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Abstract

Background: Human placental DNA methylation (DNAme) data is a valuable resource for studying sex differences
during gestation, as DNAme profiles after delivery reflect the cumulative effects of gene expression patterns and
exposures across gestation. Here, we present an analysis of sex differences in autosomal DNAme in the
uncomplicated term placenta (n = 343) using the lllumina 450K array.

Results: At a false discovery rate < 0.05 and a mean sex difference in DNAme beta value of > 0.10, we identified
162 autosomal CpG sites that were differentially methylated by sex and replicated in an independent cohort of
samples (n = 293). Several of these differentially methylated CpG sites were part of larger correlated regions of sex
differential DNAme. Although global DNAme levels did not differ by sex, the majority of significantly differentially
methylated CpGs were more highly methylated in male placentae, the opposite of what is seen in differential
methylation analyses of somatic tissues. Patterns of autosomal DNAme at these 162 CpGs were significantly
associated with maternal age (in males) and newborn birthweight standard deviation (in females).

Conclusions: Our results provide a comprehensive analysis of sex differences in autosomal DNAme in the term
human placenta. We report a list of high-confidence autosomal sex-associated differentially methylated CpGs and
identify several key features of these loci that suggest their relevance to sex differences observed in normative and
complicated pregnancies.
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Background

Sex is a key variable influencing biological systems from
the level of the cell to the level of the organism.
Biological sex is typically defined by sex chromosome
complement, which largely corresponds with the gonadal
sex of the organism [1]. Biological sex is of particular
importance in the study of human pregnancy and
prenatal development as male fetal sex is a risk factor
for several pregnancy complications including preterm
birth, intrauterine growth restriction, and maternal ges-
tational diabetes [2—6]. Sex differences during prenatal
development are likely affected by sex differences in the
placenta, the organ critical for regulating growth and
development of the embryo/fetus throughout gestation.
Except in rare cases, placental cells harbor the same sex
chromosome complement as the fetus, and sex differ-
ences in placental function, for example placental
response to infection and stress, could contribute to sex
differences in fetal growth and development [5, 7, 8].
Placental DNA methylation (DNAme) data are a
valuable resource for studying sex differences during
gestation, as DNAme profiles after delivery reflect the
cumulative effects of gene expression patterns and expo-
sures across gestation.

In any tissue, when evaluating sex-specific DNAme
both autosomal and X chromosomal loci should be
considered. Sex differences in X chromosome DNAme
patterns are extensive and expected, as DNAme plays a
key role in the process of X-chromosome inactivation
(XCI), by which one of the X chromosomes in female
cells is epigenetically silenced [9, 10]. In contrast, the ex-
tent to which autosomal DNAme varies by sex is less
clear. Initial reports of sex-specific autosomal DNAme
were later deemed false positives, attributed to micro-
array probes with high sequence affinity to multiple gen-
omic regions including X- or Y-linked loci [11, 12]. It is
now common to exclude CpG sites measured by such
probes prior to analysis of DNAme data, but rarely are
sex differences at the remaining autosomal CpGs investi-
gated. As a result, literature investigating sex differences
in placental autosomal DNAme and gene expression
patterns is sparse. However, the handful of studies con-
ducted on placentae from uncomplicated pregnancies
suggest that the placenta harbors an appreciable number
of autosomal loci with sex-specific DNAme profiles [13,
14] and that up to 60% of sex-differentially expressed
placental genes are autosomal [15, 16].

Epigenome-wide association studies have been con-
ducted to investigate the effects of disease and exposures
in pregnancy, generally focusing on autosomal variation.
Disease-related EWAS of the placenta include pre-
eclampsia [17-21] (reviewed in [22]), acute chorioam-
nionitis [23], intrauterine growth restriction [20, 24], and
fetal birthweight [25], among others. Recent placental
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EWAS of environmental exposures and maternal pheno-
types include investigations into heavy metals [26, 27],
pollution [28, 29], maternal smoking [30], maternal
stress [31], blood pressure [32], diabetes [33], body mass
index, gestational weight gain, and dyslipidemia [34, 35].
Understanding how biological sex is associated with
autosomal DNAme is an underexplored facet of prenatal
epigenetic research, and may shed light on the factors
contributing to sex differences observed in growth and
development throughout gestation. This study seeks to
comprehensively characterize sex differences in the un-
complicated, full-term (> 37 weeks of gestation) placen-
tal DNA methylome, with the aim of establishing a
baseline of sex differences observed in the uncompli-
cated placenta.

Methods

Datasets

The discovery cohort was compiled from public placen-
tal I[lumina Infinium HumanMethylation450 (450K)
datasets including GSE73375 (n = 9, NC, USA) [36],
GSE75428 (n = 289, Rhode Island Child Health Study,
RI, USA) [37], GSE98224 (n = 9, Toronto, Canada) [38],
GSE74738, GSE100197, GSE108567, and GSE128827 (1 =
34, all Epigenetics in Pregnancy Complications Cohort,
Vancouver, Canada) [20, 39-41]. These compiled data
were used as described in Yuan et al. to generate PIaNET,
the Placental DNAme Elastic Net Ethnicity Tool, for esti-
mating genetic ancestry from placental DNAme data [40].
An independent North American dataset was used for
replication, GSE71678 (n = 293, New Hampshire Birth
Cohort Study, NH, USA) (Table 1).

Verification of sample sex and identity

In both the discovery and replication cohorts, sample
sex was verified by hierarchical clustering on B values
from CpGs mapping to the X and Y chromosomes (n =
11,648), and on P values from 5 CpGs in the X inactiva-
tion center methylated proportionally to the number of
chromosomes silenced by XCI [10]. Two major sample
clusters were observed in each step, corresponding to
XX and XY chromosome complements. Samples were
confirmed to be male or female if both sex clustering
checks agreed with the annotated sex.

Samples were evaluated for genetic uniqueness
using functions from the ewastools R package [42].
Two apparent genetic duplicates were discovered in
the replication cohort; both were excluded from
downstream analyses. Following sex and identity
verification, the rs probes on the 450K array (n =
65) and CpGs mapping to the X or Y chromosome
(n = 11,648) were removed from the discovery and
replication datasets.
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Table 1 Demographic characteristics of discovery and replication cohorts

Discovery Replication
Female (n = 177) Male (n = 164) p value® Female (n = 137) Male (n = 156) p value®
Gestational Age
Weeks (mean (SD)) 390 (£ 1.1) 39.1 (£ 09) 0.53 396 (= 1.1) 39.7 (£ 1.0) 0.28
Condition
Healthy term 100 100 0.02 114 125 0.10
SGA 37 45 9 4
LGA 40 19 13 24
PlaNET Ancestry®
Coordinate 1 (mean (SD)) 0.10 (+ 0.25) 0.07 (+ 0.23) 0.27 0.0009 (+ 0. 0016) 0.0012 (+ 0.0018) 0.000024
Coordinate 2 (mean (SD)) 0.11 (£ 0.26) 0.05 (+ 0.14) 037 0.0038 (+ 0.0270) 0.0032 (+ 0.0103) 0.011
Coordinate 3 (mean (SD)) 0.78 (+ 0.36) 0.88 (£ 0.27) 0.23 0.9951 (+ 0.0279) 0.9956 (+ 0.0111) 0.001

SD refers to standard deviation; SGA and LGA refer to small (< 10th centile) and large (> 90th centile) birthweight for gestational age within each sex, as assigned

by the original publications

“p values represent male-female comparisons, from Wilcoxon rank-sum tests for continuous and Fisher's exact test for categorical variables
SPIaNET outputs of DNAme-based ethnicity/ancestry probability values range from 0 to 1 and sum to 1 for each sample. Coordinate 1 is associated with
probability of African ancestry, coordinate 2 with East Asian ancestry, and coordinate 3 with European ancestry [40]

Data processing and ancestry estimation

The discovery cohort was subjected to probe filtering
and normalization as described in Yuan et al. [40], the
replication cohort was processed similarly and independ-
ently. Preterm samples (< 37 weeks’ gestation) and those
affected by preeclampsia were excluded from both data-
sets. Briefly, CpGs removed were those targeted by non-
specific probes [43, 44], placental non-variable CpGs
(range of P values < 0.05 between the 10th and 90th cen-
tile in all samples in these cohorts) [45], poor quality
probes (detection P value > 0.01 or bead count < 3 in
more than 1% of samples) [46], and probes targeting
polymorphic loci [43, 44]. The discovery cohort was nor-
mal exponential out-of-band (noob) and beta mixture
quantile (BMIQ) normalized with functions from the
wateRmelon and minfi packages [47]. The replication
cohort was functional and noob normalized to
correspond with the original publication of that dataset
[26]. Using the PIaNET R package [40], samples were
assigned three DNAme-estimated probabilities of arising
from populations of African/Black, East Asian, and
European/white descent, which sum to 1 in each sample.
While PlaNET is a placental DNAme classifier trained
on self-reported ethnicity, the output probabilities are
significantly associated with both self-reported ethnicity
and genetic ancestry and as such are typically referred to
as coordinates [40]. In contrast to principal components
analysis or multidimensional scaling-based methods of
ancestry deconvolution, genetic ancestry variation is
captured by adjusting for any two of the three PlaNET
coordinates in statistical models [40]. This is similar to
methods recommended for cell type adjustment in
which any one of a set of compositional estimates is

excluded from models to avoid overfitting [48]. After
processing, the discovery cohort consisted of 324,104
autosomal CpGs in 341 samples suitable for sex-specific
DNAme analysis, while 341,939 autosomal CpGs in 293
samples remained for replication analyses.

Global sex-specific DNAme profile analyses

Sex differences in mean DNAme [ values were tested at
324,104 filtered autosomal loci and 12,329 additional
CpGs annotated to autosomal Alu and LINE1 repetitive
elements by non-parametric Kruskal-Wallis tests. CpGs in
repetitive regions were pulled from the non-probe-filtered
dataset (n = 473,929 CpGs) by the overlap of Illumina
probe locations and the UCSC hgl9 RepeatMasker track
[49]. Sex differences in cell type proportions (trophoblast,
syncytiotrophoblast, stromal, endothelial, Hofbauer, and
nucleated red blood cells), estimated using reference-
based placental cell deconvolution [40], were evaluated
using a linear model adjusting for gestational age, dataset,
and PIaNET coordinates 2 and 3.

Identification of site-specific sex-associated autosomal
DNAme

Autosomal differentially methylated positions (DMPs)
were identified in the discovery cohort by linear modeling
on M values, adjusting for gestational age, dataset location
of origin, and PIaNET coordinates 2 and 3. Benjamini-
Hochberg (FDR) multiple test correction was performed,
effect size was calculated as AP = Average Male  — Aver-
age Female f. In the replication cohort, a similar model
was used though PlaNET-inferred ancestry was not
adjusted for as this cohort was very homogeneous (pre-
dominantly European/white), see Supplementary Figure 1.
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DMPs were considered replicated at FDR < 0.05 and Af >
0.05 in the same direction as the discovery cohort.

BLAST analysis for sex chromosome cross-hybridization
Command-line nucleotide BLAST (blastn) was per-
formed on the 50-nucleotide probe sequences of repli-
cated DMPs, against four versions of hgl9 (in silico
bisulfite converted fully methylated and fully unmethy-
lated, both forward and reverse complement) [12].
BLAST results were considered non-specific with a
match of > 40 nucleotides with > 90% sequence identity
and a nucleotide match at position 50. Chen et al. and
Price et al. used similar criteria [43, 44], though we
chose to tolerate sequence matches with gaps in the
interest of discovering even low-probability cross-
reactivity to the sex chromosomes, as other studies have
shown that 50-mer probes may cross-hybridize to re-
gions with as little as 75-80% sequence identity at > 14
contiguous nucleotides [50].

Gene ontology analyses

Gene Ontology (GO) enrichment analysis was conducted
on genes associated with replicated DMPs using the
“gometh” function from missMethyl, which accounts for
the potential bias of multiple CpGs per gene [51]. The
background set was genes associated with the 324,104
linear modeling input autosomal CpGs. Biological
process GO terms satisfying FDR < 0.05 were considered
significantly enriched.

Proximity to transcription factor binding motifs

Using the CentriMo tool for local enrichment analysis from
the Multiple Em for Motif Elicitation (MEME) Suite
browser tool [52-54], DMPs were examined for enrich-
ment in proximity (100-bp window with the CpG of
interest at the center) to transcription factor (TF) binding
motifs from the Homo sapiens Comprehensive Model
Collection (HOCOMOCO) version 11 as compared to the
background 324,104 autosomal CpGs. Exact goodness-of-
fit-tests were used to evaluate enrichment for proximity to
androgen receptor (AR) or estrogen receptor (ER) o and [3
binding sites, AR/ER binding site genomic coordinates were
obtained from Wilson et al. and Grober et al. [55, 56].

Relationship between sex-specific DNAme and differential
gene expression

Placental gene expression data (Affymetrix Human Gene
1.0 ST Array) was downloaded for GSE75010 [57]. Non-
preeclamptic samples from this cohort born > 37 weeks
of gestation were analyzed (n = 34, 47% female). Genes
within 250 kilobases of the 162 DMPs were tested for
differential expression by sex, adjusting for maternal
hypertension (yes/no), self-reported ethnicity, and
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gestational age at birth. Genes were considered differen-
tially expressed by sex at nominal significance (p < 0.05).

Further characterization of differentially methylated CpG
sites

Differentially methylated genomic regions (DMRs) were
defined from all 324,104 autosomal CpGs using the R
package DMRcate with lamba = 1000 and C = 2 [58].
DMRs were considered significant at an FDR < 0.05 if
comprised of at least 3 CpG sites with a mean AP
(Average Male B — Average Female ) of > 0.05 in either
direction. A lower AP was tolerated in this analysis as it
was a regional average.

Extended phenotypic analysis

Associations between clinical variables and sample
scores along the first principal components (PC1) com-
puted within each sex at the top 162 DMPs were
assessed via sex-stratified linear regression in a subset of
the Vancouver cohort with available extended clinical in-
formation (samples from datasets GSE74738, GSE100197,
GSE109567, GSE12887, n = 34, 53% female). Categorical
variables assessed were 450K array row, chip, and batch;
positive maternal serum screen (yes/no); and delivery type
(vaginal/cesarean). Continuous variables were gestational
age, maternal body mass index, maternal age, birthweight,
birthweight standard deviation z-score (corrected for in-
fant sex and gestational age), processing time between de-
livery and placental sampling, and estimated proportions
of placental cell types.

Results
Genome-wide measures of DNAme do not differ by
placental sex
To investigate whether female (XX) and male (XY) term
placentae had different global DNAme profiles, we
evaluated mean genome-wide DNAme at all autosomal
CpGs (n = 324,104) and at repetitive elements, frequently
interrogated as surrogates for global DNAme as they com-
prise roughly 30% of all genomic nucleotides and 30% of
CpG dinucleotides, specifically [59]. Mean autosomal
values did not differ by sex in this cohort (Kruskal-Wal-
lis p > 0.05); sex was also not significantly associated
with mean DNAme at Alu or LINE1 repetitive elements.
When measuring DNAme in bulk tissue such as the
placenta, it is important to consider how sampling
procedures and/or biology may alter relative cell type
proportions in a biological sample and to consider how
this may be reflected in the results [60]. Considering six
major placental cell types (trophoblasts, syncytiotropho-
blasts, stromal cells, Hofbauer cells (placental macro-
phages), and endothelial cells), relative cell type proportions
did not differ by sex in this cohort (Fig. 1).
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Male placentae show higher DNAme at differentially
methylated autosomal CpGs

The results of linear modeling for sex-specific
DNAme at various statistical (FDR) and biological
(AB) thresholds are reported in Table 2. Significant
differential DNAme was defined as FDR < 0.05 and

an absolute AP > 0.10 between males and females; a
larger effect size was chosen to focus on CpGs more
likely to have biological impact, and reproduce in fu-
ture studies [20]. In total, 166 sex-associated differ-
entially methylated positions (DMPs) fit these
criteria, of which 92% were more highly methylated



Inkster et al. Biology of Sex Differences (2021) 12:38

Table 2 Linear modeling for sex-specific autosomal DNAme
shows consistent higher male methylation

AB>0 AB > 0.05 AR >0.10 AB>0.20
FDR < 0.05 24,715 (0.74) 2,942 (0.87) 166 (0.92) 4 (1.00)
FDR < 0.01 14,108 (0.80) 2,682 (0.88) 166 (0.92) 4 (1.00)

Number of significantly differentially methylated autosomal positions at
various statistical and biological thresholds are shown. FDR indicates the
Benjamini-Hochberg false discovery rate, and A refers to B value sex
difference (male-female). Numbers in brackets indicate the proportion of sites
at each threshold more highly methylated in male placentae

in males than in females, a pattern observed at all
thresholds considered (Fig. 1, Table 2). See Supple-
mentary Table 1 for the results of all investigated
autosomal CpGs.

We hypothesized that some DMPs may comprise lar-
ger regions of correlated sex-specific DNAme, as several
of the DMPs overlapped the same genes and genomic
regions. DMR analysis in the discovery cohort identified
87 sex DMRs. The 87 DMRs were comprised of 435
CpGs, with an average of 5 CpGs per DMR, and ranged
in size from 36 to 3306 base pairs (mean 890 base pairs);
DMRs were on average 6.3% differentially methylated
between the sexes. Of the 87 DMRs, 29 (33%) included
one or more of the 166 identified DMPs, and conversely,
46 of the 166 DMPs (28%) were part of DMRs. It is
possible that more of the DMPs are part of correlated
regions of sex-biased differential DNAme, but the array
coverage is not sufficient for their detection. Genes over-
lapping sex-specific DMRs included several from the
chemokine ligand CCL family (2, 11, 13), the keratin
KRT family (6, 74), the LCE family (1B, 6A), the SPRR
family (1A, 2A, 2C, 4), and the ZNF family (423, 300),
including ZNF300 and ZNF423, see Fig. 2. SERPINA6
overlapped a DMR more highly methylated in male sam-
ples. For a list of all identified DMRs, see Supplementary
Table 2.

Replication of sex differences in DNAme

In EWAS studies, it is important to evaluate the robust-
ness of any findings in an independent dataset to in-
crease the likelihood of true positive findings. For
replication, linear modeling was conducted to identify
DMPs by sex in an independently processed Illumina
450K dataset, GSE71678 (n = 293, 47% female). Because
differences in DNAme (Ap) are related to both biological
and technical variables, and can vary for technical
reasons alone by as much as 0.03-0.05, we used a
less stringent AP threshold to define replication [20,
45]. Of the 166 DMPs identified in the discovery co-
hort, 98% (n = 163) replicated at an FDR < 0.05 and
AB > 0 in the same direction as observed in the dis-
covery cohort, see Fig. 1.
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Genomic cross-hybridization of probes underlying sex-
specific DNAme

To exclude the possibility that the sex-specific auto-
somal DNAme was the result of sex chromosome cross-
hybridization, we BLAST-ed the probe sequences
associated with the replicated 163 DMPs against the
hg19 human reference genome. Only one probe showed
evidence for cross-reactivity: cg02325951, underlying a
CpG in the gene body of FOXN3. In this probe sequence
43 nucleotides match a region on Xp, approximately 1
kb upstream of HSD17BI0 (chrX: 53467618-53467660).
As such, sex-specific DNAme at this CpG could not be
confidently attributed to the intended genomic target
(chrl4: 89878619-89878668), and we elected to exclude
this CpG from downstream analyses (Supplementary
Figure 2). This probe has previously been reported to be
differentially methylated by sex in the placenta [14].

Characterization of autosomal sex-specific DMPs

The remaining 162 replicated and BLAST-ed DMPs
were investigated for biological meaning. We observed
no enrichment for being located in specific genomic
regions (gene bodies, promoters, intragenic regions), on
any particular autosomal chromosome, nor for their
position relative to CpG islands (CpG islands, shores, or
shelves). Gene ontology analysis revealed significant en-
richment for 10 biological process terms, which could be
largely divided into two categories, the first related to
chemokines/chemotaxis and immune function (chemo-
taxis; eosinophil, monocyte, and lymphocyte chemotaxis;
chemokine-mediated signaling; cellular response to
interleukin-1), and the second related to epithelial bar-
rier function (peptide cross-linking, keratinocyte differ-
entiation, keratinization, and cornification).

Association with gene expression and transcription factor
binding sites

As DNAme-gene expression relationships can occur
over moderate genomic distances, we tested whether
genes within 250 kilobases of the 162 DMPs displayed
sex-biased expression. Of these 242 genes, 11 were dif-
ferentially expressed between male and female placentae
(nominal p < 0.05), see Supplementary Table 3. Among
the differentially expressed genes was ZNF300, which
was more highly expressed in female samples and har-
bored a promoter DMP that was more highly methylated
in males. ZNF300 has been previously reported to be
more highly expressed in female placentae [16].

Altered DNAme may interact with gene expression
patterns by affecting the efficiency of TF binding, either
positively or negatively depending on the transcription
factor [61]. Binding motifs for six transcription factors
were significantly overrepresented within 200 base pairs
of the top DMPs (adjusted P value < 0.05 and CentriMo
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(See figure on previous page.)

Fig. 2 Scatterplots of sex-differentially methylated regions and probes in key genes. a Differentially methylated region spanning 5 CpGs in
ZNF300 in chromosome 5; male samples are indicated in red, and females in orange; the CpG coordinates along chromosome 5 are indicated on
the X axis, while DNA methylation 3 values for each sample are plotted along the Y axis. Gene tracks from the UCSC Genome Browser with the
CpG locations are indicated. b A differentially methylated region in ZNF423; coordinates along chromosome 16 are indicated on the X axis. ¢ A
significantly differentially methylated CpG site in the gene body of SPONT; this site overlaps an estrogen receptor (3 binding site

E-value < 1). This included motifs for AHR, ATF3,
GMEB?2, ZBT14, and KAISO (encoded by ZBTB33), see
Table 3. ZBTB33 is located on the X chromosome
(Xq24), while the other transcription factors are encoded
by autosomal genes. AHR, ATF3, GMEB2, ZBTB33, and
ZBTB14 were confirmed to be robustly expressed in the
term placenta using dataset GSE75010, all five were more
highly expressed than the median expression log2 counts
per million of all placentally expressed transcripts.

We further tested whether the 162 DMPs were
enriched for proximity to ER a and  and AR binding
sites, as molecular sex differences can arise in general
from the action of either sex chromosomes or sex hor-
mones [1]. We found no enrichment for ER o/f or AR
binding sites within 200 base pairs around the CpG of
interest. Only two DMPs overlapped AR and ER p bind-
ing sites, respectively; an intergenic CpG site on
chromosome 8 overlapped an AR binding site, while a
CpG site in the body of SPONI overlapped an ER [
binding site, see Fig. 2.

Limited overlap of DMPs with previous studies

To contextualize our results within the existing litera-
ture, we considered the overlap of the 162 DMPs with
two previous placental DNAme studies [13, 14]. Com-
parisons were restricted to probes common to our dis-
covery cohort (n = 324,104) and each of the previous
studies’ datasets, respectively. None of the 21 autosomal
DMPs reported by Martin et al. could be evaluated for
overlap with our results as they were excluded for being
poor quality in our discovery cohort, attributable to
technical variation between the two studies [13]. How-
ever, at an FDR < 0.05, our study identified 84/335
DMPs (25%) and 154/335 DMPs in the same genes
(46%) reported by Mayne et al. [14] (Table 4).

Combined effect of sex-specific DNAme at DMPs

To evaluate the cumulative effects of sex-specific DMP
methylation, we performed principal components
analysis on the B values associated with these 162 CpGs
in all samples. PC1 (37.1% variance) and PC2 (4.76%
variance) were significantly associated with sample sex
(ANOVA p < 0.05, respectively), and male and female
samples formed overlapping clusters along PC1 (Fig. 3).

As sex biases are observed in the frequency and sever-
ity of many pregnancy complications, we hypothesized
that PC1 may be associated with sex-specific clinical fea-
tures, such as infant birthweight. When considering both
sexes together, no clinical or technical characteristics
were significantly associated with sample position along
PC1, although PCl1 only explains a portion of the
variance by sex at these loci (37.1%) so this is not unex-
pected. However, when sex-stratifying PCA and associ-
ation analyses, maternal age was significantly positively
associated with PC1 in males, while birthweight standard
deviation was significantly positively associated with PC1
in females.

We also leveraged PCA to investigate the relationship
between DMP methylation and gestational age and sex
chromosome complement. Twenty-four second and
early third trimester samples (21-32 weeks), including
three with 45X chromosome complements, were pro-
jected into the PCA space associated with the 162 DMPs
in the discovery cohort. Second and early third trimester
male and female samples localized to the top half of the
plot, indicating that PC2 is associated with gestational
age (p < 2.2e- 16). The 45,X samples were found to
localize to the male cluster along PC1 within the youn-
ger gestational age samples, suggesting a possible rela-
tionship between X chromosome complement and
DNAme at these DMPs, see Supplementary Figure 4.

Table 3 Transcription factor binding motifs overrepresented within 100bp of the top 162 DMPs

Motif ID Coding gene Chromosome Consensus Seq E-value Adj P value
AHR_HUMAN.H11MO.0.B AHR 7 DTYGCGTGM 0.00 5.60E- 14
ATF3_HUMAN.HTTMO.0.A ATF3 1 GGTSACGTGAB 0.04 530E- 05
GMEB2_HUMAN.H11MO.0.D GMEB2 20 NBKTACGTVRN 0.00 2.50E- 08
KAISO_HUMAN.H11MO.0.A ZBTB33 X SARRYCTCGCGAGAV 0.00 9.30E- 09
KAISO_HUMAN.HT1TMO.1.A ZBTB33 X TMTCGCGAGAN 0.00 1.30E— 06
ZBT14_HUMAN.H11MO.0.C ZBTB14 18 GGAGCGCGC 0.09 1.20E— 04

Consensus sequences are indicated with IUPAC nucleotide codes. E values refer to the central enrichment test statistic employed by CentriMo, indicating the

likelihood for motif enrichment near the DMP
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Table 4 Overlap of placental autosomal differentially methylated CpGs reported in this study with previous literature

Martin et al. 2017

Mayne et al. 2017

Study
Sample size (n, % female) 84 (69%) 62 (56%)
Gestational age (mean weeks) 255 237
Autosomal DMPs reported (n) 21 420
Autosomal DMPs with higher male 3 (%) 62% 100%
Autosomal DMP probes covered in this study (n)* 0/21 335/420
Overlap with present study
FDR < 0.05, AB > 0.10 (n = 162) - 0/335
FDR < 0.05, no AB (n = 24,715) - 84/335
154/335

Genes at FDR < 0.05 (n = 6,733) -

*Due to differences in probe filtering, not all DMPs reported in previous studies were in the filtered dataset of 324,104 autosomal CpGs used here, overlap only

considered for common CpGs
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Discussion

In this study on human placenta, we identified 162
DMPs across all autosomes that showed robust DNAme
differences by placental sex. Of the 162 sex-associated
DMPs, over 90% were more highly methylated in male
placentae, confirming a previous observation [13].
Interestingly, most somatic tissues display the opposite
pattern; the majority of sex-associated DMPs are more
highly methylated in female samples [62] in blood [63,
64], buccal swab [63], prefrontal cortex [65], pancreatic
islets [66], and also in a meta-analysis of 36 somatic tis-
sues [62]. Additionally, a study of placental DNAme by
whole-genome oxidative bisulfite sequencing identified
that male placentae are on the order of 1-2% more
highly methylated overall than females [67]. Though we
saw no significant difference in array-wide mean
DNAme by sex, this could be related to the uneven
probe distribution of the 450K array, with coverage con-
centrated in functionally relevant areas [68].

While the underlying cause of higher DMP DNAme in
males in unclear, our investigation into a limited number
of placentae with a 45X karyotype may suggest a role
for X chromosome dosage. Studies of sex chromosome
aneuploidies have revealed extensive influences of X
chromosome dosage on DNAme profiles autosomal loci,
for example in females affected by Turner syndrome (45,
X) and males affected by Klinefelter syndrome (47,XXY)
[69, 70]. Additionally, it has been proposed that X-
chromosome inactivation may be less complete in the
human placenta as compared to somatic tissues [71],
and it is possible that the placental inactive X interacts
differently with autosomal loci than in somatic tissues. A
further link between DMP DNAme profiles and the X
chromosome was found in the enrichment for overlap
with KAISO protein binding motifs. KAISO is a tran-
scription factor encoded by the X-linked ZBTB33 gene,
and has been reported to repress gene expression by
binding methylated DNA [72]. ZBTB33 being X-linked
may imply the existence of interactions between sex
chromosomal and autosomal loci in the placenta. Fur-
thermore, we found no association of DMPs with nearby
ER or AR binding sites, making it less likely that hor-
mone effects underly these differences.

Genes overlapping the top 162 DMPs were enriched
for biological process gene ontology terms related to
chemokines and chemotaxis, as well as to the process of
keratinization. This may suggest that the placenta medi-
ates sex differential immune function and/or placental
trophoblast structure or function during gestation, as
genes from the KRT or keratin gene family are often
used as cell-surface markers of placental trophoblasts
[73], the most abundant placental cell type [74]. Several
genes from the ZNF family also overlapped DMPs and
DMRs. ZNF423 and ZNF300, specifically, overlap DMPs
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that are more highly methylated in males, and are DNA-
binding Kriippel-like C2H2 zinc finger transcription fac-
tors [75]. ZNF300 has been reported to be more highly
expressed in female placentae in a study of first trimester
conceptuses [16], this is consistent with the higher male
DNAme in the ZNF300 promoter we observe here (Fig.
2). ZNF423 was recently reported to regulate networks
of gene co-expression (co-expression modules) in the
human placenta that are conserved across gestation
[15]. Along with the ENFI gene, ZNF423 regulated the
most highly conserved placental co-expression module
between humans and mice, suggesting the importance
of ZNF423 in the regulation of patterns of placental
gene expression. To our knowledge, sex differences in
placental DNAme of ZNF423 have not previously been
reported, nor were sex differences in the ZNF423 co-
expression module reported. The sex-specific DNAme
observed in this study across ZNF423 could suggest
that the conserved placental co-expression module
identified by Buckberry et al. may be regulated in a sex-
specific manner. For the plots shown in Fig. 2, the
location of all CpG sites shown aligned with the
RefGene and ChromHMM tracks from the UCSC
Human Genome Browser [76] are available in Supple-
mentary Figure 3.

To understand the extent to which our DMPs were
related to sex differences in placental gene expression, we
investigated placental microarray expression data for
genes within 250 kilobases of the 162 DMPs. We observed
higher female expression of ZNF300, consistent with
previous results as discussed above. However, though 4%
of these 242 genes showed sex-specific expression, the
majority (96%) were not significantly differentially
expressed in the placenta by sex. This may be related to
the small sample size of the gene expression cohort uti-
lized (n = 34), the role of additional factors beyond
DNAme in regulating gene expression, and the possibility
of alternative splicing and sex-specific isoform expression,
which would not be captured in microarray analysis [77].

Principal components analysis found that PC1 was as-
sociated with increased maternal age in male samples,
and increased birthweight standard deviations in female
samples. While maternal age has been positively associ-
ated with increased risk of preeclampsia development,
we are not aware of sex differences in preeclampsia risk
by maternal age [78]. Conversely, birthweight standard
deviation is a metric that is calculated using sex- and
gestational age-adjusted growth curves [79], and as such
is independent of both sex and gestational age. Although
birthweight standard deviation did not differ significantly
by sex, within female samples, a higher birthweight
standard deviation was associated with those samples
localizing toward the female extreme of PCl. To our
knowledge, this is the first report suggesting that
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placental molecular features may interact with within-
sex birthweight distributions.

In comparing the DMPs discovered in this study to
findings previously reported in the human placenta
[13, 14] we observed limited overlap, although all of
the 85 DMPs from our study overlapped with previ-
ous reports were differentially methylated in the same
direction by sex as previously reported. Limited over-
lap may partially relate to cohort size, as the cohort
used in this study is larger than any used previously
(341 samples versus 62 and 84 samples), increasing
our power to detect true positive sex differences. Des-
pite imperfect overlap with previous studies, we ob-
served a high degree of DMP reproducibility between
our discovery and replication cohorts, suggesting that
the 162 DMPs identified here show consistent sex dif-
ferences in placental autosomal DNA.

We acknowledge several limitations of our findings.
First, the discovery cohort samples are inferred to be
largely of European and East Asian ancestry, and the
replication dataset is comprised exclusively of European
ancestry samples [26], as such our results may not
generalize to other ancestral populations. This is a limi-
tation applying to nearly every large-scale epigenome or
genome-wide association study [80, 81], and inclusion of
samples of diverse ancestry should be considered in the
construction of future cohorts. Second, the Illumina
450K array does not provide coverage of all genomic
CpGs, specifically in non-coding regions, and future in-
vestigations using higher-resolution technologies such as
whole-genome bisulfite sequencing would be valuable.
We also acknowledge that by term, both sex chromo-
some complement and sex hormone levels have had
ample opportunity to exert their effects, and thus we
cannot disentangle which patterns of sex-specific
DNAme observed may be related to each.

Perspectives and significance

In summary, we find that autosomal sex differences in
DNAme exist in the human placenta, and in contrast to
somatic tissues the majority of placental autosomal sex-
differentially methylated CpG sites are more highly methyl-
ated in male samples. These results are intended to
establish a baseline for DNAme sex differences existing in
the uncomplicated term placenta, and we anticipate that
they will be useful to contextualize results of analyses
from the placentae associated with sex-specific preg-
nancy complications such as preterm birth and early-
onset preeclampsia.
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