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In search of sex‑related mediators 
of affective illness
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Abstract 

Sex differences in the rates of affective disorders have been recognized for decades. Studies of physiologic sex-related 
differences in animals and humans, however, have generally yielded little in terms of explaining these differences. 
Furthermore, the significance of these findings is difficult to interpret given the dynamic, integrative, and highly con‑
text-dependent nature of human physiology. In this article, we provide an overview of the current literature on sex 
differences as they relate to mood disorders, organizing existing findings into five levels at which sex differences con‑
ceivably influence physiology relevant to affective states. These levels include the following: brain structure, network 
connectivity, signal transduction, transcription/translation, and epigenesis. We then evaluate the importance and 
limitations of this body of work, as well as offer perspectives on the future of research into sex differences. In creating 
this overview, we attempt to bring perspective to a body of research that is complex, poorly synthesized, and far from 
complete, as well as provide a theoretical framework for thinking about the role that sex differences ultimately play in 
affective regulation. Despite the overall gaps regarding both the underlying pathogenesis of affective illness and the 
role of sex-related factors in the development of affective disorders, it is evident that sex should be considered as an 
important contributor to alterations in neural function giving rise to susceptibility to and expression of depression.
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Introduction
Sex is increasingly regarded as an important contribu-
tor to the development of mental illness, including 
affective disorders, neurodevelopmental disorders, and 
addiction. Since 2014, it has been NIH policy that grant 
applications must address the possible role of sex in the 
proposed study. With regards to affective disorders, sex 
differences in the prevalence and symptomatology of 
major depressive disorder (MDD), anxiety, and post-
traumatic stress disorder (PTSD) have been known for 
decades, with females experiencing these disorders at 
approximately twice the rate as males [1]. In general, 
studies of sex-related differences in animals and humans 

have focused on specific, often single, measures that have 
yielded little in terms of explaining the overall sex dif-
ferences in depression evident in epidemiological stud-
ies. Our current lack of understanding is not surprising, 
given the complexity of the relationship between sex 
and brain function, as well as the confusing array of evi-
dence regarding the biological underpinnings of affec-
tive illness. The impact of sex widely ranges from direct 
influence on central nervous system processes (through 
genetic sex and gonadal steroids) to indirect effects, such 
as those elicited from the environment (e.g., as a result 
of social and cultural expectations). From a mechanistic 
perspective, sex encompasses enduring effects of expo-
sure to sex hormones during critical developmental 
periods (organizational effects), transient effects of sex 
hormones (activational effects), interactions between 
organizational and activational effects, and genetic effects 
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(i.e., having two X chromosomes vs. one Y). Mapping sex 
onto the processes underlying affective regulation, which 
are similarly complex and dependent on contextual fac-
tors (such as timing during the lifespan, prior experience, 
genetic background, species, and stimulus, all of which 
interact with sex), may, therefore, be best served by the 
organization of existing knowledge into a framework that 
allows us to think more broadly about the role of sex in 
dynamic emotional states. In this overview, we attempt 
to create such a framework, illustrating with examples 
the broad conceptual levels at which sex differences have 
been described in the brain and conceivably could con-
tribute to female predominance of affective disorders. 
Our current knowledge can be roughly divided into sev-
eral categories, with sex effects having been identified in 
brain structure, brain connectivity, signal transduction, 
transcription/translation, and epigenesis. Each of these 
categories will be discussed below with examples of key 
findings of sex differences related to affective function, 
though a fully comprehensive review is clearly precluded 
by the scope of the topic. In our discussion, we reflect on 
the importance and limitations of this work, as well as 
offer perspectives on the future of research on sex differ-
ences as they relate to affective disorders.

Though “affective disorders” encompass a broad range 
of illnesses, including MDD, bipolar disorder, anxiety 
disorders, and PTSD, this review primarily utilizes exam-
ples from depression and depressive-like behavior for the 
following reasons: (1) an abundance of animal models 
exist for depressive-like behavior [2]; (2) sex differences 
in prevalence are well-established [3]; (3) reproductive 
events during the lifespan (e.g., pregnancy, menopause) 
alter the expression and substrates of depression [4, 5]; 
(4) a comparatively large body of preclinical and clinical 
research exists pertaining to sex differences in depres-
sion; and (5) depression is either a core feature of or 
highly comorbid with the other disorders listed [6, 7].

In addition, we have chosen to view the relationship 
between sex and affect regulation through the lens of 
stress and the stress response for several reasons. First, 
stress is a critical factor in both the precipitation of 
and susceptibility to affective disorders, demonstrated 
in numerous epidemiologic studies (e.g., the Adverse 
Childhood Experiences study, which found relationships 
between early stress and depression, substance use, and 
suicide [8–10]). Abundant evidence also confirms early 
observations of depression-related disturbances in the 
stress axis (including cortisol hypersecretion, impaired 
negative feedback, and corticotropin-releasing hormone 
(CRH) dysregulation) [11–15]. Second, there is a rich lit-
erature describing sex differences in the stress response, 
both in animals and humans [16–22]. Third, stressors 
in animal studies are the means of inducing behaviors 

believed to model symptoms of affective disorders in 
humans, thus permitting investigation of potential bio-
logical mediators of these disorders and associated sex 
differences. It should be noted that context-determin-
ing factors interacting with the stress response, such as 
developmental stage/aging, prior experience (e.g., adver-
sity), and sex-specific life events (e.g., pregnancy, meno-
pause), are known to dramatically alter both physiologic 
and behavioral responses and may be required for expres-
sion of sexually dimorphic traits [4, 23–25]. Although 
certain examples are highlighted below, a full discussion 
of the critical role of context in the origin and expression 
of sex differences in affective dysfunction is beyond the 
scope of this review.

Finally, as noted above, when considering the evi-
dence for a role of sex in the biology of affect regula-
tion, one must keep in mind the multiple means by 
which sex can influence biology (e.g., is the differ-
ence hormone-dependent or not). The impact of sex 
chromosomes independent of hormones is not well-
understood, in large part due to the difficulty in dis-
tinguishing the effects of genetic sex from those of 
gonadal sex [26, 27]. However, several lines of emerging 
research are beginning to elucidate a substantial role 
for genetic complement on sexual differentiation and 
function. Higher rates of certain neurodevelopmental 
and affective disorders have been observed in sex chro-
mosome aneuploidies (in which sex chromosomes are 
present in abnormal quantities) [28], and heritability 
analyses have suggested a significant influence of sex-
chromosomes on brain anatomy [29]. In addition, the 
four-core genotypes (FCG) model (described in detail 
in a later section) is a preclinical paradigm that makes 
possible the separation of gonadal sex and genetic sex, 
allowing for direct comparison of different gene com-
plement/hormone profile combinations [26]. Within 
the category of hormone-dependent effects, differences 
may arise as a result of organizational/programming 
effects, acute/activational effects, or a combination 
of the two. Organizational effects occur consequent 
to exposure to sex-steroids during critical periods of 
development and persist irrespective of subsequent 
changes in hormone levels. Important demonstrations 
of these programming effects are illustrated in the clas-
sic studies of Phoenix et  al., Gorski et  al., and Arnold 
et  al., which established that behavioral capacities in 
adulthood (e.g., aggression, sex behaviors) are depend-
ent upon these perinatal exposures [30–32]. Organiza-
tional effects, in addition to associated effects on brain 
morphology [33, 34], are a product of sex-steroid regu-
lation of many of the fundamental processes of brain 
development, including neuroplasticity, epigenesis, 
and immunoregulation [35–37]. Activational effects, 
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on the other hand, comprise the immediate and revers-
ible effects of sex hormones and are mediated largely, 
albeit not exclusively, through sex hormone receptors. 
Sex hormone receptors are ubiquitous in the central 
nervous system, and there is virtually no element of 
neural function that is not regulated by sex hormones. 
Sex steroids can acutely regulate neural structure, 
excitability, cell function, and transmission [38], effects 
which ultimately extend to the level of brain circuits 
and global brain function. At the interface of organi-
zational and activational effects are those that cannot 
occur without both early exposure to and current pres-
ence of a hormone, i.e., an acute effect programmed by 
a developmental one. For instance, male rats castrated 
at birth show incomplete mating behavior upon re-
exposure to testosterone in adulthood, a pattern that is 
not seen in males castrated in adulthood [39, 40]. The 
impact of organizational and activational effects and 
their interactions must be disentangled to understand 
how observed sex differences are produced. Methods 
employed (such as four-core genotypes) often reflect 
the effort to decompose the underlying mechanisms of 
hypothesized sex differences. Complexity of effects and 
mechanisms notwithstanding, the implications from 
the findings summarized below suggest that sex is a 
powerful acute and developmental context and must be 
considered as a critical potential contributor to altera-
tions in neural function giving rise to susceptibility to 
and expression of depression.

Brain structure
Structural brain differences between males and females 
of various species have been described since the latter 
half of the twentieth century, with evidence for sex differ-
ences firmly established by the seminal discovery of sexu-
ally dimorphic brain regions responsible for vocal control 
in songbirds [41]. In humans, women have been observed 
to have a higher percentage of gray matter volume rela-
tive to white matter [42, 43], as well as greater volumes 
of the orbital frontal cortices [44]; men appear to have 
higher gray matter densities in several brain regions, 
including amygdala, hippocampus, insular cortex, and 
putamen [45]. Developmentally, men appear to obtain 
peak brain volumes at a later age than women, and char-
acteristics such as brain volume, directional organization, 
and myelination of many regions have been shown to 
vary by sex in adolescents [46, 47]. In this section, we first 
explore how differences in affect-regulating brain areas 
may predispose female animals to an increased CNS 
response to stress. We then review clinical findings, with 
a focus on structural brain differences between males and 
females exposed to childhood trauma.

Preclinical findings
While structural changes in the brains of depressed indi-
viduals have been observed independent of sex [48–50], 
there is little conclusive evidence relating structural dif-
ferences to sex differences in depression. Preclinical find-
ings, however, suggest that regions implicated in affective 
processing, such as the locus coeruleus, contain sexu-
ally dimorphic features that may play a role in increased 
female vulnerability to depressed states. The locus coer-
uleus (LC) directs attention and mediates arousal via 
the integration and relay of stress signals to and from 
the HPA axis. While important for adaptive responses 
to environmental stimuli that threaten survival, the LC-
norepinephrine system demonstrates amplified reactiv-
ity following chronic stress, resulting in pathological 
behaviors resembling anxiety in animal models [51]. 
Unsurprisingly, it has been hypothesized that dysfunc-
tion of this system underlies hyperarousal states char-
acterizing human anxiety and trauma related disorders 
[52, 53]. In female rats, the LC dendritic processes syn-
apsing on terminals (originating in the amygdala) that 
release corticotropin releasing factor (which both acti-
vates the HPA axis and acts as a central neuromodula-
tor) demonstrate longer trees, with more branches and 
longer branch lengths, and have a greater number of syn-
aptic contacts [54]. This increased complexity ultimately 
results in a framework for more emotion-related infor-
mation to be transmitted by the amygdala in response to 
stress in females, and represents a potential link between 
structure, HPA-axis/arousal response, and vulnerability 
to affective illness. It is also important to note that the 
effects of stress on regional morphology in various brain 
regions, particularly following prenatal stress, have been 
shown to vary by sex in animal models [55–60].

Clinical findings
Previous studies of brain structure in major depressive 
disorder were mostly underpowered to detect sex dif-
ferences (in those that included both men and women), 
and single-sex studies offer little in the way of compara-
tive data [61, 62]. Further hampering comparisons, it is 
likely that individual men and women represent mosa-
ics, where each individual brain is a composite of male-
typical and female-typical features [63]. Indeed, recent 
MRI findings support both the extensive overlap between 
individuals and the emergence of sex differences only 
at a group level [63]. Nonetheless, recent evidence sug-
gests that brain structure within regions implicated in 
depression is affected in a sexually dimorphic fashion by 
prenatal and childhood stress, representing a possible 
structural link between early exposure and subsequent 
susceptibility. A meta-analysis of data obtained by the 
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Enhancing Neuroimaging Genetics through Meta-Analy-
sis (ENIGMA) consortium demonstrated that, in cases of 
childhood maltreatment, greater maltreatment severity 
was associated with lower gray matter thickness and cau-
date volumes in adolescent and adult females, whereas in 
males, greater maltreatment severity was associated with 
decreased thickness of rostral anterior cingulate cortex 
[64]. Postnatal maternal depression has been associated 
with greater fractional anisotropy of the amygdala in 
female children [65], and several studies have demon-
strated sex-specific effects of prenatal maternal stress on 
subsequent amygdala structure in newborns, with dif-
ferential effects seen on volume [65–68] and microstruc-
ture [69]. One recent study demonstrated sex-specific 
effects of early perinatal stress on cortical gyrification, 
with young adult women who were previously exposed to 
stress either in-utero or during the first 18 months of life 
showing higher temporal gyrification and greater pro-
pensity for mood disturbance [70].

Summary
Despite the limitations described above, as well as our 
poor understanding of the relationship of brain struc-
ture to depression generally (and potentially limited 
contribution of structure to depression overall), sex dif-
ferences in specific brain regions implicated in affective 
function provide plausible explanations for findings of 
differential stress processing and susceptibility to depres-
sion. For example, sex differences in brain function under 
stressful conditions (e.g., learning is facilitated by stress 
in male rodents under certain conditions and impaired 
in females [71]) not only represent differential activa-
tion of certain regions and circuits, but as well are asso-
ciated with dimorphic microstructural differences, such 
as synapse concentration [71]. Similar sex-dependent 
morphological differences have been identified in rodent 
mPFC pyramidal neurons [72] following repeated stress, 
a model for depression. It is, therefore, conceivable that 
regional sex-differences in brain structure—either innate 
or acquired—may contribute to the well-studied effects 
of sex-steroids on emotion processing [73] in influencing 
sex-dependent susceptibility to disturbances in affective 
regulation.

Network connectivity
There is extensive evidence for effects of sex and sex 
steroids on neural processes related to network devel-
opment and function [38, 74–77]. First, sex differences 
have been described in networks subserving emotional 
valence [78], pain and pain sensitivity [79], resting state 
function of the amygdala during adolescence [80] and 
in autism [81], and neurocognitive function [82]. Dif-
fusion tensor imaging (DTI) studies have demonstrated 

higher fractional anisotropy and lower mean diffusiv-
ity of major white matter tracts in men [83–85], while 
studies of functional cortical connections suggest that 
female connectivity patterns are characterized by less 
laterality [86] but greater local and global connectiv-
ity [87, 88]. While the implications of these findings 
may be unclear, Ingalhalikar et  al. postulated that, 
based on their analysis of the “structural connectome,” 
male brains are optimized for perception and coordi-
nated action through intrahemispheric communica-
tion, while female brains are more adept at relaying 
information between analytical and intuitive process-
ing modes via interhemispheric communication [89] 
(although it should be noted that the authors’ conclu-
sions have raised many questions—see [90]). In addi-
tion, sex hormones are known to exert a substantial 
influence on network function. PET and fMRI stud-
ies in humans have shown neuroregulatory effects of 
estradiol on working memory [91–93], reward [94–97], 
default mode function [98–100], emotional process-
ing [73, 101–104], and components of the salience 
network [102, 105, 106], and functional connectivity 
effects have more recently been demonstrated for pro-
gesterone [107], particularly with regards to network 
changes across the menstrual cycle [108, 109]. Compar-
ative data (between males and females) for hormonal 
effects on network function is relatively limited, though 
one recent study noted a potentially protective effect 
of endogenous estradiol against the deleterious effects 
of visceral adipose tissue on network covariance asso-
ciated with cognitive decline in aging women, but not 
men [110].

Depression in both sexes has been characterized by 
alterations in the activity and connectivity of multiple, 
relevant CNS networks. Increases in default mode net-
work (DMN) activity and decreases of the salience and 
central executive networks have been observed, which 
have been suggested as physiologic substrates of the 
increased rumination and decreased responsiveness 
to external stimuli often seen in depressed states [111, 
112]. Aberrations in reward circuitry have been repeat-
edly documented [113], bearing a plausible association to 
the cardinal depression symptom, anhedonia. Changes 
in blood flow to and from critical nodes within the corti-
colimbic system, such as prefrontal cortex and amygdala, 
have also been shown to be altered in major depression 
[114, 115] and following stress in animal models [116]. 
Below, we present preclinical and clinical evidence for 
sex differences in network function in stress/affective 
disorders. Clinical research findings suggest a particu-
larly important role of pubertal maturation in the devel-
opment of network sex differences, consistent with the 
aforementioned effects of sex steroids [117].
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Preclinical findings
The existing preclinical evidence supports the idea 
that sex influences how antecedent stress shapes early 
organization and mature function of such networks. 
For instance, several studies have documented sexually 
dimorphic changes in functional connectivity following 
repeated stress between brain regions associated with 
the default mode network [118, 119] (e.g., between hip-
pocampus and amygdala [119] and between prefrontal 
cortex and amygdala [118]). Differential circuit activation 
by exogenous administration of corticotropin-releasing 
factor has been observed in adult rats [120], suggesting 
one possible mechanism underlying this dimorphism. 
Differences in network function may also be reflected 
in sex-specific microstructural changes (i.e., at the neu-
ronal level) that underlie network organization. Dendritic 
remodeling has been shown to occur in adult male rats, 
but not females, in hippocampal CA3 neurons follow-
ing chronic restraint stress [121]. Adult female, but not 
male, rats show hormone-dependent selective dendritic 
remodeling in mPFC neurons projecting to basolat-
eral amygdala in response to stress (males instead show 
remodeling of mPFC neurons projecting elsewhere) [122, 
123]. Ovariectomy abolishes these mPFC changes, and 
estradiol addback to gonadectomized females increases 
mPFC dendritic branching, irrespective of the down-
stream target [122]. One study in adult rats demonstrated 
sex differences in several aspects of function in basolat-
eral amygdala, including increased neuronal firing rates, 
more dendritic spines, and greater sensitivity/responsiv-
ity to glutamate in females [124]. Investigators noted that 
estrous cycle shifts in neuronal activity paralleled the rate 
of cued fear extinction, suggesting that activational hor-
monal effects produce identifiable CNS changes related 
to subsequent behavioral outcomes [124]. Sex-specific 
effects of stress on non-neuronal cell populations that 
affect neural circuitry, such as microglia, have also been 
observed [125].

Clinical findings
While there is, on the whole, a paucity of research report-
ing human sex differences in functional connectivity 
related to depression, recent evidence from specific sub-
populations has suggested that depressive and anxious 
symptomatology may have different network correlates 
in men and women. Higher “internalizing” symptoms 
(which correlate with depressive/anxious symptomatol-
ogy) in female, but not male, adolescents have been asso-
ciated with greater resting-state connectivity between 
amygdala and regions implicated in emotional and soma-
tosensory processing, salience detection, and action 
selection, including cingulate gyrus, insula, and soma-
tosensory cortices [126]. Similarly, intrinsic functional 

connectivity (iFC) of the DMN appears to weaken with 
pubertal maturation in females (compared to strengthen-
ing in males), with decreased iFC of the anterior cingulate 
within the DMN predicting higher internalizing symp-
toms later in adolescence [127]. Connectivity may vary as 
a function of sex and diagnostic classification (e.g., MDD 
vs. control) as well, with one study of adolescents demon-
strating increased connectivity strength between cerebel-
lum and superior frontal gyrus with age in male controls, 
but decreased connectivity with age in males with MDD 
(no effects were seen in females) [128]. Major depres-
sion in adult chronic ketamine users has been shown to 
have sex-specific resting-state connectivity patterns, with 
women showing increased connectivity between subgen-
ual anterior cingulate cortex (sgACC) and dorsomedial 
prefrontal cortex and men showing increased connectiv-
ity between sgACC and bilateral superior temporal gyrus 
[129].

Even when sex itself is not a variable, studies of the 
effects of hormone fluctuations, either naturally occur-
ring or induced, are consistent with the notion that sex 
steroids modulate brain dynamics relevant to mood. For 
one, manipulations of estradiol and progesterone have 
been shown to induce depressed states in certain women 
[130–132]. In addition, in studies of premenstrual dys-
phoric disorder (PMDD), the luteal (symptomatic) phase 
is associated with differential task-related activation of 
affect-relevant brain regions (e.g., amygdala, dorsolat-
eral prefrontal cortex, medial prefrontal cortex, insula, 
orbitofrontal cortex) in adult patients compared with 
non-PMDD controls [73, 106, 133–136]. Manipulations 
employing GnRH agonists (which lead to suppression 
of ovarian hormone release through pituitary desensi-
tization) produce reductions in PMDD symptoms with 
GnRH treatment [132, 137], with subsequent addback 
of estrogen and progesterone producing not only recur-
rence of symptoms but alterations in neural activity in 
regions and networks subserving mood [138, 139] and 
cognition [93]. As an example, one recent study found 
decreased resting regional blood flow in subgenual cin-
gulate, a hub for affect regulation, following both estro-
gen and progesterone addback after leuprolide treatment 
in adult PMDD participants, but not controls [138].

Summary
Given that brain regions implicated in affective disorders, 
such as hippocampus, amygdala, hypothalamus, and 
brainstem are rich in steroid hormone receptors [140], 
and that sex- and sex hormones exert a substantial influ-
ence on both mood and processes associated with net-
work function, it is reasonable to infer a significant role of 
sex on network function related to affect. While affective 
disorders secondary to reproductive endocrine changes, 
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such as postpartum depression, PMDD, and perimeno-
pausal depression, are the most obvious examples of 
sex affecting neurocircuitry underlying behavioral state 
kinetics, reported sex differences in network function 
in depressed/stressed states suggest that meaningful sex 
effects exist beyond those generated by hormones. Sex as 
a whole is multifaceted and more complex than the acute 
effects produced by changes in hormone levels, encom-
passing genetic complement and organizational effects 
(and the interactions between them all) as well. Sex is 
also only one determining factor in the expression of net-
work states, interacting with individual trait characteris-
tics (e.g., genetic factors) to influence brain connectivity 
[138]. Nevertheless, the studies described clearly sug-
gest that certain features of sex can not only be isolated 
and examined for their relationship to affect and neural 
function, but as well are likely to yield specific behavioral 
and neural findings that deepen our understanding of the 
pathogenesis of depressed states.

Signal transduction
Sex hormones affect many, if not all, neurotransmitter 
systems in myriad ways [140]. Both excitatory and inhibi-
tory effects of estradiol on several neurotransmitters, 
including glutamatergic [141–144], GABAergic [145, 
146], dopaminergic [147–152], serotonergic [153–157], 
and noradrenergic [158–160], have been extensively 
documented. These effects occur via multiple mecha-
nisms (including synthesis [153], release [149], turno-
ver/degradation [161], receptor trafficking [154], and 
transport [162]) and are dependent on contextual fac-
tors, such as receptor subtype [163], brain area [164], 
developmental stage [165], duration of treatment/time 
following exposure [166, 167], mode of administration 
[167], and amount of steroid present [168]. Findings from 
both human and animal research suggest that these hor-
mone–neurotransmitter interactions have meaningful 
functional consequences. For example, in animal stud-
ies, estradiol interacts with dopamine to influence reward 
decision-making and memory, with high estradiol states 
generating bias toward smaller, more accessible rewards 
[169] and preferential use of certain memory strate-
gies [170] (This relationship appears to be modulated by 
individual baseline dopamine processing, with evidence 
in humans that working memory performance follow-
ing estradiol exposure is either enhanced or impaired 
depending on genetic background [171]). Progesterone 
has a similarly complex relationship with various neu-
rotransmitter systems, with effects distinct from (and at 
times opposite to) estradiol [140, 168]. Of considerable 
interest, allopregnanolone, a neurosteroid metabolite of 
progesterone, is a positive allosteric modulator of GABA-
A receptors and facilitator of GABA’s inhibitory action, 

which has been implicated in the etiology of several affec-
tive disorders, including postpartum depression (PPD) 
[172, 173]. The precipitous decline in progesterone/allo-
pregnanolone levels and resultant decrease in GABAergic 
transmission following delivery is hypothesized to under-
lie decreased mood and increased anxiety experienced by 
women susceptible to PPD [174], a suggestion supported 
by the recent approval of  Brexanolone, a synthetic ver-
sion of allopregnanolone, for the treatment of PPD [175, 
176]. The allopregnanolone withdrawal hypothesis, how-
ever,   would not explain the development of depression 
during pregnancy. Nonetheless, the relevance to affective 
regulation of allopregnanolone is further suggested by 
studies suggesting its role in the susceptibility to develop-
ing PTSD, both in men and women [177, 178].

The role of neurotransmitters in stress and depressed 
states has become less clear as conceptualizations of 
depression have moved away from hypotheses of dys-
functional aminergic signaling toward theories of sys-
temic dysregulation that involves and is expressed as 
changes in cell neurotrophic factors (e.g., BDNF), cir-
cadian physiology, immune system response, brain net-
work function, neuroendocrine function (e.g., HPA axis), 
and transcriptional and epigenetic activity [179]. How-
ever, alterations in serotonergic [180], dopaminergic 
[181], GABAergic [182], glutamatergic [111], opioider-
gic [183], and noradrenergic [184] function have all been 
documented in depression or following stress, with their 
significance supported by the therapeutic effects of medi-
cations that influence these systems (SSRIs and TCAs for 
monoamines [185]; allopregnanolone for GABA [174]; 
ketamine for glutamate,  and opioids [186]). This sec-
tion provides examples from animal and human studies, 
respectively, that illustrate the myriad sex differences in 
signal transduction present in stress and affective disor-
ders. Attention is given to preclinical findings of neuro-
transmitter function and cell-signaling differences that 
may underlie differences in affect regulation. In our dis-
cussion of clinical findings, we address not only male–
female differences in neurotransmitter systems, but note 
findings related to hormonal effects as well.

Preclinical findings
With regards to sex differences, preclinical work has 
demonstrated that stress can differentially affect neuro-
transmission in key brain regions in depression. Adult 
female mice have been shown, to a greater degree than 
males, to have increased parvalbumin mRNA expression 
and parvalbumin-containing cells (measures of GABAe-
rgic interneurons) in prefrontal cortex following chronic 
stress, molecular changes that correlate strongly with 
behavioral endpoints reflecting anxiety and depression 
[187]. In CRH-receptor deficient adult mice that display 
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increased vulnerability to stress-related behavior, females 
exhibit increased sensitivity to the acute modulation of 
serotonin (via SSRI administration) relative to males on 
tail suspension, elevated plus maze, and light–dark box 
tests (acute stressors) [188]. This effect is hypothesized to 
be due to serotonergic hypofunction in prefrontal cortex 
as well as in hippocampus in females with CRH-receptor 
deficiency. (It should be noted that female hippocampal 
serotonin function is also decreased relative to males 
in wild type animals) [188]. With regards to dopamine, 
hyperactivity in the nucleus accumbens–ventral tegmen-
tal area (NAc-VTA) reward pathway is induced by social 
defeat stress in adult female, but not male, mice [189, 
190], and D1-receptor activation in the NAc appears to 
be a uniquely important mediator of the stress-induced 
withdrawal phenomenon in females [189, 190]. Similarly, 
subchronic variable stress has been observed to increase 
firing in neurons projecting from the lateral habenula 
to the VTA in adult female, but not male, rats, a find-
ing associated with behavioral correlates of decreased 
reward sensitivity [191]. In a rodent experiment of exces-
sive glucocorticoid exposure during the late gestational 
period (modeling prenatal stress), dimorphic effects in 
adult offspring were observed on structural character-
istics of dopaminergic neuronal populations and fac-
tors associated with dopamine neurotransmission, such 
as innervation pattern, number of receptors and trans-
porters, as well as basal and amphetamine-stimulated 
dopamine release in multiple brain regions [192], again 
suggesting an interaction between sex, stress, and devel-
opment. Ketamine, a novel antidepressant, impacts the 
function of glutamate and GABA receptor systems. Sex 
differences in ketamine’s antidepressant-like effects in 
rodents have been explored in a number of studies [186, 
193, 194], with female rodents typically demonstrating 
greater sensitivity to rapid and sustained antidepressant 
effects than males based on forced swim test immobil-
ity time, an effect mediated by estrogen and progester-
one [193]. Conversely, physiologic biomarkers associated 
with stress-related behavioral changes were reversed fol-
lowing higher doses of ketamine in adult male, but not 
female, animals in response to chronic social isolation 
(another form of chronic variable stress), consistent with 
an increase in spine density in mPFC pre-limbic pyrami-
dal neurons of males only [194]. How these effects relate 
to human depression is yet to be determined.

Other animal studies have yielded intriguing evidence 
for sex-differences in cellular function at individual syn-
apses within regions implicated in depressive pathology. 
Some of the findings represent convergent differences 
(i.e., different mechanisms leading to the same func-
tional outcome). For example, Woolley et al. showed that 
pre and post-synaptic hippocampal glutamate receptors 

are regulated by completely different estrogen receptor 
subtypes in male and female adult rats, with no result-
ant difference in glutamatergic transmission [195]. Clear 
examples of different functional outcomes can be seen 
in the studies of CRH receptor signaling in the locus 
coeruleus, where sex differences appear to potentiate 
emotional arousal in female rats [54]. As described by 
Bangasser and Valentino, increased coupling between the 
corticotropin releasing hormone (CRH) receptor and its 
associated G protein on the membrane surface renders 
female LC neurons more sensitive to CRH [54, 196]. Fur-
thermore, cellular internalization of the CRH receptor, 
an adaptive process that prevents adverse effects second-
ary to overstimulation, occurs in males but not females 
in response to stress [54, 196]. While the CRH receptor 
is able to couple with beta-arrestin 2 (a protein involved 
in agonist-mediated desensitization) and be internalized 
in males, the G-protein outcompetes beta-arrestin 2 for 
binding with the receptor in females, making an internal-
izable complex less likely to form [196–198].

Clinical findings
Clinical research in depression has focused primarily 
on sex differences in serotonin (in part due to the suc-
cess of SSRIs in the treatment of mood disorders), with 
studies demonstrating sexual dimorphism in seroton-
ergic function in MDD [199–202]. Positron emission 
tomography (PET) and single photon emission com-
puted tomography (SPECT) studies have shown higher 
5HT1A receptor concentrations, lower 5-HTT bind-
ing potentials, and decreased serotonin uptake [199, 
200] in depressed adult women relative to depressed 
men, findings that extend across several cortical and 
subcortical brain regions. However, some studies 
have reported contrasting findings with regards to the 
directionality of effects (e.g., depressed men showing 
decreased serotonin transporter (SERT) [203]), which 
may reflect methodological differences, small sample 
sizes, or the influence of other factors affecting seroto-
nin transmission [204]. As an example of such factors, 
changes in SERT in response to seasonal changes show 
a combined effect of both sex and genetic background, 
with premenopausal adult women carrying the short 
allele of the serotonin-transporter-linked polymor-
phic region (5-HTTLPR) demonstrating both higher 
propensity toward seasonal affective disorder  and 
poorer ability to downregulate serotonin transporter 
levels during shorter photoperiods relative to men of 
either genotype and women with the long-allele [205]. 
Research on other neurotransmitter systems is fairly 
limited, though postmortem studies have demonstrated 
greater down-regulation of somatostatin, a marker of 
one type of GABAergic neurons, in DLPFC, anterior 
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cingulate, and amygdala in women with MDD relative 
to men [206–208]. In addition, one study demonstrated 
increased expression of several glutamatergic genes in 
DLPFC in adult women with MDD compared to men 
[209]. From the perspective of therapeutic response, 
sex and hormonal status may play a role in the efficacy 
of monoaminergic antidepressant treatments. Some 
studies have reported that women respond better to 
SSRIs and MAOIs, and men to tricyclic antidepressants 
[210], though this has not been borne out by meta-
analyses [210, 211]. In women, gonadal steroids appear 
to modify the response to neurotransmitter modula-
tion, with premenopausal individuals showing a bet-
ter response to SSRIs than postmenopausal individuals 
[210]. Results from one study also suggest that estrogen 
treatment may improve quality of life (but not depres-
sion scores) in postmenopausal women during SSRI 
treatment of depression [212].

Summary
The difficulty in making generalizable statements with 
regards to the effect of sex on neurotransmission (e.g., 
being male/female produces X effects on Y neurotrans-
mitter, resulting in Z behavioral outcome) speaks to the 
highly complex, dynamic, and overall poorly under-
stood interaction between sex and neurotransmission in 
depressed states. However, regardless of specific effects, 
it is apparent that sex/sex hormones have a broad impact 
on the fundamental signaling processes that ultimately 
contribute to higher order neural phenomena impli-
cated in psychiatric illness. Even as theories of depres-
sion centered on neurotransmitter deficits are updated, 
sex effects on signal transduction remain applicable to 
newer, more comprehensive systems-level hypotheses. 
For instance, it has recently been postulated that net-
work imbalances between excitation and inhibition (E:I) 
may underlie several neuropsychiatric illnesses, includ-
ing major depression [182, 213]. Estradiol plays a major 
role in this balance, as estrogen receptors can activate 
metabotropic glutamate (the major excitatory neuro-
transmitter) receptors, even in the absence of glutamate, 
and can increase synaptic trafficking of ionotropic AMPA 
receptors [214]. Estradiol also acutely regulates excita-
tion, inhibition, and neurosecretory coupling through 
direct effects on calcium and potassium channel activ-
ity [215, 216]. Other neurotransmitter systems that con-
tribute to E:I balance, as described above, are widely 
influenced by sex and sex hormones as well, and bear a 
relevant connection to behavioral outcomes. Therefore, if 
depression results from E:I imbalance, then that distur-
bance may well reflect the effects of sex on the basic sign-
aling processes that regulate this balance.

Transcription/translation
Animal studies have identified multiple genes and gene 
networks that are impacted in stress models of depres-
sion (e.g., unpredictable chronic mild stress) [26, 206, 
217]. Many of these stress-related genes show marked 
sex-differences. For example, certain genes have been 
shown to be critical to behavioral dysregulation uniquely 
in human males and females [218], and gene networks 
appear to be altered in a sex-specific manner following 
stressful stimuli in both animals and humans [218–221]. 
In human studies, not only does there appear to be lit-
tle overlap between the genes and gene pathways that are 
affected in depression in males and females, but the genes 
that do overlap are often regulated differently, with tran-
scription often occurring in an opposite fashion depend-
ing on sex. In addition, studies that have attempted to 
correlate transcripts with physiologic function have 
shown that differentially expressed genes produce unique 
downstream effects. For example, gene associations to 
immune processes have been documented to a larger 
extent in females than males in several studies [26, 222]. 
Gene expression differences are, therefore, prime candi-
dates for exploring the molecular basis of systems-level 
sexual dimorphism. In this section, we focus on a recent 
series of studies: two preclinical studies examining tran-
scriptional profiles following stress in animals with vari-
ous gene complement/sex steroid combinations; one 
study comparing transcriptional “signatures” in men and 
women with MDD, validated with a rodent model; and 
one study examining downstream targets of transcription 
in men and women with MDD.

Preclinical findings
Sex differences in transcription of depression-associated 
genes could reflect hormonal effects, genetic effects, or 
both. Two recent studies utilized the "four core geno-
type"  paradigm in an attempt to disentangle hormonal 
and genetic sources of sex differences in animals, with 
results suggesting a combined role of genes, acute hor-
monal exposure (activational effects), and developmental 
hormonal exposure (organizational effects) to differences 
in stress-induced transcription. In FCG, the testes-
determining SRY gene is moved to an autosome, gen-
erating animal subjects whose gonadal sex can be made 
independent of their genetic sex. This yields four geno-
types: XX females, XX (gonadal) males, XY males, and 
XY (gonadal) females. Animals may be gonadectomized 
and provided with hormone replacement depending on 
the outcome of interest, yielding several genetic comple-
ment/hormonal milieu combinations. Using FCG adult 
mice in a chronic variable stress  paradigm, Barko and 
colleagues [219] demonstrated more pronounced effects 
of stress on gene expression for several genes responsible 



Page 9 of 21Sikes‑Keilp and Rubinow ﻿Biol Sex Differ           (2021) 12:55 	

for dopamine and glutamate metabolism in mesocorti-
colimbic brain regions, as well as on gene network coor-
dination, in female conditions (XX, gonadal female, and/
or no hormone replacement) than in male conditions 
(XY, gonadal male, and/or testosterone-treated). In a fol-
low-up study assessing organizational hormonal effects 
(FCG mice were gonadectomized but did not receive hor-
mone replacement), both hormone exposure during criti-
cal developmental periods and genetic sex were shown to 
contribute to differential patterns of gene expression in 
mesocorticolimbic brain regions under stressed condi-
tions [220]. The investigators also identified a set of dif-
ferentially expressed “hub” genes regulated in opposite 
directions by stress in XY males and XX females. Of note, 
several of the biological pathways encoded by these dif-
ferentially expressed genes were related to immune func-
tion, consonant with the putative role of inflammation in 
MDD.

Clinical findings
Using RNA sequencing methodologies, LaBonte and 
colleagues [218] made several important observations 
related to sex differences in genetic expression of MDD. 
In addition to demonstrating little overlap in global and 
regional transcription between depressed adult men 
and women, they were able to identify distinct genetic 
“nodes” for critical gene networks implicated in male and 
female depression, a finding supported by direct genetic 
manipulation in mice. Across 6 brain regions implicated 
in depression, there was only 5 to 10% overlap between 
men and women of genes differentially expressed in 
depressed subjects, as well as little similarity in terms 
of the pattern of up/down regulation of genes across 
regions (i.e., when comparing transcription profiles 
from individual regions to one another). Similar findings 
were observed in adult mice subjected to chronic vari-
able stress, and the significant number of differentially 
expressed genes shared between males of both species 
and females of both species suggests conservation of sex-
ually dimorphic pathways of stress-induced pathology.

As part of the same study, the investigators utilized 
multi-brain region co-expression networks to evalu-
ate transcriptional "signatures" associated with human 
MDD. Among the shared modules of gene connectiv-
ity (i.e., coordinate expression across brain regions) in 
depressed individuals vs. controls, the majority showed 
increased connectivity (association) in men compared 
to women. Their analysis identified genes DUSP6 and 
EMX1 as important nodes for gene networks implicated 
in MDD in women and men, respectively (DUSP6 encod-
ing a widely prevalent phosphatase, and EMX1 encoding 
a similarly ubiquitous transcription factor), findings sub-
sequently supported by gene knockout/overexpression 

in adult animals. DUSP6 downregulation led to depres-
sive behavior in female, but not male, mice subjected to 
chronic variable stress, an effect that was reversed with 
subsequent vector-mediated overexpression of DUSP6. 
In contrast, upregulation of the EMX1 gene resulted in 
similar behavioral dysregulation in stressed males, with-
out inducing stress susceptibility in females. An inter-
esting finding, in line with the concept of sex-related 
physiologic convergence, was similar functional changes 
(increased excitatory postsynaptic currents in ventrome-
dial prefrontal cortex) in both sexes as a result of genetic 
manipulation of either DUSP6 (in female mice) or EMX1 
(in male mice).

A study by Seney and colleagues [223] utilized similar 
methodologies in a meta-analytic format to explore the 
differences between the male and female transcriptome 
in major depression in humans. Their findings replicated 
the minimal transcriptional overlap observed in the 
LaBonte study while showing a high degree of overlap in 
genes regulated in opposite directions in adult men and 
women with depression and demonstrating differences 
in the downstream effects of each transcriptional pro-
file. Using gene ontology analysis, they identified genes 
for synapse related pathways, inner mitochondrial mem-
brane protein complex, and G protein coupled amine 
receptor activity as associated with male MDD, whereas 
pathways related to antigen processing and mitochon-
drial function were associated with female MDD. In 
their cell-type analysis, they demonstrated that differen-
tially expressed genes expressed in oligodendrocytes and 
microglia were upregulated in men with MDD but down-
regulated in women with MDD, while genes expressed in 
neurons were downregulated in men but unchanged in 
women. It was notable that sex differences had not been 
reported in the individual studies from which these data 
were compiled, either because sex was not considered or 
statistical power was not great enough in the individual 
studies to detect differences.

Summary
Overall, these studies suggest significant differences 
between males and females in terms of genetic expres-
sion underlying stress-related pathology. Additional 
studies are needed to characterize the functional rel-
evance of these differences—it will be crucial to explore 
how molecular differences manifest themselves on a 
physiologic level to produce susceptible and resilient 
phenotypes. Experiments such as those conducted in 
the LaBonte study (genetic manipulation of hub-genes 
identified in their network analysis) and a previous 
study by LaPlant and colleagues, which demonstrated 
both an increase in transcription of genes coding for 
nuclear factor kappaB (a transcription factor involved 
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in cellular protection during stress) following ovariec-
tomy and an association of increased nuclear factor 
kappaB with susceptibility to stress [221], are likely to 
provide valuable links between gene expression, sex, 
and dysregulated behavior.

Epigenesis
Epigenetic mechanisms (e.g., DNA methylation; his-
tone methylation and acetylation) serve to alter gene 
expression through modification of nucleosomes (DNA 
and histone proteins) without changing the funda-
mental nucleotide sequence. Methyl groups covalently 
linked to DNA at specific cytosine–phosphate–guanine 
sites (CpGs), result primarily (albeit not exclusively) 
in gene repression [224]. Histone acetylation serves as 
an opposing process, with acetyl groups added to the 
N-termini of histone proteins to ultimately remodel 
chromatin and allow for enhanced/increased DNA 
transcription [225]. Other epigenetic modifications 
include ubiquitination, phosphorylation, sumoyla-
tion, and ribosylation, as well as post-transcriptional 
modifications, such as those induced by microRNA 
and sRNA. Epigenetic sex differences have been docu-
mented across species and in multiple tissues, includ-
ing blood [226, 227], placenta [228], liver [229, 230], 
pancreas [231], muscle [232], heart [233], and brain 
[234–239]. Epigenesis appears to be a critical mecha-
nism by which sexual differentiation occurs during the 
neonatal period and puberty [240–242]. Evidence is 
emerging for sex differences in epigenesis for several 
disease conditions as well, including diabetes [243], 
autoimmune diseases [244], cardiovascular disease 
[245], and cancer [246]. Methylation and acetylation 
have been shown to underlie behavioral adaptations to 
chronic stress in animal models [247–249], and con-
vergent associations between depression and epige-
netic modifications have been demonstrated in human 
clinical studies [250], highlighting the role of these pro-
cesses in dynamic emotional states. Given its revers-
ible nature and plausible link to episodic (as opposed 
to continuous or progressive) dysfunction, epigenesis 
represents an appealing hypothesis for regulation and 
dysregulation of mood and behavioral states [251–253]. 
We review some of the recent clinical and preclinical 
evidence for epigenetic sex differences below. Particu-
larly notable is the association between sex-specific 
transcriptional profiles and both DNA methylation 
and micro RNA networks, suggesting these processes 
work together as part of a coordinated response to 
stress. Clinical findings are limited, and we present the 

example of epigenetic changes in human offspring sec-
ondary to maternal behavioral characteristics during 
pregnancy.

Preclinical findings
Though the research is still in its nascent stages, evidence 
from preclinical studies supports the notion of sex-spe-
cific epigenetic adaptations to stress. One study looking 
at the effects of chronic variable mild stress on CRH gene 
methylation and epigenetic enzymes (DNA methyltrans-
ferases, histone acetyltransferases) demonstrated overall 
lower methylation in adult female rats following stress 
across several CRF-containing brain areas, though with 
pronounced regional effects [254]. In the paraventricu-
lar nucleus (PVN), total DNA methylation of the CRH 
gene was consistently higher in stressed females (consist-
ent with decreased expression) relative to female con-
trols, an effect not seen in males. Conversely, in the bed 
nucleus of the stria terminalis (BNST), CRH methylation 
was decreased in stressed males relative to controls, with 
females showing no effect. In amygdala, stress resulted in 
decreased total methylation for females relative to males. 
Following stress, CREB-binding protein, a histone acetyl-
transferase, was increased in female BNST, and mRNA 
for histone deacetylase-5 was decreased in male amyg-
dala. All of these differences were reflected by sex-spe-
cific modifications to one or more specific CpGs, as well 
as differences in expression of c-Fos, FosB, CRH mRNA, 
and CRH peptide.

DNA methylation appears to mediate expression of 
sex-specific transcriptional profiles associated with sus-
ceptibility to stress-induced behavioral changes. A study 
by Hodes et  al. [255] examined transcriptional regula-
tion in nucleus accumbens of adult mice in response to 
a chronic stress paradigm. These authors demonstrated 
that conditional deletion of DNA methyltransferase 3a 
(Dmnt3a) resulted in increased behavioral resilience 
in female mice, defined as resisting changes in behav-
iors normally produced by stress, including decreased 
grooming time, increased latency to eating in the novelty 
suppressed feeding paradigm, decreased sucrose prefer-
ence, and reduced active coping in the forced swim test. 
This effect was not noted in males, as males without the 
knockout were already behaviorally resilient. Using RNA 
sequencing, they demonstrated that Dnmt3a knockout 
resulted in alterations of the stress-associated transcrip-
tional profile, creating a hybrid of male and female phe-
notypes associated with increased resilience in female 
animals. This suggests that Dnmt3a may be a more 
important modulator of stress susceptibility in females 
than in males, who appear to possess mechanisms coun-
teracting its deleterious effects. Notably, investigators 
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also found Dnmt3a to be increased in postmortem sam-
ples of both male and female humans diagnosed with 
MDD [255].

MicroRNA regulation is another epigenetic process 
being explored in terms of its relationship to affec-
tive disorders. MicroRNAs are small RNAs involved in 
the post-transcriptional regulation of mRNA, acting 
via base-paring with mRNA to cause cleavage, desta-
bilization, and decreased translation. This mechanism 
is ubiquitous and evolutionarily conserved, as well as 
widely present in the central nervous system [256, 257]. 
Research has shown that the neonatal microRNA envi-
ronment in the hypothalamus is both sexually dimorphic 
and dynamically responsive to estrogen, suggesting that 
this additional layer of gene regulation is crucial to sexual 
differentiation and fetal epigenetic programming [258]. 
Pfau and colleagues found evidence to suggest that adult 
mouse microRNA networks are regulated in a sex-spe-
cific way in response to stress, and that these effects are 
part of a larger, coordinated response involving transcrip-
tional and post-transcriptional regulation that is unique 
to each sex [222]. Using genome wide analysis of sex-spe-
cific microRNA and mRNA transcriptional profiles, they 
demonstrated that, analogous to transcriptional profiles 
for other stress-related genes, microRNA transcriptional 
profiles induced by stress were largely non-overlapping 
between males and females. In addition, similar to tran-
scriptional findings, these miRNA profiles demonstrated 
markedly different associations to molecular pathways 
and functions in each sex. Overall, males, but not females, 
showed a robust transcriptional and post-transcriptional 
response to stress, suggesting a form of “active” resist-
ance leading to behavioral resilience [222]. Male miRNA 
functional pathways overlapped to a greater degree with 
the pathways of other differentially expressed genes 
involved in the stress response than did female miRNA 
pathways, pointing to a potentially greater role of miRNA 
in stress-responsive molecular processes in males. (How-
ever, because the enrichment analyses were lower pow-
ered in females due to smaller gene lists, this effect may 
have been exaggerated). As there was minimal overlap in 
genes, miRNAs, and functional processes related to the 
stress response between males and females, these results 
also support the notion that the female response to stress 
is unique, and not simply an attenuated version of the 
male response.

Clinical findings
Clinically, there has been a recent focus on ways in which 
prenatal experience can affect subsequent susceptibil-
ity to mental illness [259–261], with female offspring 
being more susceptible to affective dysregulation and 
males more likely to suffer from memory and learning 

impairment if exposed to prenatal stress [262]. Early 
DNA methylation appears to play a role in this vulner-
ability, with evidence suggesting that predisposition to 
affective disorders in children is associated with sex-spe-
cific methylation of critical HPA-axis genes. In a recent 
experiment [263], it was hypothesized that anxious-
depressive behavior in young female, but not male, chil-
dren would be accompanied by greater methylation of the 
NR3C1 gene, a glucocorticoid receptor gene implicated 
in HPA feedback mechanisms [264]. In a prior study, 
mood worsening in mothers following delivery (i.e., low 
prenatal depression followed by high postnatal depres-
sion) was associated with methylation of NR3C1 in their 
offspring, an effect that was reversed by early postnatal 
maternal stroking of the infant [265]. In addition to evi-
dence supporting the authors’ behavioral hypothesis that 
girls were more likely to experience depressive symptoms 
in the setting of mismatched maternal prenatal–postna-
tal depression (in this case, either low prenatal depres-
sion followed by high postnatal depression, or vice versa), 
the results of their follow-up study showed that prena-
tal–postnatal mismatch had strong effects on NR3C1 
methylation in girls only, with low prenatal depression 
followed by high postnatal depression resulting in the 
largest increase [263]. Higher NR3C1 methylation pre-
dicted anxious-depressive behavior at 14 months in girls, 
whereas no association was seen for boys. Whether this 
association persists into adolescence and adulthood has 
not yet been determined.

Summary
Epigenetics represents a promising area of research for 
affective disorders. The relationship between the epi-
genetic response and the transcriptional response to 
stress suggest these processes act in a coordinated fash-
ion to elicit broader physiologic effects. Additional clini-
cal research is needed. Current findings are concordant 
with the notion that early epigenetic changes play a role 
in subsequent behavioral vulnerability.

Discussion
Taken as a whole, these studies provide considerable evi-
dence for sex differences in the CNS structures and pro-
cesses that contribute to affective regulation. Sex and sex 
steroids exert specific but wide-ranging effects on the 
brain (in general) and affective regulation (in particu-
lar) at virtually any level of investigation, from molecu-
lar to systems level, from synapse structure to network 
regulation  (see Table  1). Because mood dysregulation 
does not reside in a specific brain region nor does it rely 
solely on changes at any one physiologic level, cause-
and-effect with regards to these differences cannot be 
inferred. A change in transcription, for instance, may be 
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compensated for by other changes resulting in no dif-
ference in the ultimate outcome measure. As such, sex 
differences can exist without behavioral consequence. 
Nonetheless, we can conclude the following: (1) sex and 
sex steroids create a context that determines or influ-
ences the structures and processes underlying behavior, 
including affective regulation and response; (2) if we are 
attempting to understand the physiology of behavior by 
studying only one sex, we are likely to fail to uncover 
alternate molecular pathways that would help define 
the most critical loci at which physiologic adaptation 
to stressful stimuli fails to occur; and (3) our efforts to 
develop new therapeutics may be advanced by exploit-
ing the observation that manipulation of reproductive 
steroids can regulate mood in susceptible subgroups of 
women; i.e., sex steroids can serve as probes for defining 
the changes in cell signaling that precede and accompany 
changes in affective state.

Unfortunately, sex as a moderating variable has often 
been ignored or intentionally excluded from research 
studies due to concerns about added complexity (e.g., 
studies would need to control for factors, such as men-
strual/estrous cycles) and sample size (greater numbers 
are needed to power studies looking at sex differences a 
priori). Combined with our lack of understanding about 
the etiology of depression in general, this has left us with 
little evidence for generalizable sex-dependent charac-
teristics associated with "male" or" female" depression. 
As neuroscientific and genetic techniques yield a bet-
ter understanding of affective physiology, and as newer, 
more efficacious therapeutics with unique mechanisms 
of action such as ketamine and neurosteroids [174, 266] 
become better studied, a clearer picture may emerge 
regarding how sex ultimately influences susceptibility, 
symptom expression, and treatment.

Additional considerations for future work include 
the following: addressing, for any sexual dimorphism, 
whether findings reflect organizational, activational, or 
genetic differences; exploring other contextual factors 
that interact with stress/sex differences, including point 
in lifespan, past experience, and the different environ-
ments (both internal and external) to which males and 
females are subjected; and studying the effects of dif-
ferent stressors, particularly in human brains that are 
obviously more complex than the rodent models from 
which much of the evidence is derived. As an aspiration, 
relevant sex-specific targets may lead to the develop-
ment of more precise therapeutics, with requisite con-
sideration of safety/risk, practicality, and effectiveness. 
The extant research makes it clear that interventions in 
one sex cannot be assumed to have equivalent effects in 
the other, requiring studies powered to detect effects in 
both males and females. For instance, a treatment such as 

allopregnanolone that has known efficacy and safety pro-
files in women must be rigorously studied in men if it is 
to be considered for use in this population.

Sex and sex hormone signaling occupy a central role in 
the formation, programming, and functional orchestra-
tion of the brain. As such, attempting to define the spe-
cific effects of sex on the already mysterious and complex 
processes giving rise to affective disorders is daunting. 
Despite our inability to define the role of sex signaling 
factors in depression, their potential impact can be seen 
throughout the brain. Translation of described sex dif-
ferences in stress-related disorders into actionable data 
will require a far more comprehensive picture of the link 
between predisposing factors and behavioral outcomes, 
ideally in the form of novel, predictive, biosignatures. 
Though not specifically focusing on sex, Hultman and 
colleagues [267] used machine learning to distinguish 
profiles of depression-like behavior from profiles of the 
susceptibility to depression-like behavior. With EEG, 
these investigators provided evidence of a network-level, 
spatiotemporal, dynamic signature associated with vul-
nerability to depression that preceded stress, and that a) 
was distinct from the dynamic signature associated with 
behavioral dysfunction following the stressor; b) dif-
ferentiated susceptible mice from resilient mice; c) was 
present in three independent models of MDD; and d) 
was not affected by antidepressant manipulations. This 
type of mesoscopic phenotype may serve as an outcome 
measure that integrates sex differences at multiple lev-
els and across developmental timepoints, facilitating the 
assessment of how sex differences at the genetic or cel-
lular level influence brain dynamics associated with the 
vulnerability to or experience of affective dysregulation. 
Nonetheless, despite the impressively large number of 
ways in which sex may plausibly influence the develop-
ment and expression of affective disorders (see Fig. 1), we 
must look to the future to transform the current state of 
isolated findings into a more coherent picture of how sex 
differences meaningfully impact the regulation and dys-
regulation of affect.

Perspectives and significance
Abundant evidence exists for biological sex differences 
that may contribute to both susceptibility to depression 
and sex-differences in its prevalence. Nonetheless, our 
lack of understanding of the ontogeny of depression itself 
precludes determination of the etiopathogenic signifi-
cance of reported sex differences. To address the more 
general question, “Why would you think that sex would 
influence depression,” we present examples of the role 
of sex in regulating neurobiology at five related levels of 
observation. We believe that this framework for organiz-
ing observations from the literature may facilitate a less 
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particularized, more integrative approach to examining 
the role of sex in depression and, by so doing, also gener-
ate a more comprehensive picture about the relationship 
between predisposing factors and behavioral outcomes in 
affective illness.
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