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Thyroid hormone: sex-dependent role in
nervous system regulation and disease

Shounak Baksi' and Ajay Pradhan?’

Abstract

Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system
development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked
to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been
associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males
and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and
estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-
specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to
regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological
diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will

be very beneficial to understand how TH acts in male and female brains and what are the critical genes and
signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease
outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also
presented that provides critical information on TH-regulated genes, signaling, and disease.
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Introduction

The thyroid gland is one of the earliest endocrine organs
that can be observed at twenty paired somites stage in a
developing human embryo [1]. Thyroid hormones (THs)
are first detected in the human fetal circulation at 11-13
gestation weeks [2]. The thyroid is the only endocrine
gland that can produce and store thyroid hormones
(THs), triiodothyronine (T3) and thyroxine (T4). T4 is
the major TH secreted by the thyroid gland, whereas T3
is the main biologically active form. TH plays crucial
role in regulating different aspects of animal physiology.
The major role played by TH is regulation of metabol-
ism, cellular growth, and development [3, 4]. However,
recent advances in medical and molecular fields have
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helped to further dissect its other important role and
mechanisms of action. TH has been shown to regulate
nervous system differentiation as it influences neurogen-
esis, neuronal migration, neuronal and glial differenti-
ation, myelination, and  synaptogenesis  [5-8].
Insufficiency in TH can lead to problems in cognition,
visual attention, visual processing, motor skills, language,
and memory skills [9]. TH is also implicated in neuro-
psychiatric disorders such as schizophrenia, bipolar dis-
order, anxiety, and depression [10, 11]. However, the
molecular mechanisms of TH-mediated regulation of
neuronal cells in these disorders are largely unknown.
Some of the neurological diseases including Alzheimer’s
disease (AD), Parkinson’s disease, and depression show a
clear sex-specific incidence [12]. Moreover, thyroid-
stimulating hormone (TSH) level has been associated
with increased risk of dementia [13], and TSH level in
plasma has become a routine screening test for diagnosis
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of patients with suspected dementia [14]. Low and high
TSH has been associated with an increased risk of devel-
oping AD in women [15]. This suggests that elucidation
of TH regulation and mechanisms of action in both male
and female brains could further help to understand
neuronal differentiation as well as neurological disease
pathogenesis.

TH production, transport, and mechanisms of
action

THs are synthesized by the thyroid gland and circulated
via blood, but tissue deiodinase enzymes play a critical
role in regulating their levels inside the tissues [16].
There are three different types of iodothyronine deiodi-
nase enzymes involved in TH regulation, namely DIO1,
DIO2, and DIO3. DIO2 converts the pro-hormone, tet-
raiodothyronine or thyroxine (T4), into the biologically
active form, triiodothyronine (T3), whereas deiodinase
type 3 enzyme (DIO3) catalyzes the inactivation of T3
and T4. DIO1 can both activate and inactivate thyroid
hormone and shows non-selectivity and high Km (re-
quires a supraphysiological level of the substrate) for the
conversion of T4 to T3 [17, 18].

Although T3 and T4 are lipophilic, they cannot cross
the plasma membrane without the help of a transporter.
There are different transporters including the monocar-
boxylate transporter (MCT) family (MCT8/SLC16A2
and MCT10/SLC16A10) and organic anion transporter
polypeptide (OATP) family (SLCO1Cland OATP1CI)
that are involved in TH transfer in and out of the cell
[19]. In mice, the role of Mct8 is considered to be more
relevant than Mct10 as Mct8 knockout mice showed al-
tered tissue homeostasis and serum T3 and T4 levels
compared to Mct10 knockout mice [20]. MCT8 gene in-
activation in humans can lead to Allan-Herndon-Dudley
syndrome, a condition where patients show severe
neurological problems [21, 22]. Interestingly, Mct8 gene
knockout in mice does not show severe phenotype as in
humans and this could be due to the availability of T4
through Oatplcl transporter and its conversion to T3 at
the cellular level [20].

TH action is mainly exerted by interaction with TH
and thyroid hormone receptors (THRs) which are
mainly of two types, THRa and THRS. THR is a nuclear
receptor that requires TH as a ligand to be activated.
THR binds to thyroid hormone response element (TRE)
on the gene promoter and generally forms hetero dimer
with retinoid X receptor (RXR) [23]. The TRE sequence
consists of two consensus half sites, AGGT/ACA, ar-
ranged either as direct repeat, palindrome, or inverted
palindrome. The RXR binds to 5 half site while THR
binds 3" half site [24].

In the absence of TH, corepressors associate with
THR to inhibit gene transcription. The binding of TH to
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the THR facilitates conformational change of THR, dis-
sociation of corepressors from THR, and recruitment of
coactivators, and this, in turn, drives gene transcription
[4, 25, 26] (Fig. 1). The two half sites are generally sepa-
rated by four nucleotides (DR4); however, other combi-
nations are also reported. Among THs, T3 has
approximately 10-fold higher binding affinity to THRs
compared to T4 [25].

In addition to genomic effects of TH, non-genomic
(transcription-independent/TRE independent) signaling
has also been reported [27-31]. Compared to the gen-
omic, the non-genomic action is rapid which takes place
within seconds or minutes [28, 32]. Initially, it was noted
that T3 can bind to rat erythrocytes membranes and
mitochondrial fractions from rat liver [33, 34]. Later
non-genomic effects of TH were reported for production
of ATP, consumption of oxygen, activation of Na+/H+
exchanger, and increase of intracellular pH [35, 36].

The non-genomic action was suggested to be import-
ant for maintaining cell homeostasis by regulating ion
concentration and cytoskeleton; however, the presence
of crosstalk between genomic and non-genomic activ-
ities of TH is also proposed, which implies that the TH
molecular mechanisms of action is diverse and complex
[29]. The non-genomic action can initiate either at the
cell membrane or in the cytoplasm, but the molecular
mechanisms are not understood properly [31]. The cell
surface receptor is generated from the internal transla-
tion initiation site of THRa which then gets palmitoy-
lated and associates with caveolin-containing plasma
membrane domains [27]. It is also shown that TH can
mediate non-genomic activity via surface receptors aV[33
integrin. TH action via aVB3 leads to activation of
FGF2, HIFla, COX2, THRA, THRB, ESRI1, MMUP9,
NOS2, SREBPI, and CD74 genes while the expressions
of CASP3, BBC3, PMAIP, and APAF1 are downregulated
[30]. The non-genomic activity is considered to be stron-
ger for T4; however, it is not certain whether T3 or T4
acts on aVP3 to regulate these genes [30]. It is not re-
ported if the non-genomic action of TH can facilitate
sex-specific signaling. However, based on the docu-
mented roles, it can be suggested that non-genomic ac-
tion could be involved in differential signaling in males
and females. For instance, TH crosstalk between gen-
omic and non-genomic actions has been indicated for
immune regulation [29], and since the immune system
of males and females show sharp contrast [37-39], a
sex-specific effect of TH on immune system via non-
genomic action can be expected. Non-genomic action of
TH is also considered to be important for brain develop-
ment as T4 has been shown to alter actin polymerization
and neural migration [40]. It is also suggested that acti-
vation of protein kinase Akt and endothelial nitric oxide
synthase via T3 non-genomic action in rat brain could
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Fig. 1 Mechanism of TH intracellular action. The introduction of TH into the cell is mediated by transporters. T4 can be converted into T3 by the
enzyme, DIO2. DIO1 is also involved in the conversion of T4 (not shown in the figure). T3 and T4 bind to the THRs mainly associated with RXR,
and this binding leads to the conformational change of THRs followed by dissociation of corepressors and recruitment of coactivators. This leads

contribute to neuroprotective effects of TH [28]. Further
investigation of TH non-genomic action in brain devel-
opment will help to understand molecular mechanisms
of TH in sex-specific regulation of neuronal signaling.

The production and secretion of THs are regulated by
hypothalamus-pituitary-thyroid (HPT) axis. The hypo-
thalamus (medial region of the paraventricular nucleus)
synthesizes thyrotropin-releasing hormone (TRH) that
enters the pituitary portal circulation. In the anterior pi-
tuitary, TRH stimulates the release of thyroid-
stimulating hormone (TSH). TSH then travels to the
thyroid gland where it stimulates the thyroid gland to se-
crete TH. The TH released in the circulation can regu-
late the level of TRH and TSH in the blood by negative
feedback loop [41, 42].

TH receptors (THRs) and distribution in the brain

TH mainly mediates its action by binding to the THRs
in the cell cytoplasm. The THRs belong to the nuclear
receptor superfamily, and there are two different types
of THRs, THRa and THRp. The protein sequence com-
parison using CLUSTLW showed that there is 62.3%
similarity between THRa (451 aa) and THRP (461 aa).
Although they share structural and sequence similarities,
mutation in one cannot fully compensate for the loss of
another [31], and patients with mutations in either
THRa or THRf; have strikingly different clinical pheno-
types [43]. Patients and mutant mice for THRS show
large goiter and hearing impairment deregulation of
HPT [43] axis while Thra mutation in mice exhibits in-
creased mortality, reduced fertility, and dwarfism [44].

In mammals, different TH receptor isoforms have been
identified; for instance, in humans, 3 isoforms of THR«a
(THRal, THRa2, and THRa3) and 3 isoforms of THRp
(THRP1, THRP2, and THRP3) were found in NCBI
database (Fig. 2). THRa expression is observed through-
out the brain whereas THRp is mainly expressed in the
subcortical region of the brain [46]. TH regulation is
critically regulated by the expression of THRa and
THR.

In mouse brain, Thra and Thrf expressions were ob-
served in different cells including endothelial cells,
microglia, astrocytes, oligodendrocytes, and neurons. In
these cells, the expression of Thra was higher than that
of Thrp with endothelial and microglia showing the low-
est expression (Fig. 3).

TH regulation and action in the brain

The active T3 and T4 produced in the thyroid gland
enter the blood circulation which then gets distributed
to different body parts. TH uptake in the brain is a
slower process compared to other organs and is tightly
regulated. Both T4 and T3 can cross blood-brain barrier
(BBB) and enter the brain. TH transporter solute carrier
family 16 member 2 (SLC16A2/MCT-8) and solute car-
rier organic anion transporter family member 1Cl1
(OATP1C1/SLCOIC]1) are both present in the endothe-
lial cells of BBB [48]. OATP1C1 is a T4 transporter;
however, MCT8 can transport both T3 and T4 [19].
From the endothelial cells at the blood-brain barrier, T4
is transported to the astrocytes via membrane trans-
porter OATPIcl, and in the astrocyte, T4 gets converted
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Fig. 2 Thyroid hormone receptors. In humans, there are three isoforms of THRa and three isoforms of THRB. The human protein sequence was
obtained from NCBI, and the protein domain was prepared using the protein illustrator software DOG 1.0 [45] (a). The DNA binding domain
(DBD) is highly conserved among the receptors; however, the ligand binding domain (LBD) shows differences in sequence and length (b)

to T3 by the DIO2 enzyme. The expression of Oatplcl
was higher in the endothelial cells followed by astrocytes
(Fig. 3). The expression of other transporters (Slc16a2/
Mct8 and Slc16a10/Mct10) (Fig. 3) could also provide
important clues on brain cell regulation by TH. In the
brain, the released T4 is taken up by the astrocytes and
gets converted into an active form triiodothyronine, T3
[49]. It is indicated that the development of certain parts
of the brain is dependent on the expression of deiodi-
nases that convert T4 to more active T3 [2].

There is differential expression of iodothyronine deio-
dinases in different brain regions [19]. Diol is mainly ac-
tive in mice cerebellum [50] and mostly absent in other
brain regions, making Dio2 and Dio3 the major

iodothyronine deiodinases in the brain. Deiodinases are
membrane-bound proteins [51]. DIO2 is mainly located
in the endoplasmic reticulum, and its catalytic domain is
exposed to the ER lumen, whereas DIO1 and DIO3 are
located in the plasma membrane having a catalytic do-
main exposed to the cytosolic side [52]. DIO2 is mainly
expressed in astrocytes and DIO3 being mostly
expressed in neurons. Sonic hedgehog (SHH) is a com-
mon regulator of both deiodinases. SHH induces DIO3
mRNA expression whereas it degrades DIO2 at the pro-
tein level via ubiquitination by WD repeat and SOCS
box-containing box 1 (WSB1) [53, 54].

In our analysis, we observed that DIO2 and DIO3
genes are expressed in both male and female brains.
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Fig. 3 Expression of genes involved in different brain cells. RNA sequencing data was obtained from a previous study [47] and analyzed using
Partek Flow software. The expression of genes involved in TH regulation was analyzed for mouse brain cells including endothelial, microglia,
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Although the expression of these two genes was high in
female microglia (DI0O2 1.7 fold, p value 0.05, and DIO3
1.4 fold, p value 0.02), it was not significant after FDR
adjustment. Comparison of counts showed that DIO2
expression is higher than DIO3 expression in both mice
(Fig. 4) and human brains (DIO2 mean count 350 and
DIO3 mean count 38). It is indicated that the source of
T3 in microglia is astrocytes [11]; however, the presence
of DIO2 suggests that microglia can produce T3 locally.
This data should be confirmed with DIO2 protein and
T3 level analysis. In the developing rat brain, the expres-
sion of THRa is higher than that of THRS [57]. Analysis
of transcriptomic data of human fetal brain from a re-
cent study [58] also showed that THRa (transcript mean
count 5320) expression is higher than THRf (transcript
mean count 614) expression. Interestingly, it was shown
that the negative outcome of hypothyroidism is not due
to the lack of either Thra or Thrf, but due to decreased
level of T3 in the circulation [59]. Using the knockout
mouse model for Thra or Thrp, the authors analyzed
gene expression in the cerebral cortex and the striatum
and showed that individual knockout of either gene does
not show marked differences and the two genes can
largely compensate for each other’s loss [59]. The knock-
out mouse model for T3 transport, monocarboxylate
transporter 8 (Mct8) and Dio2, provided important in-
formation on localized T3 synthesis [60]. Inactivation of
Mct8 showed limited effect on cerebral cortex gene ex-
pression postnatally. The authors suggested that this
could be due to upregulation of Dio2 and local increase
of T3 as the double knockout of Dio2 showed similar ef-
fects as hypothyroidism [60].

Transcriptional repressor or activators can also regu-
late TH-dependent signaling. Nuclear receptor corepres-
sor 1 (NCOR1) is identified as the key corepressor of
TH-regulated genes in mice hepatic tissue [61]. In the
same study, deletion of NCOR2 did not show significant
changes in global TH signaling. However, the expression
of NCORI1 during brain development is not well studied.
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T3-dependent transcription through TRE is abolished in
mediator complex subunit 1 (MED1) null cells which
suggest the possible role of MEDI1 as an activator for
T3-dependent transcription [62]. Hence, MED1 shows
the opposite activity of NCOR1 in TH-dependent gene
expression.

T3 is critical for microglia development, and it can
also induce microglial migration and phagocytosis.
Microglia are immune cells of the brain that are involved
in maintaining brain homeostasis and implicated in dis-
ease and injury [63]. Microglia are also involved in the
regulation of neural functions and sexual behavior [64,
65]. The study by Guneykaya et al. show that the micro-
glia in males are more frequent in specific brain areas
and appear to have a higher potential to respond to
stimuli [55]. It is also indicated that T3 can regulate
morphological maturation of ameoboid microglial cells
and limit their degeneration [66]. Decreased level of TH
has been shown to reduce microglial processes in post-
natal rats [67]. Given the importance of microglia in
brain development, sexual behavior, and its regulation
by TH, it can be speculated that brain sexual differenti-
ation or sex-specific brain organization may be regulated
by TH-mediated microglial functions.

Insufficient TH signaling could result in arborization
of Purkinje cells, delay in neuronal migration, outgrowth
of neuronal processes, myelination, and synaptogenesis
[68, 69]. TH deficiency also leads to neuronal death and
glial cell proliferation [70]. Low perinatal TH levels re-
sult in reduced dendritic complexity in Purkinje cells in
the cerebellum [71]. This suggests an important role of
TH for the cerebellar motor function, and dysregulation
of TH in the perinatal phase can have long-term effects.
TH in the early developmental phase also regulates
GABAergic neuron morphology and connectivity via
control of TrkB and mTOR signaling [72]. Synthesis of
GABA from glutamate is regulated by glutamate decarb-
oxylase 65 and 67 (GAD65 and GADG67). In vivo and
in vitro data suggest TH regulates the expression of
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Fig. 4 Expression of TH receptors and TH-synthesizing genes. The RNA seq data was obtained from NCBI submitted by a previous study [55]. Raw
data were aligned and normalized using Partek Flow software. Expression analysis suggests that Dio2 expression is high in mouse microglia from
cortex while Dio3 expression is high in the hippocampus. Thra expression was found to higher than Thr(3 expression. n = 3 males and n = 4
females (a). We further analyzed RNA seq data from another study [56] and observed that the expression of Dio2, Dio3, Thra, and Thrf3 in the
mouse hippocampus is not strikingly different for the different developmental stages, n=5 (b)
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GAD enzymes in the brain [73] thereby regulating
GABA production. TH deficiency in early rat develop-
mental phase causes reduction in parvalbumin (PV)-
positive neurons suggesting TH are also involved in early
cortical circuit development [74].

TH in the brain regulates several pathways that con-
tribute to structural aspects during development such as
neurogenesis, cell migration, and myelination. TH is
mainly involved in later events of neural development
including neural migration or neuron-glia differentiation
[19]. TH has been linked to adult neurogenesis [75], and
it mainly occurs in two regions in the brain, namely the
subventricular and subgranular zones, and is generally
associated with cognitive deficits, psychiatric conditions,
and depression [76]. TH administration stimulates
neurogenesis in these two brain regions, whereas
hypothyroidism inhibits neurogenesis [77, 78].

TH can have effects on cell migration in different
brain regions like the cerebellum, hippocampus, and
cerebral cortex [76]. TH is responsible for formation of
different layer patterns; this migration is achieved by
regulation of genes RELN and PTGDS by TH [79, 80].
Hypothyroidism causes poor myelination; on the other
hand, hyperthyroidism increases myelination [81-83].
Hyper and hypothyroidism show different sex-specific
phenotype [84]. Behavioral activity including locomotor
activity, water intake, motor coordination, and muscle
strength showed sex-specific alteration in thyroid dys-
function mice in this study [84]. In order to understand
TH role in brain development, different mutant animals
have been studied. For instance, congenital hypothyroid
mice (cog/cog mouse) with mutation in thyroglobulin
(Tg) gene show significantly low cerebrum and cerebel-
lar weight [85]. Mutation in the same gene (Tg) in rat
(rdw rat) shows altered dopamine level in the substantia
nigra and striatum, impaired motor coordination, re-
tarded cerebellar morphogenesis, retarded migration of
granule cells, and poor dendritic aborization of Purkinje
cells [86]. Interestingly, the analyzed parameters in this
study showed sex-specific differences. The motor coord-
ination and balance measurement using the rotarod test
on this rat model showed that rdw female and male rats,
respectively, showed a 15% and 5% decrease in activity
compared to wild type female and male rats. Among
other parameters, rearing behavior in rdw rats were sig-
nificantly decreased compared to female rats. The dopa-
mine level in the substantia nigra was increased to
around 1.6 fold in females while it increased 1.9 fold in
males. On the other hand, dopamine in the striatum de-
creased by 1.5 fold in females while it decreased to 1.2
fold in males [86]. Mutation in Dual oxidase 2 (DUOX2)
gene in humans leads to congenital hypothyroidism [87].
DUOX?2 is involved in generation of hydrogen peroxide,
which will then be utilized by thyroid peroxidase for
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iodine incorporation into thyroglobulin [88]. Mouse
Duox2 mutant shows severe hypothyroidism and hearing
impairment [88]. Models with Thra or Thrff mutation
have also been studied to understand brain function;
however, the phenotype of Thr mutant is different from
hypothyroid models. Since the expression of Thra is
high in the brain compared to Thrf (also observed in
our study; Fig 3), severe phenotype is expected with
Thra mutation [89]. In addition, deletion of Thra or
Thrp leads to different phenotypes as it has been shown
that deletion of Thral in mice reduces female sexual be-
havior while deletion of Thrf5 increases it when stimu-
lated with estrogen [90]. However, the impact of male
sexual behavior was not evaluated in this study. Another
study showed that deletion of Thral in male mice al-
tered exploratory behavior, decreased rearing behavior,
and increased freezing behavior [91]. This behavior
change was linked to altered hippocampal signaling [91].

Sex-specific effects of TH in the brain

Sex differences in the brain regulate not only reproduct-
ive functions but also cognitive abilities and susceptibil-
ity to neurological diseases. In mammals, gonadal
steroid hormone surge during the fetal stage organizes
the brain, and later during the adult stage, the second
surge of gonadal hormone leads to behavioral activation.
The classical model of brain sex differentiation suggests
that the gonadal steroid hormones (androgens and estro-
gens) are the main drivers in establishing male and fe-
male neural networks [92, 93]. Although the role of
steroid hormones is critical in organizing the brain in a
male- and female-specific manner, the involvement of
other key players including TH cannot be overruled.

The thyroid-related medical problems including
hypothyroidism and hyperthyroidism are more common
in females than males [94]. Transcriptomics analysis also
revealed that aging-related changes in thyroid tissue are
more common in females [95].

TH could have sex- and age-dependent effects as it
has been shown that exposure of T4 to male mice re-
sults in activation of glial cells while that to female mice
leads to deactivation [11]. Comparison of glial activation
following exposure to T4 in young mice brain showed
sex-specific effects. In males, T4 exposure activated glial
cells while in females it deactivated them [11].

Critical information on sex-specific role of thyroid
hormone came from songbird, zebra finch (Taeniopygia
guttata). In this bird, the levels of T3 and T4 in the
brain and plasma have been shown to be sex specific
with male and female showing different peak periods
[96].

The level of Dio2 mRNA was shown to increase at 21
days post-hatching (dph), and the level of T3 also started
to increase after 21 dph in male brain [96]. In addition,
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Raymaekers et al. showed that the level of Dio2 is higher
in the male song control nuclei [97]. The increase in
Dio2 and T3 corresponds to the timing when zebra finch
males learn to sing [96]. This suggests that TH is crucial
for male typical brain development in zebra finches.
Taken together, it can be suggested that TH could have
sex-specific role in brain development.

In PO (perinatal day 0) neonatal rats, Dio3 expression
was transiently noted in regions involved in sexual dif-
ferentiation in the brain. This expression was not ob-
served in P10 rats, this suggests the role of Dio3 in early
sexual differentiation in rodents [98]. There was sex-
specific difference in Diol levels in mice. Expression of
Diol in both pituitary and thyroid glands were higher in
adult males compared to females [99]. However, there
was no significant difference in TH levels between sexes
in the same study.

SHH has been identified as a common regulator of
both DIO2 and DIO3 [53, 54]. It induces DIO3 whereas
degrades DIO2 and thereby plays an important role in
maintaining balance of TH in intracellular context. SHH
receptor patchedl (PTCHI) haplosufficiency shows sex-
specific effect and female-specific reduction in hippo-
campus size and isocortical layer thickness [100]. It
would be interesting to study whether SHH signaling
can have sexually dimorphic effect in brain TH
regulation.

Gould et al. noted in adult rats that females possessed
more primary dendrites, whereas males showed more
apical excrescences in CA3 pyramidal cells. TH treat-
ment resulted in increased primary dendrites as well as
apical excrescences in both sexes [101]. Sex difference
was noted between serum TSH levels and depressive
symptoms in cohort with normal serum T4 levels.
Higher TSH level was correlated with higher prevalence
of depressive symptoms in men whereas the opposite
was noted for women [102].
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To investigate whether thyroid signaling is differen-
tially regulated in male and female brains, we ana-
lyzed different transcriptomics data that were
available in the NCBI database deposited by previous
studies [55, 56]. Analysis of male and female micro-
glia from 1-, 2-, and 4-month-old mice did not show
any strong differences. In all the three stages, the ex-
pression pattern showed a similar trend with higher
expression of Dio2 compared to Dio3 and higher ex-
pression of Thra than Thrf (Fig. 4).

Analysis of transcriptomics data of microglia from the
frontal cortex and the hippocampus of adult mice was
also analyzed. In the frontal cortex, only 8 genes showed
significant difference, and out of these, one gene, Dbp, is
a T3-regulated gene [103]. Interestingly, the microglia
from the hippocampus showed 1386 differentially regu-
lated genes between males and females, and from this
list, we extracted the T3-regulated genes (Fig. 5). Out of
23 regulated genes, 17 genes were high in males and 6
genes were high in females. The genes including THR,
TH synthesis, and transport were not differentially regu-
lated. Critical links are missing to understand the mech-
anisms of how TH can differentially regulate gene
expression in male vs female brain.

Thyroid hormone in neurodegenerative and
psychiatric diseases

Several neurological and psychiatric conditions are asso-
ciated with TH dysregulation. Hypothyroidism during
pregnancy increases risk of autism, cognitive impair-
ment, and attention deficits [46]. On the other hand,
hyperthyroidism is known to cause anxiety, hyperflexia,
and irritability. Both hyper and hypothyroidism are asso-
ciated with mood-related conditions, personality disor-
ders, and dementia [76]. Hypothyroidism has been
shown to induce interleukin 1 (IL-1)-mediated
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Fig. 5 THR response genes are differentially regulated in male and female microglia. RNA seq data was obtained from a previous study [55] and
analyzed using Partek Flow software. The microglia from hippocampus showed sex-biased differences in the expression of TH-regulated genes.
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autophagy and neuronal apoptosis in postnatal rats that
accounts for cognitive impairment [104].

Females are more frequently affected by AD than
males [105]; the same is observed in thyroid dysfunction
diseases [94]. It is intriguing whether there is an under-
lying correlation between TH and AD onset/pathogen-
esis. Intebi et al. studied some of the plasma markers in
an AD cohort; however, they could not identify any
change in circulating T3 and TSH levels between male
and female AD patients [106]. However, in another
study, female sex and thyroid dysfunction were corre-
lated with AD endophenotype in the middle-aged popu-
lation [107]. Further mechanistic understanding is
needed to have a clear view on this aspect.

Low serum T4 and upregulated serum TSH levels
showed correlation with brain amyloid beta levels and
AD-specific brain alterations [108]. T3 administration
in diabetic mice decreased glycemia, improved insulin
sensitivity, and reduced GSK3B activation as well as
tau protein load in hippocampus [109]. This is con-
sidered beneficial since hyperphosphorylated Tau
(MAPT) accumulation and GSK3B activation are hall-
marks of AD [110]. Apolipoprotein E (APOE) more
specifically isoform APOE4 is associated with AD
[111, 112]. A study in older Down syndrome (DS) pa-
tients having AD suggests that APOE2 might protect
against hypothyroidism; however, APOE4 predispose
towards the same [113]. This effect is only observed
in females, and no such correlation was noted for
males in the same study. It is concluded that APOE4
pathogenesis in AD patients is partially affected by
thyroid function [113].

Cerebrospinal fluid (CSF) T3 levels were found to be
higher in hippocampal sclerosis (HS) but at a normal
level in AD [114]. HS-associated SNP rs73069071 was
associated with mRNA expression levels of astrocyte TH
transporter SLCO1C1 [114]. Mutations in TH trans-
porters like MCT8 (SLC16A2), and OATPIC1
(SLCO1C1) cause juvenile neurodegeneration and brain
developmental disease, Allan-Herndon-Dudley syn-
drome. oatplcl (slcolcl) knockout zebrafish also
showed a similar phenotype [115, 116]. The function of
TH in the context of myelination has been implicated in
neurological disorders including multiple sclerosis (MS)
to the extent that TH benefits MS by augmenting mye-
lination [117, 118]. TH is often associated with antioxi-
dant activities, and dysfunction of TH could increase
reactive oxygen species (ROS) and, hence, oxidative
stress which increases neurodegenerative mechanism in
the brain [119]. T3 treatment showed neuroprotection
in traumatic brain injury murine model [120]. This sug-
gests that decreased TH level could predispose individ-
ual to ROS-mediated brain damage, and this, in turn,
could aggravate the neurodegenerative outcome.
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DIO1 polymorphism is associated with serum TH level
and temporal lobe atrophy in the elderly population
[121]. Thr92Ala-DIO2 has been associated with in-
creased risk for AD in various cohorts [122].

Although there is no direct correlation between Par-
kinson’s disease (PD) and TH, there are reports explain-
ing the commonalities between Parkinsonism and
thyroid dysfunction. In particular PD patients suffering
from hypothyroidism, hormone therapy proved to be
helpful in reducing Parkinson’s bradykinesia and hypo-
mimia [123]. On the other hand hyperthyroidism in-
creases tremor in PD cases, which can be managed by
anti-thyroid treatment [124].

Crystalline mu (CRYM) is a regulator of T3 transpor-
tation [125]. It has been reported that CRYM expression
in the striatum is reduced in Huntington’s disease (HD)
mouse model and overexpression of CRYM reduced mu-
tant Htt-mediated neurotoxicity [126]. This could be an
important mechanism linking decreased TSH and T3
levels observed in HD patients [127].

Many studies have associated thyroid status with cog-
nition, mood, and behavior. Thyroid dysfunction can
lead to psychiatric changes without other symptoms of
the disorder to the extent that hypothyroidism can be
falsely presented as psychosis in older women [128].
Thyroid dysfunction is also noted in patients with
schizophrenia spectrum disorders, bipolar disorder, and
major depressive disorder [129]. Higher T3 and T4 and
lower TSH levels were observed in schizophrenic pa-
tients [130]. The T3 levels in schizophrenics correlated
significantly with plasma malondialdehyde and total
plasma peroxides (TPP), which suggest higher TPP
could contribute to better thyroid homeostasis in schizo-
phrenia through regulation of free radicals and oxidative
stress [130]. A strong correlation has been noted be-
tween anti-psychotic drug lithium and higher TSH and
T4 and lower T3 levels in bipolar disorder patients
[131]. The increased volume of thyroid gland following
lithium treatment was also noted in the same study.
Hypothyroidism is a common effect of long-term lithium
treatment [132]. Thyroid dysfunction is more common
in females than males, and this contributes to increased
difficulties in diagnosis and treatment of mood disorders
like bipolar disease [133]. Hypothyroidism is also noted
in women with postpartum depression [134]. Presence
of anti-thyroid auto-antibodies correlated with higher
occurrence of panic disorder and major depressive dis-
order in a cohort of celiac disease [135]. Interestingly,
higher serum TSH levels correlate with lower depressive
symptoms in individuals with normal serum TH levels
[102].

Thyroid-related diseases show sex-specific and age-
dependent incidences with females showing 5-20 times
higher susceptibility than males [136]. The underlying
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molecular mechanism is not clear but the difference in
sex steroid milieu could be a critical determining factor.
During menopause and andropause, the level of estrogen
in females and testosterone in males drops down [137].
In males, low serum testosterone was associated with de-
pression [138], low memory and cognitive skills [139], and
risk of AD [140]. On the other, menopause in females de-
creases cognition and increases the chances for AD [141].
However, there are conflicting data whether hormone re-
placement therapy in women can prevent neurological
diseases [141, 142]. This suggests that the neurological
disease outcome in elderly people is multifactorial where
TH could also play a crucial role. In aged men and
women, the thyroid function decreases [143] and conse-
quently it alters brain function [144] and increases AD
risk in women [15]. In menopausal women with altered
thyroid function, neurological problems including depres-
sion and anxiety are common [145]. Since the prevalence
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of thyroid-related and neurological diseases increase and
steroid hormone level decreases with age, a positive cor-
relation between sex steroid, thyroid dysfunction, and
neurological diseases could be expected.

Overall, there are many reports and indications that
TH status is critical in several neurodegenerative and
psychiatric diseases. However, the molecular mecha-
nisms of the pathogenesis are not well elucidated. In Fig.
6, we have tried to assemble the known biomolecules
and pathways associated with TH regulation and signal-
ing. Mechanistic studies are required to have a better
understanding of the involvement of TH in neurodegen-
erative and psychiatric diseases.

Conclusion and future perspectives

TH regulates critical biological processes including brain
differentiation. TH has been shown to regulate brain dif-
ferentiation, and any alteration in level could lead to
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various nervous system-related problems. The common
neurological problems associated with TH are cognition,
visual attention, visual processing, motor skills, language,
and memory skills. TH shows sex-specific effects in
brain cell differentiation which could lead to differential
organization of neural circuits. TH-related problems are
also on the rise with females showing higher incidence.
Our study suggests that there is clear sex-specific effects
and regulation of TH in male and female brains. The
sex-specific role of TH has started to emerge; however,
critical links are missing to fully understand the molecu-
lar mechanisms. Understanding of TH sex-specific ef-
fects could further help to advance the diagnostic as well
as the therapeutic field.
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