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Abstract

Background: MicroRNAs indirectly orchestrate myriads of essential biological processes. A wide diversity of miRNAs
of the neurodevelopmental importance characterizes the brain tissue, which, however, exhibits region-specific
miRNA profile differences. One of the most conservative regions of the brain is periaqueductal grey (PAG) playing
vital roles in significant functions of this organ, also those observed to be sex-influenced. The domestic pig is an
important livestock species but is also believed to be an excellent human model. This is of particular importance for
neurological research because of the similarity of pig and human brains as well as difficult access to human
samples. However, the pig PAG profile has not been characterized so far. Moreover, molecular bases of sex differences
connected with brain functioning, including miRNA expression profiles, have not been fully deciphered yet.

Methods: Thus, in this study, we applied next-generation sequencing to characterize pig PAG expressed microRNAs.
Furthermore, we performed differential expression analysis between females and males to identify changes of the
miRNA profile and reveal candidates underlying sex-related differences.

Results: As a result, known brain-enriched, and new miRNAs which will expand the available profile, were identified.
The downstream analysis revealed 38 miRNAs being differentially expressed (DE) between female and male samples.
Subsequent pathway analysis showed that they enrich processes vital for neuron growth and functioning, such as
long-term depression and axon guidance. Among the identified sex-influenced miRNAs were also those associated
with the PAG physiology and diseases related to this region.

Conclusions: The obtained results broaden the knowledge on the porcine PAG miRNAome, along with its dynamism
reflected in different isomiR signatures. Moreover, they indicate possible mechanisms associated with sex-influenced
differences mediated via miRNAs in the PAG functioning. They also provide candidate miRNAs for further research
concerning, i.e., sex-related bases of physiological and pathological processes occurring in the nervous system.
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Background
The domestic pig (Sus scrofa) is an important animal not
only for livestock production but also from the biomed-
ical point of view as an alternate, large mammal model
organism for the human [1–3]. This especially applies to
neurological research because of the similarity of brain
development (the growth pattern and the extent of peak
brain growth at the time of birth), anatomy (i.e., gyral
pattern and distribution of gray and white matter), and
size between pigs and humans [4]. Thus, the pig is con-
sidered to be of great potential for broadening the know-
ledge of general neuronal and behavioral processes, as a
subject of central nervous system (CNS) research, in-
cluding neuroanatomy, neurobiology, and cognitive
neuroscience [4]. It is also postulated for validation as an
animal model for neurological and neuropsychiatric dis-
eases such as schizophrenia and Alzheimer’s disease. So
far, it has been used in imaging studies as an experimen-
tal model of traumatic brain injury, Parkinson’s disease
and stroke, as well as to investigate serotonin and dopa-
mine systems [4].
The brain is the central organ of the nervous system

which is composed of many specialized structures and
regions. The periaqueductal gray matter (PAG) is one of
the mostly evolutionary conserved components of the
brain. It is the central gray matter of the midbrain, to a
large extent analogous to the gray matter of the spinal
cord. It modulates various important functions including
autonomic [5, 6], behavioral [7], pain [8], as well as de-
fensive, reproductive, and maternal behavior [9, 10].
Moreover, it may be affected in many disorders, such as
migraine [11], Wernicke’s encephalopathy [12], multiple
sclerosis (MS) [13], and stroke [14, 15].
The brain, as a complex body organ, is characterized

by a large diversity of miRNAs [16]. MicroRNAs are
highly conserved, short (~ 21-23 nt) non-coding RNAs
which orchestrate gene expression at the posttranscrip-
tional level by binding to their targets—mRNAs [17].
miRNAs have been implicated to play crucial roles in
most biological processes, not only in healthy tissues
[18–21] but also in those undergoing pathological
changes such as neoplastic transformation [22–24].
Therefore, microRNAs are also successfully used as bio-
markers for diagnosis and prognosis [25–28]. They have
also been identified to be engaged in the regulation of
vital neuronal processes during neurogenesis and neuron
functioning [29], as well as brain development, which is
shown to undergo intensive changes of miRNA expres-
sion [30, 31].
To date, the miRNA expression profile of the pig brain

tissue, namely cortex and cerebellum, has been identified
by Podolska and colleagues [32].Nevertheless, brain re-
gions are established to differ in gene expression [33]
and miRNA profiles [34], and some of them can exert

area-specific functions [34]. Moreover, the pig, with its
457 mature miRNA sequences deposited in miRBase Re-
lease 22.1, still stays behind the human (2654 mature
miRNAs). Thus, in this study, we attempted to compre-
hensively characterize the miRNAome profile of the por-
cine PAG and, at the same time, broaden the whole pig
miRNA profile and PAG profile. To this end, we applied
next-generation sequencing, which allows for the detec-
tion of novel miRNA sequences as well as isomiR
variants.
Additionally, the PAG region has been reported to

play roles in many different neurodiseases and brain
functions which are known to be sex-influenced, such as
maternal behavior, pain [35, 36], and stroke [37]. Hence,
we hypothesized that the PAG-expressed miRNAs may
exhibit different expression profiles between sexes and,
as a result, may be involved in sex-related differences.
Therefore, we identified microRNAs differentially
expressed between male and female samples, and bio-
logical pathways which they regulate, to pinpoint pos-
sible miRNA-involved mechanisms underlying sex
differences and elucidate miRNA potential engagement.
Summing up, taking into account the important role

that the PAG plays in the functioning of the brain, the
aim of our work was to characterize its miRNA profile,
including the identification of new miRNAs expressed in
this region, as well as shed some light on the potential
roles of miRNAs in shaping sex specific differences. It
will not only broaden our knowledge on miRNAs and
their significance in mechanisms occurring in the PAG,
also those sex-related, but also provide data for further
interspecies comparative studies, especially in humans,
since the availability of brain samples is limited.

Methods
Research material
Periaqeductal grey samples were collected from 21 pigs
maintained and slaughtered at 100 kg of weight at the
Pig Testing Station of the National Research Institute of
Animal Production in Pawłowice under the same hous-
ing and feeding conditions. The samples were frozen in
liquid nitrogen immediately after collection, and stored
at − 80 °C until RNA isolation. The animals (6 males
and 15 females) belonged to the Polish 990 synthetic line
of pigs, which is a hybrid of several breeds (Large White,
Belgium Landrace, Duroc, German Landrace, Walsh
Landrace, and Hampshire). The performed research did
not require the approval of Animal Ethics Committee
since meat from slaughtered animals is standard
intended for consumption.

MicroRNA sequencing
Total RNA extracted with the use of Direct-zol RNA
Mini Prep kit (Zymo Research) according to the protocol

Pawlina-Tyszko et al. Biology of Sex Differences           (2020) 11:67 Page 2 of 17



was further subjected to the quantity and quality con-
trols using a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific), and a TapeStation 2200 in-
strument (Agilent), respectively. NEBNext Multiplex
Small RNA Library Prep Set for Illumina (New England
Biolabs) was used to prepare miRNA libraries. This
protocol starts with the 3′ adaptor ligation, followed by
hybridization with the Reverse Transcription Primer and
ligation with the 5′ adaptor. Obtained products were re-
verse transcribed, and PCR amplified, including 12 dif-
ferent indexed primers to allow multiplexing of the
samples. The libraries were then subjected to size-
selection with Novex 6% TBE PAGE gel (Invitrogen)
electrophoresis, followed by ethanol (POCH) purification
and precipitation. The concentration of the obtained li-
braries was measured with a Qubit 2.0 Fluorometer
(Thermo Fisher Scientific), while a 2200 TapeStation in-
strument (Agilent) was used to assess their size. The li-
braries mixed with the PhiX control library (Illumina)
were clustered on an Illumina Flowcell_v3 in a cBot
cluster station and then sequenced on HiScan SQ (Illu-
mina) system according to the manufacturer protocol.

Bioinformatics analysis
The obtained raw reads were subjected to the following
processing: conversion to FastQ files, demultiplexing
with the use of the bcl2fastq software (Illumina), and
quality control using the FastQC software [38]. Then,
the obtained sequences were analyzed using UEA sRNA
Workbench V4.6 [39] to identify known and potentially
novel miRNA sequences. First, 3′ adaptor sequences
were trimmed off and tRNA and rRNA sequences were
discarded from the data. miRNA identification with the
miRCat tool was performed with the default animal pa-
rameters except for minimum abundance (6 reads),
minimum length (17 nt), and maximum length (25 nt)
[40]. The identification was performed on the basis of
the Sus scrofa genome (assembly Sscrofa 10.2) and miR-
Base v22.1 [41, 42]. Predicted candidate microRNA pre-
cursors were searched in the RNAcentral database v14
[43] to exclude those belonging to other non-coding
RNA species. The remaining miRNA sequences were
subjected to the identification of isomiRs that is micro-
RNA length and sequence variants, using the isomiR-
SEA software [44] and the default settings. Finally, de-
tected miRNAs were analyzed using the DESeq2 soft-
ware [45] to identify those differentially expressed
between females and males. Since resultant miRNAs
have false discovery rate (FDR) > 0.05, we chose statisti-
cally significant microRNAs differentially expressed at
nominal p value ≤ 0.01 for further analyses. The most
significant (p value ≤ 0.005) miRNAs were visualized
with the pheatmap v1.0.12 package [46] using the R
package v3.6.1 [47].

miRNA-target gene interaction networks and enriched
biological pathways
Interaction networks of the detected differentially
expressed miRNAs and their database-deposited target
genes were illustrated with the use of the miRNet 2.0
online platform [48, 49]. To this end, we chose “miR-
NAs” from the available options. The analysis was car-
ried out with the default settings, except for a filter
“Degree cutoff” which was set to 4.0, in order to increase
the legibility of obtained networks and visualize the most
important interactions.
The mirPath v.3 DIANA Tools web application [50]

was used to determine biological processes enriched by
the identified differentially expressed microRNAs (DE
miRNAs) (females vs. males). The analysis was carried
out employing experimentally validated target genes de-
posited in TarBase v7.0, as well as KEGG Pathway Data-
base and Gene Ontology (GO) as reference databases.

qPCR validation
Eleven microRNAs were chosen for the validation with
the use of reverse transcription quantitative polymerase
chain reaction (RT-qPCR) method. TaqMan Advanced
miRNA cDNA Synthesis Kit (Thermo Fisher Scientific)
was used to perform reverse transcription, while Taq-
Man Fast Advanced Master Mix (Thermo Fisher Scien-
tific) and commercially available TaqMan microRNA
Advanced Assays (Thermo Fisher Scientific) to run
qPCR reactions in triplicates including non-template
control (NTC) for each microRNA assay. qPCR reaction
mix for one sample contained 10 μl TaqMan Fast Ad-
vanced Master Mix (2X), 1 μl TaqMan Advanced
miRNA Assay (20×), 4 μl RNase-free water, and 5 μl di-
luted (1:10) cDNA template. All reactions were carried
out according to the standard protocols on QuantStudio
7 Flex Real-Time PCR System (Thermo Fisher Scien-
tific). miRNAs with the most stable expression profiles
as specified by the NormFinder software [51] were se-
lected as reference controls (miR-100-5p, miR-499a-5p).
Relative expression levels were computed applying ΔΔCt
method including reaction efficiency E [52] calculated
with the use of the standard curve method.

Results
miRNAome profile of the PAG region
We conducted next-generation sequencing to
characterize the miRNAome profile of the pig PAG area
of the brain. As a result, from 3,567,080 to 6,033,979
raw sequences in individual samples were obtained. Sub-
sequent filtering resulted in on average 3,311,434 se-
quences, which were further mapped to the Sus scrofa
genome and miRBase 22.1. This allowed the identifica-
tion of 237 unique known microRNAs, including 53
microRNAs* from the other strand, and 286 potentially
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new miRNA sequences (Supplementary File 1). The
most predominantly expressed miRNAs were 22nt long.
The miRNA profiling results were submitted to the
NCBI GEO database and the following GEO accession
number was assigned: GSE148302.

Females vs. males differentially expressed microRNAs
Next, we performed differential expression analysis using
the DESeq2 algorithm, which revealed 38 statistically
significantly differentially expressed microRNAs (p value
≤ 0.01) in the female samples with reference to the male
samples. Among them, 12 miRNAs were underexpressed
and consisted of 29 isomiRs, whereas 26 microRNAs
were overexpressed and included 84 isomiRs. All DE iso-
miR sequences originating from one microRNA showed
the same direction of expression changes. The number
of DE isomiRs belonging to one microRNA ranged from
one (e.g., ssc-miR-150) to 17 isomiRs for ssc-miR-92b-
3p. DE analysis details are present in Supplementary File
2, and the most significant (p value ≤ 0.005) differentially
expressed microRNAs and their isomiRs are illustrated
in Fig. 1.

Pathways enriched by sex differentially expressed
microRNAs
The visualization of interaction networks of DE microRNAs
and their target genes is presented in Figs. 2 and 3. The net-
work, after degree filtering, embraces vast numbers of tar-
get genes (230) and long non-coding RNAs (66). It includes
the following genes: ZNF148, MAP2K1, IGFR1, SERPINE1,
TMEM30A, IL1A, NOTCH1, FOXN2, and many others.
Whereas lncRNAs are represented by XIST, DLEU1,
KCNQ1OT1, NEAT1, HELLPAR, and MALAT1.
Moreover, we analyzed identified differentially

expressed microRNAs (females vs. males) to elucidate
their functions in the pig PAG region, with particular
emphasis on a potential sex impact. As a result, numer-
ous enriched KEGG pathways (Supplementary File 3)
and GO terms (Supplementary File 4) were identified,
encompassing a variety of biological processes. The most
interesting over-represented KEGG pathways were fatty
acid metabolism (hsa01212), estrogen signaling pathway
(hsa04915), oocyte meiosis (hsa04114), endometrial can-
cer (hsa05213), progesterone-mediated oocyte matur-
ation (hsa04914), prolactin signaling pathway (hsa04917)
(Fig. 4), long-term depression (hsa04730) (Fig. 5), steroid
biosynthesis (hsa00100), and axon guidance (hsa04360)
(Fig. 6) (Table 1). The enriched significant GO terms in-
cluded response to stress (GO:0006950), enzyme regula-
tor activity (GO:0030234), immune system process (GO:
0002376), catabolic process (GO:0009056), generation of
precursor metabolites and energy (GO:0006091), and
transcription factor binding (GO:0008134) (Table 2). All

identified GO terms and engaged miRNAs are shown in
Fig. 7.

qPCR validation
The validation of miRNA sequencing results showed a
high and significant Spearman correlation between next-
generation sequencing (NGS) and qPCR for most of the
analyzed miRNAs (from 0.56 to 0.95) (Table 3). Correl-
ation coefficients were not significant for miR-23a-3p,
-103a-3p, -339-5p, but the direction of expression
changes obtained by these two methods was the same.

Discussion
MicroRNAs have emerged as key regulators of a plethora
of biological processes, including those occurring in the
central nervous system. Accumulating evidence on their
vital roles in different aspects of neurodevelopment and
functioning provides resources to elucidate the physiology
and pathophysiology of this complex system. The imple-
mentation of high throughput technologies allows further,
deeper insight into the subject and facilitates
characterization of this still unraveled and incomplete pic-
ture of miRNA repertoire and its regulatory influence.

miRNA profiling reveals inter-species conservative nature
and ubiquitous expression of ssc-miR-9, -26a, and -99a-5p
in different brain regions
To date, an approach was made to identify miRNA-
dependent regulatory mechanisms related to brain devel-
opment ontogenesis in pigs. Using the microarray tech-
nology and qRT-PCR, Podolska and colleagues [32]
determined miRNA expression levels in the developing
pig brain. Noteworthy, almost half of the known miR-
NAs detected in our study overlaps with their results,
which suggests that they may be pig, brain-ubiquitous
miRNAs. The differences of miRNA profiles obtained by
our research teams may stem from different methods
applied (microarrays vs. NGS), developmental stages (fe-
tuses and piglets vs. adult pigs), brain regions (cortex
and cerebellum vs. PAG), and available at the time refer-
ence miRNAs (miRBase 15.0 vs. 22.1). Likewise, 18 miR-
NAs were common for this study and human brain
miRNA profiling studies which established the vital roles
of miRs in a variety of neuron-occurring processes, and
in disruptions of neuronal functions [53]. This stays in
agreement with the nature of the examined tissue and,
as such, confirms the obtained miRNA profile results.
What is more, numerous isomiRs (sequence and

length variants) were detected, also those differing in the
5′ end sequences comprising alternative seed sequences
(Fig. 1, Supplementary File 2). This implies that they can
undergo target gene switching, and, as a result, influence
different biological pathways [54, 55], which further can
have a major impact on the whole tissue functioning.
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Fig. 1 The expression pattern Heat Map. The Heat Map depicts the most significant (p value ≤ 0.005) differentially expressed miRNAs and their
isomiRs (females vs males; males constitute the reference group) (R Package pheatmap)
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The most abundantly expressed in the examined in this
study pig PAG samples were ssc-miR-9, -26a, and -99a-5p
(Supplementary File 1). Of those, miR-9 is classified as a
NeurimmiR that is a brain-specific microRNA involved in
the mediation of the immune system functioning [56],
while miR-26a and -99a are brain-enriched miRs [53, 57].
They were also identified by Podolska and colleagues [32]
in the developing pig brain (cortex and cerebellum). These
miRNAs were shown to play important roles in neuronal
functioning in different species, such as memory, synaptic
plasticity, and neuroinflammation [56, 58]. Their detection

in the present study indicates their inter-species conserva-
tive nature and ubiquitous expression in different brain re-
gions. However, their exact significance in the PAG
physiology remains to be elucidated.

Female vs. male differential expression analysis identifies
candidate miRNAs associated with neurological and
psychiatric disorders as well as pain modulation
The performed analysis of miRNAs differentially
expressed in females in comparison to males revealed 38
microRNAs (Supplementary File 2), of which five (miR-

Fig. 2 MiRNA interaction network. Global interaction network between the identified differentially expressed miRNAs (females vs. males), and
predicted genes as well as long non-coding RNAs, which they target (miRNet web application). Green squares stand for DE microRNAs, red circles
denote target genes, while blue circles stand for lncRNAs
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146b-5p, -126-3p, -103a-3p, -181a-5p, -181b-5p) overlap
with those detected by Meder and colleagues [59] in hu-
man peripheral blood as influenced by sex. Furthermore,
Munoz-Culla and colleagues [60] profiled miRNAomes
of peripheral blood leukocytes of patients with relapses
and remission of multiple sclerosis, and revealed sex-
dependent differences. Among miRNAs found as differ-
entially expressed in female but not in male remission
patients were miR-27b-3p, 30a-5p, -30e-5p, and -148a-
3p, which were also established in this study as differen-
tially expressed (Fig. 1, Supplementary File 2). It should
be noted that our studies comprised different species,
tissues, methodological approaches, sample numbers,
and last but not least different miRBase releases, which
may explain those few common miRNAs, which, how-
ever, are still of the importance because they may

constitute the most conservative miRNAs and confirm
the obtained results.
miR-99a-5p was not only determined in our study as

abundantly expressed in the PAG but was also shown to
be upregulated in the female samples in comparison to
the male samples (Fig. 1, Supplementary File 2). Consid-
ering the fact that the expression of this miRNA is
stroke-influenced, these results may suggest that this
miR may be one of the elements of the regulatory net-
work associated with different susceptibility of females
and males to ischemic stroke [37]. Other miRNAs iden-
tified as sex differentially expressed in our study (miR-
124, -148a, -let-7i, -320d, -320e, -30a, -126, -219) may
also constitute components of this network because of
the fact that they were determined as stroke-dependent
microRNAs as well [61].

Fig. 3 miR-99a-5p interaction network. Interaction network of differentially expressed (females vs. males) miR-99a-5p, and its predicted target
genes as well as long non-coding RNAs (miRNet web application). Green squares denote DE microRNAs, red circles stand for target genes, and
blue circles stand for lncRNAs
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miR-99a-5p poses an interesting subject of further re-
search especially since the miRNet miRNA-target inter-
action analysis (Figs. 2 and 3) showed that it might exert
gene regulatory influence on a handful of central ner-
vous system crucial genes. For example, high expression
levels of DEAD-box helicase 3 X-linked (DDX3X) en-
coding adenosine triphosphate (ATP)-dependent RNA
helicase are correlated with poor survival outcome in
human gliomas [62]. Furthermore, insulin-like growth
factor-1 receptor (IGF1R) was shown to take part in the
regulation of cortical neuronal migration, axon forma-
tion and polarity of those neurons [63], and brain devel-
opment in a region-specific manner [64]. Argonaute 1
(AGO1) and Argonaute 2 (AGO2) comprise another

worth attention targets since they code for proteins es-
sential for proper RNA-induced silencing complexes
(RISC) assembly and function, and, as a result, deter-
mine global miRNA abundance. Of note, disrupted RISC
assembly within CNS was observed during autoimmune
demyelination [65]. Another gene, serpin family E mem-
ber 1 (SERPINE1), was established as a key regulator in
glioblastoma dispersal [66] and may constitute a promis-
ing therapeutic target in Alzheimer’s disease [67].
Whereas myocyte enhancer factor 2D (MEF2D) gene be-
longs to the MEF2 family of transcription factors, which
was shown to play important roles during brain develop-
ment and function. Moreover, these transcription factors
were suggested to exert a complex and profound

Fig. 4 Prolactin signaling pathway (KEGG ID: hsa04917). A pathway identified as one of the most significantly enriched by the detected
differentially expressed miRNAs in females in comparison to males. Green frame denotes genes engaged in the pathway. Genes targeted by
identified DE miRNAs are marked yellow (genes included in one pathway) and orange (genes included in more than one pathway). Black arrows
denote a molecular interaction or relation, whereas dotted arrows stand for an indirect link or unknown reaction
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influence on memory formation [68]. The MEF2 family
was also emphasized as a risk factor for neuronal devel-
opmental disorders, psychiatric disorders such as schizo-
phrenia, and mental illnesses such as autism [69].
Interestingly, other identified herein DE miRNAs in fe-

males in comparison to males were also shown to have
altered expression levels in psychiatric disorders patho-
genesis, namely miR-219, -181b, -124, -320, -128, and-
30a [70]. Notably, two research teams investigating
changes of miRNA profiles in schizophrenia revealed
numerous dysregulated miRNAs, of which miR-30b, -92,
-30a-5p [71] and miR-128, -138-, 148a, -150, -27b, -28,
-381, -489, -99a, -181a, -181b [72] were also found as
differentially expressed (females vs. males) in our study
(Fig. 1, Supplementary File 2). This seems to provide a
valuable stimulus for further extended studies since the
PAG was hypothesized to play roles in schizophrenia as
a structure mediating basic emotions and primordial
self-consciousness [73, 74]. A brief overview of

differentially expressed miRNAs identified in this study
and various brain diseases is presented in Table 4.
Additionally, schizophrenia is also characterized by sex-

driven differences which are reflected in the age of onset,
symptoms, and response to treatment [87–90]. The exact
pathogenesis of these differences remains vague and may
embrace a variety of genetic and environmental factors;
nevertheless, identified herein sex differentially expressed
miRNAs emerge as candidates for more extensive re-
search, especially since they coincide with biological path-
ways relevant to neuron functioning, such as PI3K-Akt
signaling pathway (Supplementary file 3).
One of the most intensively studied roles of the PAG is

the modulation of pain [8, 91], which was established to
differ substantially between males and females [35, 36].
Accumulating evidence suggests that this sex differential
pain sensitivity stems from not only neuroanatomical fea-
tures but also the influence of sex hormones, and the de-
gree of proinflammatory immune response, which is in

Fig. 5 Long-term depression (KEGG ID: hsa04730). One of the most significantly enriched pathways by the detected differentially expressed
between females and males microRNAs. Green frame stands for genes engaged in the pathway. Genes targeted by detected DE microRNAs are
marked yellow (genes included in one pathway) and orange (genes included in more than one pathway). Black arrows stand for a molecular
interaction or relation, while dotted arrows stand for an indirect link or unknown reaction
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line with estrogen signaling pathway (Table 1) and im-
mune system process (Table 2, Fig. 7) identified in this
study as enriched by miRNAs differentially expressed be-
tween males and females.
Furthermore, numerous studies allowed characterization

of miRNAome signatures of patients suffering from different
types of pain and identification of miRNAs with potential to
serve as pain subtype and intensity biomarkers [92–100]. A
handful of those miRNAs was also identified in this study as
differentially expressed in the PAG region between females
and males (Supplementary file 2). These common miRNAs
embrace miR-126-3p which was detected in chronic muscu-
loskeletal pain [99], migraine [98], and complex regional
pain syndrome [92] as well as miR-320a identified in chronic
musculoskeletal pain [99], complex regional pain syndrome
[92], persistent axial musculoskeletal pain [96], and fibro-
myalgia suffering patients [93]. Moreover, Linnstaedt and
colleagues suggested the existence of sex influence in the
case of miR-320a [96]. We also detected miR-181a and

-142-5p which were differentially expressed in complex re-
gional pain syndrome [92] and migraine [94, 95], while miR-
150-5p was reported in chronic musculoskeletal pain [99].
Two more miRNAs identified in complex regional pain syn-
drome (let-7c, miR-185) [92] and fibromyalgia suffering pa-
tients (miR-103a-3p, miR-30b-5p) [93] were also DE in this
study. Furthermore, Leinders and colleagues reported miR-
146a-5p to be altered in peripheral neuropathies [97], while
Tavares-Ferreira’s team identified altered expression of miR-
138 in lingual nerve neuromas [100]. When it comes to pro-
filed migraine miRNAs, the differential expression of miR-
27b [94] and miR-34c, -124-3p, -375, and -532-5p [95] was
also shown in our study in females vs. males.
These pain-associated miRNAs may constitute inter-

esting subjects of additional research focused on deci-
phering the meaning and exact roles of microRNAs in
sex-driven pain differences; especially since they were
identified in this study as overrepresented in the afore-
mentioned estrogen signaling pathway and immune

Fig. 6 Axon guidance (KEGG ID: hsa04360). One of the most important pathways, enriched by the identified differentially expressed miRNAs in
females vs. males. Green frame stands for genes involved in the pathway. Genes targeted by identified DE microRNAs are marked yellow (genes
included in one pathway) and orange (genes included in more than one pathway). Black arrows denote a molecular interaction or relation, while
dotted arrows denote an indirect link or unknown reaction
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system process (Supplementary file 2, 3). This implies
they may underlie sex-related pain sensitivity through
sex hormone and immune response-driven mechanisms;
however, it requires further research. Moreover, miR-
320a was the most commonly identified in different
types of pain, which suggests it may be a universal pain
mediator. It was also reported that it may undergo sex
influence [96]. Altogether, the previous results along

with our study indicate it may be an especially promising
biomarker to be tested.

Pathways enriched in miRNAs differentially expressed
between females and males play roles in crucial neuronal
processes
Among identified herein miRNA overrepresented path-
ways was PI3K-Akt signaling pathway (Supplementary

Table 1 Significant KEGG pathways enriched in the identified miRNAs differentially expressed in females vs. males

KEGG pathway Number
of genes

Examples of genes Number
of miRNAs

Examples of miRNAs p value

Fatty acid metabolism
(hsa01212)

34 ACSL5, FASN, MCAT, ACADSB, ACSL3,
PTPLB, ACOX1, PECR, ACOX3, HADH;

19 miR-124-3p, miR-142-5p,
miR-27b-3p, miR-30a-5p,
miR-181a-5p;

6.23e-08

Estrogen signaling
pathway (hsa04915)

73 ESR1, BABBR1, FOS, HBEGF, ADCY1,
SOS2, ATF2, ADCY7, NRAS, MAP2K2;

30 miR-103a-3p, miR-148a-3p,
miR-27b-3p, miR-28-3p,
miR-532-5p;

4.50e-06

Oocyte meiosis
(hsa04114)

78 SLK, ESPL1, PPP1CA, FBXO5, CAMK2D,
PPP2R5E, SMC1A, YWHAH, ADCY1,
CCNB1;

30 miR-92b-3p, miR-30a-5p,
miR-365a-3p, let-7i-5p,
miR-708-5p;

0.00015

Endometrial cancer
(hsa05213)

40 BRAF, GSK3B, ERBB2, SOS2, NRAS,
MAP2K2, APC, PIK3CB, TCF7L2, RAF1;

27 miR-138-5p, miR-181b-5p,
miR-126-3p, miR-146a-5p,
miR-676-3p;

0.00108

Progesterone-mediated
oocyte maturation
(hsa04914)

65 BRAF, ADCY1, CCNB1, PGR, CCNA7,
BUB1, FZR1, GNAI3, ANAPC2, ARAF;

29 miR-592, let-7b-5p,
miR-124-3p, miR-181a-5p,
miR-30e-5p;

0.00116

Prolactin signaling
pathway (hsa04917)

52 ESR1, PRLR, FOS, GSK3B, STAT3,
NFKB1, SOCS4, SOS2, CISH, JAK2;

28 miR-490-3p, let-7i-5p,
miR-124-3p, miR-191-5p;

0.00221

Long-term depression
(hsa04730)

39 BRAF, PRKCA, GNA12, NRAS, GNAS,
GNA13, PLA2G4F, GNAQ, ITPR3;

29 miR-124-3p, miR-92b-3p,
miR-365a-3p, miR-708-5p,
miR-181a-5p;

0.00420

Steroid biosynthesis
(hsa00100)

14 SS5D, TM7SF2, MSMO1, DHCR24,
CYP51A1, SOAT1, LSS, SQLE;

21 miR-30a-5p, miR-30b-5p,
miR-30e-5p, miR-148a-3p;

0.00709

Axon guidance (hsa04360) 78 EFNB2, SEMA6A, PLXNA2, GSK3B,
MET, ROCK1, L1CAM, FES, RHOA;

30 miR-124-3p, miR-148a-3p,
miR-676-3p, miR-99b-5p;

0.04447

Upregulated miRNAs are in bold

Table 2 Significant gene ontology terms enriched in the identified miRNAs differentially expressed in females vs. males

GO term Number
of genes

Examples of genes Number of
miRNAs

Examples of miRNAs p value

Response to stress
(GO:0006950)

1191 TERF2, POLR2B, VPS4A, VAPB,
ARPC5, NDUFS2, B2M, TAOK3,
E2F7, PELI1;

27 let-7b-5p, miR-126-3p, miR-138-5p,
miR-140-3p, miR-142-5p;

< 1e-325

Enzyme regulator
activity (GO:0030234)

376 ARHGAP1, TBC1D20, TAOK3,
TRIB3, RGS17, PFN1, ANP32E,
PRLR, PKIA;

19 miR-146a-5p, miR-148a-3p, miR-28-3p,
miR-34c-5p, miR-92b-3p;

< 1e-325

Immune system process
(GO:0002376)

742 ARPC5, B2M, PELI1, TRIB3,
BRK1, IRS2, CCL2, ADAM9,
ACTB;

26 miR-126-3p, miR-138-5p, miR-140-3p,
miR-142-5p, miR-146a-5p;

< 1e-325

Catabolic process
(GO:0009056)

1146 RNF41, VPS4A, ABCD4, ERLIN1,
YTHDC2, PPP1CA, RAB2B, RPA1;

26 miR-142-5p, miR-146a-5p, miR-181a-5p,
miR-181b-5p, miR-185-5p;

< 1e-325

Generation of precursor
metabolites and energy
(GO:0006091)

163 NDUFS2, PPP1CA, FASN,
PRKCA, PYGL, PFKP, COX8A,
ACOX1;

14 let-7b-5p, let-7i-5p, miR-181b-5p,
miR-185-5p, miR-27b-3p;

1.11e-16

Transcription factor
binding (GO:0008134)

233 FHL2, TRIP6, ACTB, NACA, TCF3,
HIPK2, STAT3, HOXA7, PAX6;

16 miR-181b-5p, miR-27b-3p, miR-30e-5p,
miR-532-5p;

4.10e-15

Upregulated miRNAs are in bold
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file 3). This pathway was established to be of profound
significance in emotional regulation, language, behaviors,
and complex cognition, while disruptions of this multifa-
ceted interaction network were regarded as a root cause

of different neuronal diseases, such as epilepsy, autism,
and schizophrenia [101]. Moreover, also the components
of the axon guidance pathway (Fig. 6) are being associ-
ated with schizophrenia and other psychiatric disorders

Fig. 7 Heat map of significant GO terms enriched by the DE microRNAs (females vs. males) (DIANA-miRPath v3.0)
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[102]. When it comes to the physiological role of this
pathway, it is responsible for a nervous system peculiar
feature, because it directs growing axons toward their
targets, which creates the complex wiring of the neur-
onal tissue.

Another identified key neurodevelopmental pathway
was long-term depression (Fig. 4, Table 1), which is a form
of synaptic plasticity—a biological process thought to con-
tribute to memory and learning. Growing evidence sup-
ports miRNA involvement in this mechanism [103], which
is in line with our results. Moreover, this form of synaptic
plasticity has been investigated in terms of its involvement
in chronic pain [104, 105]. Since the PAG plays a key role
in the modulation and perception of pain [8, 91], the en-
gagement of this pathway in mechanisms underlying the
PAG-associated pain is worth further investigation. What
is more, long-term depression pathway-enriched miRNAs
identified in this study may provide potential candidates
for such research (Supplementary file 3).
Of note, other synapse-related KEGG pathways such

as GABAergic synapse, glutamatergic synapse, dopamin-
ergic synapse, and cholinergic synapse (Supplementary
file 3) were identified in this study as enriched by the de-
tected microRNAs. These pathways are shown to be in-
volved in the transmission of signals to and from the
PAG [91]. Furthermore, estrogen signaling pathway, oo-
cyte meiosis pathway, and prolactin signaling pathway

Table 3 The correlation coefficient of RNA-seq and qRT-PCR
data

miRNA R

miR-7-5p 0.95***

miR-21-5p 0.88***

miR-378a-3p 0.56**

miR-20a-5p 0.62**

miR-23a-3p 0.36ns

miR-103a-3p 0.21ns

miR-127-3p 0.78***

miR-210-3p 0.77***

miR-339-5p 0.12ns

R Spearman correlation coefficient with p value (***p < 0.001; **p < 0.01; ns
not significant)

Table 4 Examples of miRNAs associated with neurological or neuropsychiatric diseases, identified as differentially expressed in our
study

miRNA name Up or downregulated in females vs. males Disease

miR-381-3p − Sc [72]

miR-34c − AD [75], PD [76]

miR-489 − ASD [77], Sc [72]

miR-320 − ASD [78], S [61]

miR-27b-3p − S [79], AD [80], MS [60], Sc [72]

miR-181a − Sc [72]

miR-181b − S [81], Sc [72]

miR-30e-5p − MS [60]

miR-30a-5p − MS [60], Sc [71]

miR-28-3p − Sc [72]

miR-30b-5p − MS [82], Sc [71]

miR-185 − PD [83], MD [84]

miR-150 − S [85], Sc [72]

miR-191 − AD [86]

miR-124a + S [61]

miR-128 + Sc [72]

miR-126-3p + S [61]

miR-92a + Sc [71]

miR-99a-5p + S [61], Sc [72]

let-7i-5p + S [61]

miR-138 + S c[72]

miR-148a-3p + MS [60], S [61]

miR-219b-3p + S [61]

Sc schizophrenia, AD Alzheimer’s disease, PD Parkinson’s disease, ASD autism spectrum disorders, MS multiple sclerosis, S stroke, MD major depression
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(Fig. 4, Table 1) were statistically significantly overrepre-
sented by the identified DE miRNAs. The enrichment of
these pathways is not surprising having taken into con-
sideration the investigated influence of miRNA-related
sex differences on biological processes. What is more,
prolactin, which is responsible for maternal behavior, was
established to induce the activity of the PAG region, which
is one of nuclei of the sociosexual and maternal brain [106].
The identification of pathways crucial for nervous tis-

sue biology confirms the role and significance of miR-
NAs for the PAG physiology, with a special emphasis on
those potentially taking part in mechanisms responsible
for sex differences.

Conclusions
The comprehensive analysis of the miRNAome profile of
the porcine PAG tissue enabled us to determine conser-
vative miRNAs characteristic for the brain tissue, such
as miR-9, -26a, and -99a-5p. Of note, this is the first
study to reveal the repertoire of potentially novel se-
quences and isomiR signatures in the pig PAG region,
which sheds some light on the multifaceted influence of
miRNA expression on brain functioning and gives a
stimulus for future research. Furthermore, the compari-
son of miRNAome profiles in terms of sex influence re-
vealed numerous miRNAs with potential to underlie a
range of processes and diseases manifested in sex-related
manner. Further analysis allowed identification of bio-
logical pathways essential for neurodevelopment and
neuronal functioning, as well as other molecular pro-
cesses which may constitute a part of mechanisms driv-
ing sex differences. The identification of the present
study miRNAs in human brain-focused studies may act
as the confirmation of the obtained results, and, at the
same time, as the confirmation of significant roles of
miRNAs in the neurodevelopmental processes. Add-
itional research is warranted to elucidate the exact rela-
tionships between the identified miRNAs and
physiological processes being disrupted in the course of
different diseases in humans in a sex-dependent manner,
and, as a result, to investigate the clinical potential of
those microRNAs for treatment.

Perspectives and significance
Taking into consideration the problematic access to
brain tissues of patients, animal models, especially the
pig with its physiological resemblance to the human,
constitute potent sources to carry out such research.
Therefore, obtained in this study results provide poten-
tial miRNAs and pathways to be investigated in the fu-
ture research embracing the higher number of samples
and the species of particular interest that is the human,
to gain wider and more comprehensive view of brain
and sex-driven mechanisms,.
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