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Abstract

Background: Previous studies have described sex-based differences in the epidemiological and clinical patterns of
non-alcoholic fatty liver disease (NAFLD); however, we understand relatively little regarding the underlying
molecular mechanisms. Herein, we present the first systematic review and meta-analysis of NAFLD transcriptomic
studies to identify sex-based differences in the molecular mechanisms involved during the steatosis (NAFL) and
steatohepatitis (NASH) stages of the disease.

Methods: Transcriptomic studies in the Gene Expression Omnibus database were systematically reviewed following
the PRISMA statement guidelines. For each study, NAFL and NASH in premenopausal women and men were
compared using a dual strategy: gene-set analysis and pathway activity analysis. Finally, the functional results of all
studies were integrated into a meta-analysis.

Results: We reviewed a total of 114 abstracts and analyzed seven studies that included 323 eligible patients. The
meta-analyses identified significantly altered molecular mechanisms between premenopausal women and men,
including the overrepresentation of genes associated with DNA regulation, vinculin binding, interleukin-2 responses,
negative regulation of neuronal death, and the transport of ions and cations in premenopausal women. In men, we
discovered the overrepresentation of genes associated with the negative regulation of interleukin-6 and the
establishment of planar polarity involved in neural tube closure.

Conclusions: Our meta-analysis of transcriptomic data provides a powerful approach to identify sex-based
differences in NAFLD. We detected differences in relevant biological functions and molecular terms between
premenopausal women and men. Differences in immune responsiveness between men and premenopausal
women with NAFLD suggest that women possess a more immune tolerant milieu, while men display an impaired
liver regenerative response.

Keywords: Non-alcoholic fatty liver disease, Sex characteristics, Precision medicine, Computational biology,
Transcriptome profiling
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Background
Non-alcoholic fatty liver disease (NAFLD) encompasses
a spectrum of liver disorders—ranging from fat accumu-
lation in hepatocytes (NAFL) to non-alcoholic steatohe-
patitis (NASH)—which can lead to the development of
cirrhosis or liver cancer. While steatosis characterizes
NAFL, NASH exhibits the additional histological fea-
tures of inflammation, ballooning, and fibrosis. Aware-
ness of NAFLD has recently increased due to its
worldwide impact on health; indeed, NAFLD now repre-
sents the most common liver disease in developed coun-
tries [1]. While the estimated worldwide prevalence of
NAFLD is around 25%, it is more common in South
America and the Middle East and less prevalent in Af-
rica [2].
Of note, there exists significant interindividual hetero-

geneity regarding NAFLD progression, which has a con-
siderable impact on the clinical consequences to the
individual. Patients in the initial stage of the disease
(NAFL) display a low risk of adverse outcomes [3]; how-
ever, progression to NASH increases the possibility of
both hepatic and extrahepatic complications.
Interestingly, NAFLD has a higher prevalence in men

and postmenopausal women than premenopausal
women [4]. Indeed, the liver shows the second-largest
amount of sexual dimorphism in humans [5], with both
physiological and pathological hepatic processes, such as
the detoxifying metabolism of cholesterol and the preva-
lence of hepatic diseases, respectively, differing between
men and women [6]. Therefore, patient sex will likely
affect NAFLD progression and treatment outcomes [7];
however, most NAFLD studies do not consider differ-
ences between sexes in their analysis [8]. We sought to
explore the molecular mechanisms underpinning the
likely existence of sex-related differences in NAFLD pa-
tients for the above-mentioned reasons.
In this context, we carried out the first (to the best of

our knowledge) systematic review and meta-analysis of
transcriptomic studies in NAFLD. We selected studies
that had deposited data in the Gene Expression Omni-
bus (GEO) datasets database [9] to guarantee the eligibil-
ity of selected studies. We used these analyses to clarify
the molecular mechanisms underpinning differences in
NAFL and NASH in premenopausal women and men
(postmenopausal women were not included in the ana-
lysis due to the overall low number of cases). Overall,
sex-based differences may have important clinical impli-
cations for patients, and this knowledge may help to de-
velop personalized approaches to NAFLD management.

Materials and methods
Literature review
A review was conducted in June 2020 following the Pre-
ferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) statement guidelines [10]. The
GEO datasets database was searched [9] using the key-
words “NAFLD”, “NAFL”, “steatosis”, “NASH”, and
“steatohepatitis” for transcriptomic studies published in
English.

Study exclusion criteria
The following exclusion criteria were applied: (i) studies
conducted in organisms other than humans, (ii) studies
without information regarding the sex of participants or
that did not include both sexes, (iii) studies without indi-
viduals from the NAFL and NASH stages of the disease,
and (iv) studies in which the disease had not been diag-
nosed with a biopsy. In the latter case, the requirement
for NAFL and NASH diagnoses by biopsy was added as
less invasive methods (such as conventional imaging
techniques) cannot accurately detect mild steatosis or
differentiate NAFL from NASH [11]. This step aimed to
minimize the input of false-positive data into the statis-
tical analyses caused by an incorrect disease stage
classification.

Bioinformatics analysis
The same three-step transcriptomic analysis strategy was
applied to each separate study: (i) data acquisition and
preprocessing, (ii) differential gene expression and func-
tional enrichment analysis, and (iii) differential pathway
activation and functional analysis. The functional results
of all studies were integrated using meta-analytical tech-
niques (Fig. 1). Bioinformatics analysis was carried out
using the programming language R 3.6.0 [12]; informa-
tion regarding the packages used and their version num-
bers are provided in the supplementary material.

Data acquisition and preprocessing
During data preprocessing, the nomenclature of the dis-
tinct disease stages (by grouping patients into Control,
NAFL, and NASH groups) and the association of the
probe identifiers with their corresponding genes were
standardized. In those studies containing treated and un-
treated patients, treated patients were eliminated from
further analysis. For studies that used microarrays, probe
codes were transformed to their respective Entrez identi-
fiers from the NCBI database. For repeated probes, the
median of their expression values was calculated. When
available, data normalized by the original authors of the
studies were used. Otherwise (studies GSE61260 and
GSE66676), raw data were normalized using the Robust
Multichip Average (RMA) algorithm [13]. The gene no-
menclature in RNA-Seq studies was also standardized to
the Entrez identifiers, and the raw data matrix was proc-
essed using the TMM standardization method [14]
followed by a log transformation of the data.

Català-Senent et al. Biology of Sex Differences           (2021) 12:29 Page 2 of 12



Women were separated into premenopausal and post-
menopausal groups to meet the objective of this work.
As selected studies failed to include this specific infor-
mation, women aged under 50 years were assumed as
premenopausal based on studies indicating an average
age of menopause at around 48–52 years [15, 16].
After data normalization, the detection of possible

anomalous effects within the studies was carried out by
completing an exploratory clustering and a principal
component analysis (PCA).

Differential gene expression and functional enrichment
analysis
Differential expression analyses of selected studies were
carried out using the limma and edgeR packages [17, 18]
to detect differentially expressed genes when comparing

NAFL and NASH in premenopausal women versus men.
A linear model was adjusted for each gene, which in-
cluded possible batch effects, contrasting (NASH.W –
NAFL.W) and (NASH.M – NAFL.M), where NASH.W,
NAFL.W, NASH.M, and NAFL.M corresponded to
NASH-affected premenopausal women, NAFL-affected
premenopausal women, NASH-affected men, and
NAFL-affected men, respectively. Statistics regarding the
differential expression were calculated and p values ad-
justed using the Benjamini & Hochberg (BH) method
[19].
Based on the differential gene expression results, func-

tional enrichment analysis was then performed using
gene set analysis (GSA) [20]. First, genes were ordered
according to their p value and the sign of the contrast
statistic. Next, GSA was performed using the logistic

Fig. 1 Data analysis workflow
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regression model implemented in the mdgsa R package
[21] along with their corresponding functional annota-
tions obtained from the Gene Ontology (GO) [22] and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
PATHWAY [23] databases.
Due to their hierarchical structure, the gene annota-

tions with GO terms applied in the mdgsa package were
propagated to inherit the annotations of the ancestor
terms. Excessively specific or generic annotations (blocks
smaller than ten or larger than 500 words) were subse-
quently filtered out. Finally, functions with a BH-
adjusted p value under 0.05 were considered significant.
For the two functional elements (GO terms and KEGG

paths), the number of overrepresented elements shared
by the studies were analyzed. These results were graph-
ically represented as UpSet plots [24] to demonstrate the
common elements between the different sets. First, the
overrepresented elements were compared as separate
graphs to detect the common functions in each group:
GO terms in premenopausal women, GO terms in men,
KEGG pathways in premenopausal women, and KEGG
pathways in men. Next, any significant GO terms in
each study were visualized in the same plot to highlight
significant terms with different signs among the studies.

Differential pathway activation and functional analysis
The hipathia algorithm [25] was used to perform Path-
way Activity Analysis (or PAA). This method transforms
gene expression values for stimulus–response signaling
sub-pathways into activation levels that ultimately trig-
ger cellular responses. In this current study, the hipathia
R package was used to analyze 1654 GO terms and 142
UniProt functions [26] associated with 146 KEGG routes
[23]. The activation signal of each sub-pathway was
computed from gene expression values using this algo-
rithm. These values were used to detect significant dif-
ferential activations in the (NASH.W – NAFL.W) –
(NASH.M – NAFL.M) contrast pair (as defined above).
The functional annotations included in hipathia and the
differential activation results were integrated using the
GSA method to identify differences at the functional
level (GO terms and UniProt functions) in relation to
NAFLD stages.

Meta-analysis
Once the gene functional analysis was applied to each
study, a functional meta-analysis was carried out to
summarize the results. Similarly, once the pathway func-
tional analysis was applied to each study, the results
were summarized via a homologous functional meta-
analysis.
Both meta-analyses were performed following the

methodology described in detail by García-García [27].
Briefly, the metafor R package [28] was used to evaluate

the combined effect within a random-effects model,
which more precisely detects overrepresented elements
when compared with performing studies individually at
higher statistical power. Likewise, variability in the indi-
vidual studies was considered in the global estimation of
the measured effect so that less-variable results had a
higher weight in the overall calculation of the logarithm
of the odds ratio (LOR) [29]. Incorporating the variabil-
ity between experiments in the model of random effects
provides more statistically robust results and better inte-
gration of selected studies. Finally, the suitability of this
selection was confirmed by evaluating the heterogeneity
of each study in the global model and the application of
cross-validation techniques.
For each meta-analysis and function, p values (ad-

justed using the BH method), LORs, and 95% confidence
intervals (CIs) were calculated. A term was considered
significant when its adjusted p value was lower than
0.05; a positive LOR in significant functions indicated a
greater overrepresentation in premenopausal women
than in men. In contrast, a negative LOR indicated
higher representation in men than in premenopausal
women. Finally, funnel plots and forest plots were used
to assess the variability and measure each study’s contri-
bution to the meta-analysis.
A total of 8223 elements were analyzed in the gene

functional meta-analysis (7994 GO terms and 229 KEGG
pathways); 1654 GO terms and 142 UniProt functions
[26] were assessed in the functional pathway meta-
analysis in association with 146 KEGG pathways [23].

Availability of data and materials
The large volume of data and results generated in this
study is freely available through the metafun-NAFLD plat-
form: https://bioinfo.cipf.es/metafun-NAFLD. Access al-
lows any user to analyze the results shown in this
manuscript and review other results that may be of inter-
est. The front-end was developed using the Bootstrap li-
brary. All graphics used in this tool were implemented
with Plot.ly except for the exploratory analysis cluster plot,
which was generated with the ggplot2 package.
In this study, transcriptomic data from the Gene

Expression Omnibus database with accession numbers
GSE48452, GSE61260, GSE66676, GSE83452, GSE89632,
GSE126848, and GSE130970 were analyzed.

Results
Systematic review and exploratory analysis
As shown in the PRISMA flow diagram (Fig. 2), our sys-
tematic review yielded 114 non-duplicated studies. After
applying the previously described exclusion criteria, we
employed a total of seven studies in our overall analysis.
We excluded studies for the following reasons: studies
not in humans or unrelated to NAFLD (n = 55), in vitro
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studies (n = 15), lack of information regarding sex or in-
clusion of only one sex (n = 24), no patients in NAFL
and NASH disease stages (n = 12), and diagnosis not
based on histology (n = 1). The strict nature of these in-
clusion and exclusion criteria allowed the selection of
comparable studies to ensure the reliability of the subse-
quent analytical strategies.
The seven selected studies [30–36] included a total of

323 eligible patients (Table 1); 164 individuals were men
and 159 women under the age of 50 (49.2% men and
50.8% women, respectively). By disease stage, 148

belonged to the NAFL group and 175 to the NASH
group (45.8 and 54.2%, respectively).
As previously indicated, we only used data from non-

treated individuals in study GSE83452. Table 1 demon-
strates the number of individuals from each study eli-
gible for inclusion based on our aforementioned criteria.
In an exploratory analysis, PCA of the GSE83452 study
demonstrated that samples clustered into two groups.
Further analysis of this study identified technical factors
as the source of this grouping rather than any other clin-
ical characteristic, as samples grouped according to their

Fig. 2 Flow diagram of our systematic review of the literature and selection of studies for meta-analysis—according to the PRISMA
statement guidelines

Table 1 Characteristics of the studies selected for inclusion in our analysis in terms of disease stage, sex, BMI, and patient age

GEO accession, Authors, Year [Ref.] Patients by disease stage and sex Age BMI

Premenopausal women Men Mean + SD Mean + SD

NAFL NASH NAFL NASH

GSE48452 / Ahrens M. et al. 2013 [30] 10 9 4 4 41.62 ± 9.35 47.18 ± 11.34

GSE61260 /
Horvath S. et al. 2014 [31]

10 7 12 12 41.51 ± 9.09 51.55 ± 10.40

GSE66676 / Xanthakos S.A. et al. 2015 [32] 20 4 6 3 17.14 ± 1.66 53.55 ± 8.86

GSE83452 / Lefebvre P. et al. 2017 [33] 32 35 6 46 39.61 ± 11.51 N/D
(> 25 or obese)

GSE89632 / Arendt B.M. et al. 2015 [34] 2 4 14 9 39.55 ± 8.19 30.21 ± 5.51

GSE126848 / Suppli M.P. et al. 2019 [35] 6 4 9 12 40 ± 13a N/D (> 30)

GSE130970 / Hoang S.A. et al. 2019 [36] 4 12 13 14 44.72 ± 9.80 N/D
aThe information corresponding to the patients in this study was kindly provided by the author of the study, although individual patient ages were not available
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order (the first 64 samples grouped into one cluster and
the last 88 into another). We considered this a batch ef-
fect, which we accounted for in our subsequent analyses.

Individual analysis
The functional analysis of individual genes highlighted sig-
nificant results overrepresented in both the groups of pre-
menopausal women and men (summarized in Table 2).
Analysis (using UpSet plots) of the common terms or path-
ways in the different studies demonstrated no common
element in more than four studies (Supplementary Figure
1); in fact, we discovered opposite results for some elements
in different studies (Fig. 3a). The functional analysis of indi-
vidual pathways only exhibited significant results for the
GSE83452 study (20 sub-paths and 96 GO terms).

Meta-analysis
We performed separate meta-analyses using the results
of the two previous approaches to obtain a measure of
the overall effect of each of the 8223 elements evaluated
(GO terms, KEGG pathways, or UniProt functions)
throughout all individual studies, i.e., the LOR and its
confidence interval. This effect indicated the magnitude
of the overexpression of each term (the LOR value) and
its direction (the LOR sign). This sign also helped to
identify the group in which the element is overrepre-
sented. In our analysis, positive signs indicate overrepre-
sentation in premenopausal women and negative signs
as overrepresentation in men.
Along with the LOR, the meta-analysis also provides

an adjusted p value (FDR) that indicates the significance
of the results. As a result of our meta-analysis, we identi-
fied thirteen significant GO terms (adjusted p value <
0.05), which refer to the molecular mechanisms altered
in our comparison (detailed in the following sections
and Table 3). Figure 3b shows, for one function, the
LOR of each study and the joint LOR of the meta-
analysis. Supplementary Figures 2 and 3 detail the results
of all significant elements. We confirmed the absence of

bias and heterogeneity in all cases, as in Fig. 3c (Supple-
mentary Figures 4 and 5).

Gene functional meta-analysis
The functional meta-analyses of the individual gene dif-
ferential expression pipeline results provided a total of
nine significant GO terms (Table 3 and Fig. 4) but no
significant KEGG pathways. Among the significant GO
terms, we identified six overrepresented in premeno-
pausal women; these elements encompassed a broad
spectrum of biological processes and molecular func-
tions, including “RNA polymerase II regulatory region
DNA binding” (GO:0001012), “RNA polymerase II
regulatory region sequence-specific DNA binding” (GO:
0000977), “Vinculin binding” (GO:0017166), “Cellular
response to interleukin-2” (GO:0071352), “Negative
regulation of neuron death” (GO:1901215), and “Re-
sponse to interleukin-2” (GO:0070669). We identified
three terms overrepresented in men: “Negative regula-
tion of interleukin-6 secretion” (GO:1900165), “Estab-
lishment of planar polarity involved in neural tube
closure” (GO:0090177), and “Regulation of establish-
ment of planar polarity involved in neural tube clos-
ure” (GO:0090178).

Pathway functional meta-analysis
The functional meta-analysis of the individual results in
the pathway differential activation pipeline returned four
significant GO terms. These terms were overrepresented
in premenopausal women compared with men, with a
LOR value lower than 0.25 (Table 3 and Fig. 4). These
terms relate to the transport of ions and cations: “Cation
transmembrane transport” (GO:0098655), “Metal ion
transport” (GO:0030001), “Regulation of cation trans-
membrane transport” (GO:1904062), and “Inorganic cat-
ion transmembrane transport” (GO:0098662). The meta-
analysis of the UniProt functions failed to provide sig-
nificant results.

Table 2 Number of significant GO terms and KEGG pathways in individual studies after gene functional analysis. Positive and
negative logarithms of the odds ratio (LORs) demonstrate overrepresentation in premenopausal women and men, respectively

GO terms KEGG pathways

Positive LOR
(Pre. women)

Negative LOR (Men)
(Men)

Positive LOR
(Pre. women)

Negative LOR
(Men)

GSE48452 166 642 5 22

GSE61260 249 35 5 6

GSE66676 721 168 30 2

GSE83452 90 931 2 25

GSE89632 52 67 2 1

GSE126848 1168 150 55 5

GSE130970 1244 407 31 20
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Metafun-NAFLD platform
To contribute to data sharing and support the develop-
ment of subsequent related studies, we generated the
Metafun-NAFLD platform (https://bioinfo.cipf.es/
metafun-NAFD). This web tool contains the detailed re-
sults of all the steps of the bioinformatics pipeline and
allows simple interactive exploration by any interested
party.

Discussion
Although previous studies have analyzed pathobiological
mechanisms in NAFLD and (separately) sexual differ-
ences in metabolic regulation, the impact of sex on
NAFLD pathobiology remains incompletely defined. Epi-
demiological studies have reported a higher prevalence
of NAFLD in men and postmenopausal women than

premenopausal women [4]. To better understand the
molecular basis of sex-based differences, we present a
systematic review and functional meta-analysis of pub-
licly available genomic studies that analyze the differ-
ences in NAFLD progression between premenopausal
women and men.
Despite the limitations of our approach (presence of

studies with different sample sizes and types of plat-
forms), meta-analysis techniques can integrate the se-
lected studies. The individual results of the seven
selected studies failed to identify any consistently differ-
ent GO or KEGG terms between groups across all stud-
ies, a finding perhaps related to small sample sizes,
underlying genetic and environmental variance in the
source population, and methodological heterogeneity.
Surprisingly, as shown in Fig. 3a, we found certain

Fig. 3 Representation of results of the bioinformatics analysis. a UpSet plot showing the number of common results throughout individual
studies in our functional gene analysis. Only the twenty most abundant interactions are shown. Horizontal bars indicate the number of significant
elements in each study (premenopausal [orange] women and men [blue]). The vertical bars indicate the common elements in the sets, indicated
with dots under each bar. The single points represent the number of unique elements in each group. Those vertical bars with dots of both colors
beneath indicate significant amounts of molecular bases in men and women, in a contradictory way, in different studies. b Example of a forest
plot from the meta-analysis. This representation allows us to observe the LOR and confidence interval of the GO terms in each study (horizontal
bars) and the meta-analysis (diamond). c Example of a funnel plot from the meta-analysis. Dots in the white area indicate the absence of bias
and heterogeneity
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functions overrepresented in both groups in different
studies. A meta-analysis, such as that carried out in this
study, can help to improve the identification of consist-
ent, relevant differences across studies, subject to the
caveat that patients in each study may have other differ-
ences in clinical characteristics. A meta-analysis also in-
creases the overall sample size and hence the strength of
findings, which is of particular relevance to diseases such
as NAFLD that displays high levels of heterogeneity. In-
deed, systematic reviews and meta-analyses represent
widely employed strategies in studying sex-based differ-
ences in other diseases [37–39].
Our functional meta-analysis identified a total of thir-

teen GO terms (Table 3) that displayed differences be-
tween men and premenopausal women using two
different approaches—differentially expressed genes
(nine terms) and differentially activated pathways (four
terms). These terms broadly related to processes such as
inflammation, cell binding, and the establishment of po-
larity during neural tube closure.
A functional meta-analysis of differentially expressed

genes identified differences in nine significant GO terms.
Among these, our results established the overrepresenta-
tion of the “Vinculin binding” (GO:0017166) in premen-
opausal women compared with men. The vinculin
cytoplasmic actin-binding protein is enriched in focal
adhesions and adherens junctions to contribute to junc-
tion stability [40] and plays a vital role as a regulator of
apoptosis [41]. Of note, although “cellular adhesion” rep-
resents a broad set of processes rather than a specific
biologic pathway, this term was previously reported as a
GO term consistently enriched in male NASH patients

[42]. Furthermore, Arendt et al. identified differentially
expressed genes related to cell–cell adhesion (ANXA2
and MAG) between NAFL and NASH patients [34].
Our analysis also identified sex-based differences re-

lated to the inflammatory response, specifically the ex-
pression of cytokine-related terms. We found “Negative
regulation of interleukin-6 secretion” (GO:1900165) over-
represented in men and “Cellular response to
interleukin-2” (GO:0071352) and “Response to
interleukin-2” (GO:0070669) overrepresented in premen-
opausal women. These terms relate to interleukin 2 (IL-
2) and interleukin 6 (IL-6), which displayed LOR values
close to or above 0.5, thereby indicating a substantial dif-
ference between the groups. IL-2 is a known regulator of
T cell responses, with low IL-2 levels regulating T cell
central tolerance via the formation of regulatory T cells
[43]. Higher IL-2 levels induce T cell proliferation and
differentiation into memory T cells. IL-2 receptors are
also expressed by B cells and cells of the innate immune
system [44]. Interestingly, IL-2 signaling is deficient in
many chronic liver diseases [45], and levels of soluble
IL-2 receptor alpha were found to be higher in children
with NASH and advanced fibrosis [46]. Our results sug-
gest that low-level IL-2-induced immune tolerance may
mitigate the risk of developing NASH in premenopausal
women and raise the intriguing possibility of restoring
low-level IL-2 signaling in men as a potential treatment
for NAFLD.
IL-6 has been previously implicated in NASH, with in-

creased hepatic expression correlating with disease sever-
ity and insulin resistance [47]. IL-6 also regulates hepatic
regeneration [48] and represents a significant driver of

Table 3 Significant functions in the functional meta-analyses. The logarithm of the odds ratio (LOR), its confidence interval (LOR-CI),
the adjusted p value, and the group in which the function was overexpressed are shown (W, women; M, men)

GO ID Name LOR LOR-CI Adj. p value Group

Gene functional
meta-analysis

GO:0001012 RNA polymerase II regulatory region DNA binding 0.132 [0.079, 0.185] 0.008 W

GO:1900165 Negative regulation of interleukin-6 secretion -0.762 [-1.088, -0.437] 0.018 M

GO:0000977 RNA polymerase II regulatory region sequence-specific
DNA binding

0.131 [0.073, 0.188] 0.02 W

GO:0017166 Vinculin binding 0.511 [0.271, 0.75] 0.035 W

GO:0071352 Cellular response to interleukin-2 0.467 [0.248, 0.687] 0.035 W

GO:0090177 Establishment of planar polarity involved in neural
tube closure

-0.514 [-0.748, -0.279] 0.035 M

GO:0090178 Regulation of establishment of planar polarity involved
in neural tube closure

-0.523 [-0.768, -0.279] 0.035 M

GO:1901215 Negative regulation of neuron death 0.116 [0.06, 0.171] 0.043 W

GO:0070669 Response to interleukin-2 0.446 [0.23, 0.662] 0.046 W

Pathway functional
meta-analysis

GO:0098655 Cation transmembrane transport 0.194 [0.11, 0.279] 0.012 W

GO:0030001 Metal ion transport 0.141 [0.074, 0.208] 0.027 W

GO:1904062 Regulation of cation transmembrane transport 0.216 [0.119, 0.32] 0.027 W

GO:0098662 Inorganic cation transmembrane transport 0.186 [0.093, 0.278] 0.038 W
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hepatic carcinogenesis [49]. In NAFLD, IL-6 may enhance
hepatic repair and regeneration; however, IL-6 may also
promote insulin resistance and hepatocyte apoptosis, thus
contributing to NASH development [48, 50]. Indeed IL-6
gene polymorphisms have been associated with increased
susceptibility to chronic liver disease [51].
These results suggest that differences in immune

mechanisms between men and women may represent
one possible factor in the sex-differences observed in
NAFLD. For example, the macrophage phenotype in
male NAFLD mice presents as pro-inflammatory and
pro-fibrotic, but pro-resolution and anti-fibrotic in fe-
male mice [52]. We hypothesize that women may suffer
from a decreased immune response to lipotoxicity,
whereas men may suffer from an impaired liver-healing
response to chronic injury perhaps related to deficient
IL-6 signaling. These ideas require further examination
and validation in additional studies.
A recent study by Herrera-Marcos et al. detected sex-

based differences in the control of the Cidec/Fsp27β

gene in the liver, finding that gene expression correlated
with the presence and density of liver lipid droplets in
mice fed a high-fat diet [53]. Matsusue suggested a role
for Cidec/Fsp27β as a neuronal activator in the steatotic
liver [54]; therefore, the significant association with the
function “Negative regulation of neuron death” (GO:
1901215) could relate to the differences detected in this
previous study. Upon restricting the gene ontology ana-
lysis to Homo sapiens, we found the components of the
“Negative regulation of neuron death” pathway (GO:
1901215) as broad regulators of apoptosis. This finding
may suggest an increase in liver cell apoptosis in men
who develop advanced NASH at a younger age than
women, as premenopausal women possess a level of pro-
tection. The observation that hepatocyte apoptosis rep-
resents a prominent feature of progressive NASH agrees
with this hypothesis [55].
Interestingly, we discovered other significant GO

terms that had not previously been associated with
NAFLD. For instance, we found the overrepresentation

Fig. 4 Differential functional profiling by sex. This plot shows significant functional terms of each meta-analysis. On the right: biological functions
over-represented in women. On the left: biological functions more overrepresented in men. For each function, the LOR (red square) and
confidence interval have been represented
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of “Establishment of planar polarity involved in neural
tube closure” (GO:0090177) and “Regulation of establish-
ment of planar polarity involved in neural tube closure”
(GO:0090178) in men with a LOR exceeding 0.5 (-0.514
and -0.523). Restricting analyses to Homo sapiens dem-
onstrated that these GO terms relate to the Wnt and
frizzled family of proteins. Wnt ligands and their cog-
nate receptor frizzled represent critical determinants of
liver development, zonation, regeneration, and responses
to liver injury [56]. Their overrepresentation in male
NASH patients could indicate the activation of disease
repair pathways as a compensatory response to ongoing
liver injury [57], as observed in preclinical models of
NASH.
Our functional pathway meta-analysis identified four

significant GO terms involved in cation transport: “Cat-
ion transmembrane transport” (GO:0098655), “Metal ion
transport” (GO:0030001), “Regulation of cation trans-
membrane transport” (GO:1904062), and “Inorganic cat-
ion transmembrane transport” (GO:0098662). Previous
studies have associated the alteration of pathways and
functions related to cation transport with NAFLD [58];
however, information regarding relevance and signifi-
cance remains scarce.

Perspectives and significance
Our results support the existence of differences be-
tween men and premenopausal women in specific
biological processes and molecular functions relevant
to NAFLD. Given the well-known heterogeneity of
NAFLD progression between men and women, this
transcriptomic meta-analysis suggests the use of sex-
specific pathophysiologically informed disease bio-
markers. These findings may also impact disease diag-
nosis and prognosis and the design of clinical trials.
For example, biological sex-driven differences may
allow the enhanced classification of individuals with
NAFLD and alter their inclusion in specific clinical
trials. Our meta-analysis underscores the importance
of recognizing and accounting for sex-related differ-
ences in the study of NAFLD pathobiology.

Conclusions
While differences in clinical characteristics and patho-
genic mechanisms in male and female NAFLD patients
had been explored previously, details remained scarce.
To this end, we selected seven studies suitable for func-
tional meta-analysis and identified thirteen significant
GO terms from these data. Of note, specific GO terms
were previously identified to have relevance to NAFLD,
which supports the notion that sex represents an im-
portant variable in understanding NAFLD pathobiology
and heterogeneity. We identified novel functional terms
that had not been linked to NAFLD previously;

therefore, our study may open new avenues for further
research. In conclusion, the meta-analysis of transcrip-
tomic data represents a useful tool for the identification
of sex-related differences in NAFL and NASH.
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