post hoc correction
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both at the cytokine level and the cellular level, and 
found several novel findings. Firstly, in patients hospi-
talized with COVID-19, as seen by others, men were 
overrepresented, and overall had more robust inflamma-
tion than females, a sex difference that was particularly 
pronounced in patients with severe disease. Secondly, 
although female patients also showed a pro-inflamma-
tory response, they appear to mount an anti-inflamma-
tory response earlier than male patients. Thirdly, our data 
suggest that early innate immune responses to COVID-
19 are more pronounced in men, and delayed adaptive 
immunity is more highly activated in women. To increase 
the accuracy and precision in our data interpretation, 
we analyzed the immune response longitudinally and 
also disaggregated the data based on the severity of the 
disease; therefore, we believe our data are convincing 
and reflect the nature of the immune response in acute 
COVID-19 respiratory tract infection patients.

Previous clinical data have shown that although the 
prevalence of infection is the same in men and women, 
men are more likely to be hospitalized, have a more 

severe disease course, and higher mortality than women 
[21]. Our findings are consistent with these reports, as 
male patients outnumbered females not only in total 
numbers (350 vs. 276), but also in most age and ethnic 
groups, and males had higher mortality than females 
(Fig.  1). In addition, more male patients developed 
pneumonia, sepsis, AKI, DVT and myocardial infarc-
tion than females after COVID-19 infection. A number 
of reasons have been postulated for the sex differences 
in the response to COVID-19. Some studies have shown 
that men have a higher level of ACE2 receptors, used for 
viral entry into target cells. The cellular serine protease 
TMPRSS2, responsible for coronavirus spike (S) protein 
priming, is also highly expressed in the prostate epithe-
lium and is sensitive to androgens [22]. Differences in 
hormone levels may also underlie the observed sex dif-
ferences [11]. The present study provides evidence that in 
addition to the above, the differential immune responses 
seen in male vs. female patients may also play an impor-
tant role in mediating the sex differences seen in COVID-
19 patients.

Fig. 4  Sex differences in circulating immune cells in Cohort 2 patients at different days of hospitalization days. A–C Flow cytometric gating strategy 
for neutrophils, monocytes and lymphocytes in COVID-19 patient peripheral blood. Neutrophils were gated as CD11b+DEspR+ (A), monocytes 
as CD11b+CD45+CD14+CD24− (B), T cells as CD45+CD3+ and B cells as CD45+CD19+ (C). D Percentage of CD11b+DEspR+ neutrophils in total 
live leukocytes. E Percentage of CD11b+CD45+CD14+CD24− monocytes in total non-granulocytes. F Percentage of CD45+CD19+ B cells in total 
lymphocytes. G Percentage of CD45+CD3+ T cells in total lymphocytes. N = 7–26 independent experiments assayed in duplicates. *p < 0.05, 
**p < 0.01; two-way ANOVA with Sidak’s post hoc correction
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Previous studies have found that more severe clinical 
symptoms of COVID-19 were associated with elevated 
levels of inflammatory markers [23] and predict poorer 
prognosis and mortality [24]. In the present study, circu-
lating levels of inflammatory mediators appear to reflect 
the systemic inflammation caused by the infection. It is 
intriguing that sex differences in the cytokine levels were 
found both in the overall data (Fig. 2) and in the graded 
groups based on disease severity (Fig.  3). Although the 
overall data provided limited information as the cytokine 
levels were calculated regardless of the disease severity, 
sex differences were evident in the pro-inflammatory 
cytokine IL-6 (higher in males) and the anti-inflamma-
tory cytokine IL-10 (higher in females). When we ana-
lyzed the data in the graded groups (Fig.  3), more sex 
differences were revealed, especially in the severe group. 
Of the 12 inflammatory mediators, 6 (IL-6, IL-8, GROα, 
sCD4L, MIP-1β, MCP-1) exhibited very high levels in 
males with severe disease but not in females, all of which 
are pro-inflammatory mediators. The anti-inflammatory 
cytokine IL-10 again exhibited a female favorable pheno-
type, i.e., the level significantly increased in the moderate 

group but not in the males compared to controls. IL-10 is 
well known for its beneficial roles in inflammation reso-
lution and tissue repair in inflammatory diseases [25]. 
The higher level of IL-10 in female vs. male patients may 
be an important reason why female patients have a better 
prognosis and lower mortality.

Our data also revealed a sex difference in the leukocyte 
response to acute COVID-19 respiratory tract infection. 
While the innate immune response seemed to be more 
active in male patients indicated by higher numbers of 
circulating inflammatory neutrophils and monocytes, the 
adaptive immune response was more robust in females, 
and females had significantly more B cells at 7 days and 
14 days (Fig.  4F). B cells possess distinct machinery for 
adaptive immunity compared to other immune cells. 
Upon activation, B cells proliferate rapidly and differ-
entiate into antibody-secreting plasma cells; antibod-
ies released from these cells bind specifically to foreign 
antigens (e.g., viruses) and inactivate viruses and micro-
bial toxins [26]. In addition to antibody secretion, B cells 
also regulate T cell responses affecting the progression of 
diseases; therefore, B cell-induced adaptive immunity is 

Fig. 5  Pneumonia and other organ involvement. A Case percentages of pneumonia, sepsis, AKI, DVT and myocardial infarction in all male and 
female patients. B, C Case percentages broken down from (A) for Cohort 1 (B) and for Cohort 2 (C) patients. N = 8–300 cases/group. Error bars 
denote upper 95% confidence interval. *p < 0.05, **p < 0.01; Chi-square tests
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both cellular and humoral [27]. On the other hand, neu-
trophils are a major component of the innate immune 
response [28] and monocytes/macrophages are members 
of the mononuclear phagocytic system, are also a compo-
nent of innate immunity [29]. While the innate immune 
response is immediate, the effect of the adaptive immune 
response is long-lasting and highly specific. Another cell 
type that participates in adaptive immunity is the T cell. 
Somewhat surprisingly, we did not see any significant sex 
difference in T cells in our data (Fig. 4G). Although both 
innate and adaptive immunity are important in the fight 
against foreign antigens, the present study suggests that 
the adaptive immunity in female patients is more robust 
and sustained in females compared to male patients. The 
chronic consequences of this sex-specific activation of B 
cells remain unknown.

The present study has some limitations that should 
be kept in mind when interpreting the data. The age of 
all recruited patients ranges from 19 to 101, and aged 
patients may have more complications; however, our 
control participants were healthy with an age range of 
25–60. Therefore, age-matching between controls vs. 
patients was not ideal. We also did not measure circu-
lating sex hormone levels (estrogen and testosterone) in 
our patients; therefore, the contribution of the gonadal 
hormones to the sex difference seen in immunity is not 
known. We also did not deeply phenotype the immune 
cells, and contributions of specific lower prevalence 
cells will require further study. Of note, the difference 
in immune responses between males vs. females may 
not be solely related to acute lung injury (pneumonia); 
instead, it may reflect a systemic response, as males 
also had higher incidence of other organ involvement 
than females (Fig. 5).

Perspectives and significance
In conclusion, the present study examined sex differ-
ences in patients with acute COVID-19 respiratory 
tract infection, with a focus on the immune responses. 
Examining inflammatory mediators, we found female 
patients launched a more robust anti-inflammatory 
response than males. Using flow cytometry to analyze 
immune cells, the study revealed that innate and adap-
tive immunity were differentially activated in male vs. 
female patients. Although these sex differences in the 
immune response could either be resultant or causative 
to the COVID-19 virus infection, we conclude that the 
“female favorable” phenotype of COVID-19 could be at 
least in part due to the higher levels of anti-inflamma-
tory factors and earlier activation of adaptive immunity.
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