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Abstract

Background: Men have been, and still are, included in more studies than women, in large part because of the
lingering belief that ovulatory cycles result in women showing too much variability to be economically viable
subjects. This belief has scientific and social consequences, and yet, it remains largely untested. Recent work in
rodents has shown either that there is no appreciable difference in overall variability across a wealth of traits, or

that in fact males may show more variability than females.

Methods: We analyzed learning management system logins associated to gender records spanning 2 years from
13,777 students at Northeastern lllinois University. These data were used to assess variability in daily rhythms in a

heterogeneous human population.

Results: At the population level, men are more likely than women to show extreme chronotypes (very early or very
late phases of activity). Men were also found to be more variable than women across and within individuals.
Variance correlated negatively with academic performance, which also showed a gender difference. Whereas a
complaint against using female subjects is that their variance is the driver of statistical sex differences, only 6% of
the gender performance difference is potentially accounted for by variance, suggesting that variability is not the

driver of sex differences here.

Conclusions: Our findings do not support the idea that women are more behaviorally variable than men and may
support the opposite. Our findings support including sex as a biological variable and do not support variance-based
arguments for the exclusion of women as research subjects.

Background

Persistent beliefs that ovarian cycles make women
more variable, and therefore experimental confounds,
have contributed to the exclusion of women as re-
search subjects and have resulted in males being the
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default sex in both human and animal experiments
[1-6]. These persistent beliefs have left female sub-
jects substantially understudied compared to men [1,
5, 7, 8]. Despite national policies to try and mitigate
this exclusion [9, 10], both the belief and its negative
effect remain prevalent [11-15].

Recently, a number of studies have looked at animal
data—from genetics to time series analysis of physi-
ology—and found that in fact males show either equal or
slightly greater variance than females across many traits
[16-18]. For example, when wusing continuous
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physiological and behavioral recordings, we previously
demonstrated that male mice show more variance within
a day than female mice show across an entire 4-day
ovarian cycle [16].

To our knowledge, analyses directly comparing vari-
ance over time in men and women have not been re-
ported, despite “common knowledge” to the contrary. In
part, this has been due to difficulty obtaining data that is
both longitudinal (following individuals over time to
capture daily and monthly cycles) and wide enough to
cover a large population of men and women. We found
such a dataset when uncovering the impact of circadian
variation on student performance, using logins to the
Northeastern Illinois University (NEIU) campus learning
management systems as proxies for activity [19]. Here,
we use these same data to explore the differences in
variance across multiple timescales in men and women,
across and within individuals.

Turning the old belief into a hypothesis, we sought to
confirm or reject whether data from women is more
variable than data from men over the same time frame.
In this case, the data contain no information about the
phase of any individual’s ovarian cycles or the presence
or absence of hormonal birth control that might affect
cycling. Therefore, women are treated as randomized
with respect to the cycle phase, hypothetically maximiz-
ing their across-individual variance, and so making for
an ideal test case.

Methods

Under the Northeastern Illinois University institutional
review board (IRB) protocol #16-073 MO1, data from
13,777 students were collected, de-identified, and proc-
essed as described previously [19]. Briefly, student data
contained time-stamped events for each time a student
logged into NEIU’s learning management system. Login
events for a specific student ID (randomized pin to as-
sure anonymity) were identified with both demographic
and academic variables. The only demographic informa-
tion used here was self-reported gender, which is avail-
able in the university records as a binary (M/F). We,
therefore, use the conventional terms “gender,” “men,”
and “women” when referring to human subjects, and
“sex,” “male,” and “female” when referring across species
or to effects referenced in the literature (e.g., “sex as a
biological variable,” but see [20, 21]). Academic variables
include semester GPAs, courses taken, start and end
times of individual courses, and individual course grades.
A threshold of 12 entries per individual was applied to
all entries. If an individual did not meet this threshold or
was missing a gender descriptor, then that individual
was excluded from these analyses. This filtering had
already been carried out in the generation of the data
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analyzed here, so that all 13,777 individuals were in-
cluded in all analyses in this manuscript.

Variables were processed in the R statistical package
[22], and subsequent analyses were carried out with both
R and Matlab 2019a. The date of each login event was
compared against the individual student’s class schedule
as well as NEIU’s academic calendar, and each login
event was designated as occurring on a “class day” or
“non-class day.” The median radial login phase was cal-
culated for class days and non-class days for each indi-
vidual per semester using the circular statistics toolbox
[23] for Matlab. Averages of histograms of activity for
each individual by gender and day type were calculated
using means, as medians generated discontinuous out-
comes that were not representative of daily distributions;
histograms were normalized by gender, so that each gen-
der had the same area under the curve for a given com-
parison, allowing comparison of distributions rather
than absolute amount of activity. Pairwise comparisons
between men and women utilized a paired ¢ test. Corre-
lations are Pearson’s correlations.

Results

Men are more variable than women as individuals and as
a population

At NEIU, logging into the learning management sys-
tem generates a user-specific timestamp. These data
were de-identified, and entries were separated into
those dated the same as a day on which that student
had a registered class (“class day”) and all other days
(“non-class day”). Each pair of class day and non-class
day entry vectors was also associated with the gender
of record at the university: men (N = 5887) or
women (N = 7890). As we previously demonstrated
[19], comparing the distribution of these login events
across the day allows for the estimation of an individ-
ual’s average biological daily rhythms. For example,
the distribution of these login events changes by sea-
son, age, and gender in ways expected of human cir-
cadian rhythms (e.g., the older the individual, the
earlier in the day their logins are likely to begin).
These natural sources of variation were all found to
be significant on non-class days, whereas class days
instead show spikes in login probability aligned to
class onset times, which tended to mask natural
sources of variance, like age, season, and gender.

To assess variability across individuals, we generated a
histogram of the median phases of activity for each indi-
vidual by gender and day type (histogram across individ-
uals of median login activity by time of day calculated
within individuals, normalized so each gender has the
same area under the curve; Fig. 1a, b; boxplot overlays).
Consistent with our previous observations, there was no
detectable difference in phase histograms between the
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Fig. 1 Men consistently exceed women in the variance of daily timing across semesters. Histograms with overlaid boxplots of median activity
phase (men: red; women: blue; curves normalized within sex) on class days (a) and non-class days (b) find no difference on class days, but a

significant delay of women relative to men on non-class days. Men are also shown to have significantly higher proportions at either extremely
early or extremely late phases when compared to women (b, diagonal-indicated ranges). Histograms of standard deviation (SD) in the median
activity phase across all semesters (c) reveals that low-SD individuals are significantly more likely to be women, while higher-SD individuals are
more likely to be men (grey: difference of women and men). This pattern is consistent within each of the 4 semesters (d), not just across the
average. The mean and standard error of the mean (SE) of activity by hour of the day across all semesters (e) reveals that men show less
consolidated inactivity across individuals at night (midnight to 8am) than women, consistent with a wider range of chronotypes and individual
variability observed. Conversely, women show a wider range of relative activity frequency as a population across an average non-class day (higher
acrophase, lower bathyphase). Comparison of the hour-by-hour SEs of men and women'’s activity (f) finds that men have higher average hourly

SEs in all 4 semesters. Paired comparison of SE for the population mean of all individual’s means for each hour of the day across all four
populations (24 h per average day/semester x 4 semesters = 96 comparisons) reveals that women’s SE exceeds men’s in only 4 of 96
comparisons. Shades of gray match from the bottom of f to triangles in g. *Significant; see the “Results” section for stats

genders on class days (f* = 2.58, p = 0.11), but on non-
class days, there was a small but significant delay in
women relative to men (y* = 14.02, p = 0.002). Addition-
ally, these histograms reveal that men composed dispro-
portionately more of the extreme and outlier-phase
individuals on non-class days (Fig. 1b, diagonal lines;
paired ¢ test, p = 0.0014), suggesting men as a population
have more variance in chronotype (stereotyped daily
phase) than women. Given the consistency of the day

type effect in this finding and our previous work, we lim-
ited subsequent analyses to non-class days.

To assess variability within individuals, histograms
of non-class day standard deviation (SD) were gen-
erated by gender (Fig. 1c, d). These revealed that
on average, and consistently in all 4 available se-
mesters, individuals with lower daily phase SD were
more likely to be women, while those with higher
SD were more likely to be men (Kruskal-Wallis of
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difference between genders by SD, lumped by SD
(h) from 0:2h (to the shared peak) to 2.5:4.5h; )(2 =
12.94, p = 0.0003).

To assess variability within the day, the mean and
standard error of the mean (SE) for activity in each hour
of the day were calculated by gender (Fig. le, previously
published [19]). Consistent with our findings in Fig. 1b,
women showed a slight increase in evening activity,
while men showed less concerted population-wide in-
activity in the night. We compared the SE of each hour
of the day as a population of SEs (Fig. 1f) and found that
in every semester, men had a higher average hourly SE
than women. We then directly compared SE hour by
hour for each daily profile of each semester (24 h per
average day/semester x 4 semesters = 96 comparisons),
and in only 4 out of 96 paired comparisons did women
have greater SE (Fig. 1g: points above the diagonal).

To summarize, men, not women, showed a higher
likelihood of having extreme chronotypes, a higher
likelihood of having higher individual SD of daily
activity phase, and a higher SE in almost all hours
of the day, and these patterns remained stable
across all 4 semesters sampled. These findings do
not agree with the belief that women are more vari-
able than men and so ought to be considered po-
tential statistical confounds when selecting subjects.
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Evidence for the importance of “sex as a biological
variable”

The argument against using female subjects—that
women are broadly and substantially more variable
than men—is not supported by our initial findings.
But a second argument contributing to a lack of
female-specific research remains to be considered:
that studies need not consider sex as a biological
variable in analyses. In essence, the argument is that
if females need to be included, all individuals of all
sexes can be lumped in analyses, with the only impact
being increased variance (implicitly due to inclusion
of female subjects) [4, 11, 20]. To test this hypothesis
that sex does not itself contribute to anything more
than increased variance, we sorted the population by
SD first, divided this into deciles, and then split each
decile by gender. These deciles of SD-by-gender were
then regressed against GPA (Fig. 2a, b). Contrary to
the sex-only-affects-variance hypothesis, the two gen-
ders have distinct distributions: females have a higher
average GPA in all deciles, and their proportional
representation in each decile declines with increasing
SD (Fig. 2a, b). Pearson’s correlation of the mean
standard deviation per decile vs. percentage of men
per decile is sufficient to quantify this trend (Fig. 2b;
r* = 0.82, p = 0.003).
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Fig. 2 Effects of variance and gender on GPA are largely independent. Deciles of SD with equal populations (a) reveal men have a lower average
GPA in all deciles. The size of each dot is proportional to the representation of that gender in each decile. Men show a significant increase in
representation across deciles from the lowest to highest SD (b). Twenty-four divisions of the total population by SD amplitude (c, black rings)
follow a polynomial decay of GPA with increasing SD. Separating these 24 by gender (red: men; blue: women) identifies a higher GPA for women
in all fractions. Larger rings are population centroids. Comparing these centroids to the whole population polynomial fit curve (d) reveals that the
GPA disadvantage of men corresponds to only 5.6% of the increase in SD necessary, were SD alone to account for the difference in GPA. SD is
not the cause for the majority of the gender difference in GPA
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Since a gender difference appears in both GPA and
SD, and since there is a correlation across genders of in-
creased SD to decreased GPA, it could still be argued
that sex need not be considered in analyses, as differ-
ences in GPA might be proportional to differences in
variance regardless of sex. To examine this possibility,
we re-divided the entire population into 24 bins by amp-
litude of SD, with an equal population in each bin, and
fit a 2nd-order polynomial to better capture the non-
linear decline of GPA with increasing SD (Fig. 2¢, black
rings). We then binned each gender independently in
the same way (Fig. 2c, blue: women, red: men) and com-
pared each gender’s population to the whole population
correlation trend, to assess whether the increase in GPA
in women could be accounted for by the decrease in
women’s SD (the centroids of each population are
shown as larger, hollow circles, and are highlighted in
the subpanel Fig. 2d). The difference between the men’s
and women’s centroids is highlighted by the dashed line,
and the darker-shaded region beneath the curve high-
lights the amount of the hypothetical horizontal traverse
that is actually made by the male centroid. If gender dif-
ferences in GPA were indeed because of SD alone, then
the men’s and women’s centroids should fall roughly
along the same trend line as determined by the whole
population. Instead, the actual decrease of the men’s
GPA is accompanied by only 5.6% of the expected in-
crease in SD from the population-fit regression. Because
the sex difference in SD is not proportional to the
change in GPA with changing SD, we conclude that
while gender differences in GPA are real, the difference
in variance between genders only explains a minor
amount of the overall difference in GPA between
genders.

Discussion

Our analysis here refutes the claim that ovarian cyclicity
makes women more variable overall than men. We find
the reverse to be true for daily timing choices, where
men are more variable as a population (as in the range
of medians across individuals) and within individuals (as
in the variability of individual’s median daily phase). In
previous work using continuous tracking in animal
models, we found that males show higher overall daily
variability and that this is in part due to their having a
higher amplitude of within-a-day ultradian rhythms than
females [16]. It is not possible to make that same com-
parison from the data analyzed here due to the lack of
temporal measurement density, but the conclusions
align, and so suggest possible future avenues of investi-
gation in human sex and gender differences across time-
scales. It is worth noting that we do not know how
many women in this sample are cycling, and so we as-
sume some of the variances in the data from women

Page 5 of 7

come from ovarian cycles, but future studies on specific-
ally cycling and non-cycling populations of women
would clarify the extent to which ovarian cycles contrib-
ute to the overall variance seen in women.

Our work also identifies gender differences in aca-
demic performance beyond the differences caused by
gender differences in variance (which turn out to ac-
count for a very small slice of the difference). This is
consistent with previous findings [24], as is the finding
that variance corresponds to decreased academic per-
formance [25, 26]. It is interesting to note the polyno-
mial relationship between individual variability and
GPA. This relationship demonstrates that modest
amounts of variability are not associated with substantial
changes in GPA. Students might take heart that they
need not slavishly adhere to schedules but might con-
sider whether highly variable schedules could be impact-
ing their performance (though we show no causal
relationship here). Evidence exists for sex differences in
tolerance to variability and schedule changes [27] but re-
quires further attention.

It is widely appreciated that sex differences exist in hu-
man biology, in part due to the differences between the
genetic landscape and physiology [21, 28, 29]. These var-
iations lead to sex-specific differences in organs (e.g.,
kidney, liver, adipose tissue, and brain [30-32]) and in
physiological responses, such as antioxidant defense [33,
34], immune function [35, 36], and stress [37, 38]. Any
combination of these differences, and interactions with
myriad social and cultural factors, could result in the dif-
ferences in academic performance shown here and else-
where [24]. Regardless of the specific mechanisms
underlying the effects reported in this manuscript, it is
clear that much work remains to be done before science
and medicine can provide equitably for men and women
(and the entire high-dimensional space not accurately
reflected by that binary classification). For these future
experiments to be successful, sex, and the way it is de-
fined, will need to be considered as biological variables
in analyses.

Perspectives and significance

It is already national policy in the US that women
should not be generally excluded as subjects in research.
In spite of these policies, the belief that ovarian cycles
make women more variable, and therefore experimental
confounds, remains prevalent [11-15]. The prevalence
of these beliefs has contributed to gender inequality, left
female subjects substantially understudied, and put them
at risk of negative health consequences that would be
expected from this lack of data. Our findings add to a
growing body of literature that variance from ovarian cy-
cles should not be used to rationalize the exclusion of
women from studies. Using a large, real-world data set,
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we find evidence that while gender differences in per-
formance do exist, they are not driven by gender differ-
ences in variability over time. Lower performance and
higher variability across time are both greater in men,
not women, but the two effects are not strongly corre-
lated. Our work therefore serves as a proof that women
cannot be assumed to always be more variable than
men. Given the breadth and impact of that historic as-
sumption, proof that it must be tested in a case-by-case
basis should give pause to those planning the current
majority of experiments in which women are not in-
cluded as subjects, or in which sex and/or gender is not
included as a biological variable.

Conclusions

While gender differences are real, women do not exceed
men in overall variability in this data set, and so cannot
generally be assumed to do so. What is more, gender
differences in variability are not a key factor in the real
gender differences observed here, either in the day-time
activity phase or in GPA. We conclude that variability
alone, whether dominated by men or women, should not
be assumed to overwhelm experimental effects, but that
the impact of sex/gender on experimental effects could
be more easily assessed if experimenters routinely in-
cluded sex/gender as biological variables when
publishing.
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