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Abstract

Background: It is a long established fact that sex is an important factor that influences the transcriptional
regulatory processes of an organism. However, understanding sex-based differences in gene expression has been
limited because existing studies typically sequence and analyze bulk tissue from female or male individuals. Such
analyses average cell-specific gene expression levels where cell-to-cell variation can easily be concealed. We
therefore sought to utilize data generated by the rapidly developing single cell RNA sequencing (scRNA-seq)
technology to explore sex dimorphism and its functional consequences at the single cell level.

Methods: Our study included scRNA-seq data of ten well-defined cell types from the brain and heart of female and
male young adult mice in the publicly available tissue atlas dataset, Tabula Muris. We combined standard
differential expression analysis with the identification of differential distributions in single cell transcriptomes to test
for sex-based gene expression differences in each cell type. The marker genes that had sex-specific inter-cellular
changes in gene expression formed the basis for further characterization of the cellular functions that were
differentially regulated between the female and male cells. We also inferred activities of transcription factor-driven
gene regulatory networks by leveraging knowledge of multidimensional protein-to-genome and protein-to-protein
interactions and analyzed pathways that were potential modulators of sex differentiation and dimorphism.

Results: For each cell type in this study, we identified marker genes with significantly different mean expression
levels or inter-cellular distribution characteristics between female and male cells. These marker genes were enriched
in pathways that were closely related to the biological functions of each cell type. We also identified sub-cell types
that possibly carry out distinct biological functions that displayed discrepancies between female and male cells.
Additionally, we found that while genes under differential transcriptional regulation exhibited strong cell type
specificity, six core transcription factor families responsible for most sex-dimorphic transcriptional regulation
activities were conserved across the cell types, including ASCL2, EGR, GABPA, KLF/SP, RXRα, and ZF.
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Conclusions: We explored novel gene expression-based biomarkers, functional cell group compositions, and
transcriptional regulatory networks associated with sex dimorphism with a novel computational pipeline. Our
findings indicated that sex dimorphism might be widespread across the transcriptomes of cell types, cell type-
specific, and impactful for regulating cellular activities.

Keywords: Single cell RNA sequencing, Sex dimorphism, Differential expression, Differential distribution, Cell cluster,
Transcription regulatory network, Pathway analysis

Background
The fundamental functional unit of all living organisms
is a single cell. While cells of the same organism share
largely identical genetic material, numerous mechanisms
regulate the genome to give rise to diverse cell type-
specific behaviors. It has long been recognized that the
specificity of cell types and the tissues from which they
are derived from, are driven by transcriptional regulatory
programs that lead to distinct patterns of gene expres-
sion. For instance, one gene may have different mean ex-
pression levels in different cell types or may be
expressed by different fractions of cells in different tis-
sues [1]. Existing studies have shown that even in iso-
genic cells, cells from the same cell type or identity, gene
expression is a stochastic and heterogeneous process
that is fundamental to controlling cell fate [1–3]. As a
consequence, the variable yet well-organized transcrip-
tome not only ensures normal growth and functioning
of each individual cell throughout its lifetime, but also
enables cooperation between cells to function as a
multi-cellular entity that make up a living organism.
Sex is widely associated with many crucial phenotypic

differences and is also linked to various transcriptional
variabilities. For instance, in mice, a considerable frac-
tion of genes (from 14% in the brain to 70% in the liver)
are significantly differentially expressed in various tissues
between females and males [4]. Genes exhibiting sex-
dimorphic expression levels are enriched in biologically
important pathways, including immune response and
lipid metabolism in the liver, amine metabolism in
muscle, and ATPase activity in the brain [4]. Several
hormone response-related transcription factors, such as
zinc finger proteins (ZFPs) and STAT proteins in the
liver [5, 6], that globally regulate gene expression mod-
ules have also been shown to be involved in sex-
dimorphic regulatory mechanisms. However, to this end,
most studies investigating sex-dimorphic gene expres-
sion and transcriptional regulation are based on bulk
sample RNA sequencing or microarrays, where RNA
transcripts from a large number of cells are amalgam-
ated and the averaged gene expression levels are derived.
Though informative in various contexts, such analyses
conceal cell-to-cell variation that may be important in
characterizing differences between cell types present in

the same sample. Conceivably, if two cell types of similar
proportions both differentially express the same gene
but in opposite directions between females and males,
comparisons that average cell type-specific gene expres-
sion levels may overlook such differences. This limita-
tion may introduce more bias in studying heterogeneous
tissues and organs, such as the brain and heart. Accur-
ately accounting for cellular heterogeneity or isolating
and separately analyzing different types of cells by flow
cytometry are certainly promising to resolve these issues.
For instance, a recent study identified 3161 genes dis-
playing sex-biased gene expression in placental mam-
mals after adjusting for confounding effects associated
with cell type proportions [7]. Another study applying
flow cytometry revealed that 144 genes are differentially
expressed between human males and females in immune
cells, among which 75% are located on autosomes [8].
These findings substantially enriched characterization of
sex dimorphism in the transcriptome. However, infor-
mation of tissue structure and intracellular distributions
are unlikely to be preserved in bulk sample data analysis,
whereas a large sample size in flow cytometry studies
might not be easily achieved due to the possibly high
costs incurred and indispensable facility requirements.
The application of single cell RNA sequencing

(scRNA-seq) technology to generate high-throughput
data on a per-cell basis has thus advanced our under-
standing of transcription regulation by elucidating how
biological variability is controlled through gene expres-
sion. Most scRNA-seq analyses focus on two levels. First,
at the cellular level, cluster analysis and cell type annota-
tion are important for understanding the representation
of different cell identities in a sample [9]. Trajectory in-
ference methods, such as Monocle, also pioneered the
possibility of assigning cell-cell ordering and present an
overall model that allowed for the inference of gene ex-
pression dynamics [10]. Second, at the gene level, many
earlier studies followed common practices in the analysis
of differential expression, construction of regulatory net-
works, and gene set enrichment analysis that have been
explored and adapted from bulk RNA-seq data.
It is important to highlight that the merit of scRNA-

seq data is never limited to inferences based on the aver-
age expression level. While differentiation among

Lu and Mar Biology of Sex Differences           (2020) 11:61 Page 2 of 20



homogeneous cells may be identified by models that per-
mit bi-modality or even multi-modality, variance and
higher moments of the distribution of transcript read
counts can provide deeper insights into how subgroups
of cells are transcriptionally regulated [11]. For instance,
changes in gene expression variability may imply a shift
in the regulatory dynamics between two phenotypes.
Modeling multi-modality of a gene expression distribu-
tion may be an informative characteristic of scRNA-seq
data as it allows for the identification of a mixture of
cells in different states. Furthermore, models that in-
corporate more flexible representations of variability
through the commonly over-dispersed variance in pa-
rameterized negative binomial model are also ap-
proaches that have been underexplored. Despite some
efforts to build knowledge of multi-modality into cell
type clustering algorithms [12] and the statistical identi-
fication of multi-modality in scRNA-seq data [13], the
importance of modeling gene expression variability and
its impact on understanding biological regulation has
been inadequately addressed.
In this study, we make effective use of scRNA-seq data

from a recently released compendium, Tabula Muris, to
decode sex dimorphism-associated transcriptional vari-
ability from different perspectives mentioned above
using a novel computational pipeline. Given extensive
studies that have focused on the biology of sex differen-
tiation and dimorphism, we illustrate how scRNA-seq
can confirm previous findings based on bulk RNA-seq
and provide new insights into sex dimorphism in terms
of gene expression variability, cell composition, and the
regulation of transcriptional networks in the brain and
heart.

Methods
Data source and preprocessing
With a large volume of data and high sequencing quality
compared to similar studies, the Tabula Muris study
presented scRNA-seq data of 20 organs collected from a
total of four young male and three virgin female C57BL/
6JN mice that were controlled for age, environment, and
epigenetic effects [14]. Samples of each organ were col-
lected from the same anatomical regions [14].
Fluorescence-activated cell sorting (FACS)-processed
scRNA-seq data were downloaded from the Tabula
Muris study (https://github.com/czbiohub/tabula-muris,
accessed July 15, 2018) and our study chose to focus on
cell types derived from the brain and heart. In order to
ensure adequate statistical power in downstream ana-
lyses, we selected the four types of brain cells and six
types of heart cells that met sufficient sample size re-
quirements (scRNA-seq data for 50 or more cells) in
both female and male individuals. The set of ten cell
types were astrocytes of the cerebral cortex, brain

endothelial cells, microglial cells, oligodendrocytes, car-
diac muscle cells, endocardial cells, heart endothelial
cells, cardiac fibroblast cells, and leukocytes sampled
from heart and cardiac smooth muscle cells (see Supple-
mentary Table 1).
Following the same criteria adopted by the Tabula

Muris study [14], we excluded cells of low sequencing
quality as these would affect the performance of down-
stream imputation methods to correct for technical
dropouts. Specifically, we required that each cell should
have ≥ 500 genes with at least one read count and that
each cell should have ≥ 50,000 total read counts after
subtracting counts for Rn45s, the 45S pre-ribosomal
RNA that is uniformly overabundant [14]. We simultan-
eously excluded genes that were deemed undetected or
on the Y chromosome. Moderately detected genes were
defined as having a read count ≥ 5 in a cell. Genes that
were moderately detected in ≥ 5 cells were retained for
further analysis.
We imposed the two preliminary filters above on all

brain cells and all heart cells, respectively, and obtained
6498 brain cells with 15,268 detected genes as well as
4186 heart cells with 15,160 detected genes.

Imputation and validation
Zero inflation (excessive zero read counts) arising from
the low RNA capture rate in scRNA-seq data is a universal
obstacle [9]. Namely, a dropout occurs where one gene is
moderately expressed in some cells but is not detected
due to a technical failure to capture enough transcripts.
This type of zero read count is distinct in nature from the
case where a transcript may be undetectable because it is
either suppressed or not required in the gene expression
program in a cell. It is essential to distinguish the technical
dropouts from true instances where a transcript has not
been expressed, both cases which lead to numerical zero
read counts. Since expression variability plays an import-
ant role in this study, we imputed the filtered data by
scImpute [15] to prevent the overrepresentation of vari-
ance. This method first clusters cells into subpopulations
using semi-unsupervised spectral clustering with the num-
ber of intended subpopulations specified. It then fits a
normalized expression distribution for each gene in each
subpopulation using a gamma-normal mixture model. Im-
putation is performed cell by cell, where read counts of
zero after imputation ideally represent only events where
no transcript is made, and the gene is considered silenced.
We used the R package scImpute with dropout thresh-

old of 0.5 to impute the filtered brain and heart count
matrices separately, including both female and male
cells. The dropout threshold setting has been shown to
be inconsequential by Li and Li [15]. The number of cell
clusters was set to four for brain cells and six for heart
cells, reflecting the number of cell types selected for
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each organ. Dropout values in the output read count
matrices were estimated cell by cell, and the imputed
values were not normalized.
For each gene, negative binomial distributions were fit-

ted based on the imputed and original read counts, re-
spectively. Negative binomial likelihood was obtained
and compared to test whether the imputation refined
characterization of distributional properties.

Normalization
Counts in the imputed matrices were further log-
normalized while accounting for batch effects based on
detection of high-dimensional mutual nearest neighbors
[16]. Normalization and batch effect removal was per-
formed using the R package Seurat and SeuratWrappers
with default settings of the “LogNormalize” and “Run-
FastMNN” functions [16, 17].

Validation of clustering
We selected highly variable genes (HVGs) to validate
clustering of cells done by the Tabula Muris dataset and
examine what effect imputation had on the results. We
selected genes with standardized log dispersion > 0.5,
and with expression mean > 0.0125 and < 3 as HVGs.
These parameters were chosen to be consistent with the
Tabula Muris study. Expression dispersion and mean
were calculated by Seurat. We then visualized the brain
and cells separately using a 2-dimensional t-distributed
stochastic neighbor embedding (tSNE) map after pro-
jecting the normalized data onto the first 50 principal
components (PCs). tSNE was done by the R package
Rtsne with a perplexity of 30 for five times using five dif-
ferent random seeds. Assessing whether a cell was
grouped into its identified cell type was based on the
nearest neighbor principle (Supplementary Figure 1).
Eight brain cells and 24 heart cells (Supplementary
Table 1) were removed due to recurrent inconsistent
grouping with their identified cell type, i.e., their nearest
neighbors on the two-dimensional tSNE map were an-
notated to a different cell type. To examine whether the
imputation introduced spurious sex dimorphism, we
compared the distributions of library sizes between fe-
male and male cells for each type of cell.

Differential distribution analysis
We implemented scDD to identify differential distribu-
tions of genes on the imputed and normalized data, in
brain and heart cells, respectively. scDD aims to classify
differentially distributed genes into several categories:
differential expression (DE), differential modality (DM,
where gene expression is unimodal in one condition ver-
sus bi-modal in the other condition) with one overlap-
ping component, differential proportion (DP) of cells
within each component, differential modality without an

overlapping component (differential both, DB), and more
complex scenarios that cannot be categorized (NC). Dif-
ferential distributions were tested using the Kolmogorov-
Smirnov test. We obtained these differentially distributed
genes with a Bonferroni-Hochberg corrected p value (false
discovery rate; FDR) < 0.05. In particular, we kept the FDR
threshold comparably strict across different cell types.
Therefore, we further required DE genes should have FDR
among the smallest 3% in all genes under investigation in
each cell type. This threshold was chosen as it made the
highest FDR cutoff at around 0.05 in the cell type of the
least sample size while lower FDR cutoff in cell types of
larger sample sizes. DE genes should also have an absolute
difference over 0.2 between female and male in normal-
ized log10-mean expression values. This difference corre-
sponded to (100.2≈) 1.5-fold change in read counts. scDD
also assessed a gene’s differential proportion of zeros (DZ)
by performing logistic regression between two groups.
Genes with a χ2 test FDR < 0.025 were categorized as DZ
genes. Venn diagrams visualizing overlaps were plotted
using jvenn [18].

Gene set variation analysis
To illustrate how differentially regulated genes can influ-
ence various processes and how cells exhibit heterogen-
eity, we performed gene set variation analysis (GSVA) of
the differential distribution (DD) genes using the R
package GSVA [19]. GSVA outputs an enrichment score
for each cell; thus, cells can be directly compared as op-
posed to other pathway-based methods that only com-
pare male and female groups directly. 4269 Gene
Ontology (GO)-derived gene sets of high quality were
retrieved online (http://www.go2msig.org/cgi-bin/pre-
built.cgi?taxid=10090, accessed September 30, 2018).
GSVA generates enrichment scores of every gene set for
every cell: positive scores indicate increased pathway ac-
tivity that is inferred from relative overall gene expres-
sion levels assessed by a Kolmogorov-Smirnov-like
random walk statistic, while negative scores indicate
weakened pathway activity. Expression matrices of DD
genes in each cell type were supplied to GSVA and all
default parameters were used. We performed Welch’s t
tests and identified pathways that were significantly dif-
ferentially represented between female and male groups
using an FDR < 5 × 10−5 and an absolute GSVA score
difference > 0.1.
For four types of cells with > 100 significantly differen-

tially represented gene sets, we visualized keywords of
the gene sets represented using the R package word-
cloud. Common non-specific descriptive words were re-
moved from the gene set names, including “regulation”,
“activity”, “process”, “activity”, “cell”, “response”, “posi-
tive”, and “negative”.
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Identification of sub-cell types
The R package Seurat was used to perform unsupervised
clustering of 2033 heart fibroblast cells. We retrieved
imputed but not normalized gene expression matrix of
all 3428 DD genes of these cells, normalized this matrix
de novo using the “LogNormalize” function and identi-
fied 775 HVGs (also with standardized log dispersion >
0.5, and with expression mean > 0.0125 and < 3) as po-
tential classifiers. We then decomposed the correlation
structure using principal component analysis (PCA) and
fed the first nine PCs into the built-in “FindClusters”
function of Seurat, which implements a shared nearest
neighbor modularity optimization-based clustering algo-
rithm. The first nine PCs were PCs explaining > 2% of
the total variance each. The parameter “resolution” was
set to 0.3, which controls the number of clusters. All
other default parameters were used. Clusters were visu-
alized using tSNE after projecting the normalized data
onto the first nine PCs.
For each of the five clusters identified, we first identi-

fied marker genes that distinguished the cluster from the
other four clusters using the built-in “FindAllMarkers”
function, requiring ≥ 25% genes to be expressed in either
of the two populations (i.e., the cluster being tested and
the other four clusters as an entity) and leaving other
settings as default. Ten marker genes (with the smallest
FDR) of each cluster were gathered and used for visual-
izing sub-cell type-specific gene expression. We further
identified marker genes that distinguished clusters (0
and 1; 2 and 3) with the same dominating sex, using the
“FindMarkers” function with default settings. Significant
marker genes had an FDR < 0.05.
To examine the validity of these clusters, we also in-

vestigated whether housekeeping genes and cell division
or mitotic cell cycle-related genes were differentially
expressed between female and male cells. We retrieved
27 consistently expressed mouse housekeeping genes
[20] and tested for differential gene expression between
female and male cells in these identified sub-clusters.
We also obtained 588 genes associated with cell division
as well as 833 genes associated with mitotic cell cycle in
mouse from the Mouse Genome Informatics [21]. We
performed gene set enrichment analysis using the R
package fgsea (http://bioconductor.org/packages/release/
bioc/html/fgsea.html) for each cell and compared the
distribution of normalized enrichment scores between
female and male cells in each identified sub-cluster.

Gene regulatory network construction by Passing Attributes
between Networks for Data Assimilation (PANDA)
By studying DE genes and DD genes, we focused on
uncovering what effects two different modes of differen-
tially regulated genes have. Yet the question remains as
to whether drivers of gene regulation show sex

dimorphism. Transcription factors (TFs) are undoubt-
edly one of the most important drivers of transcriptional
regulation. Hence, we studied gene regulatory networks
driven by TFs using PANDA [22], which has been suc-
cessfully implemented for bulk RNA-seq data. PANDA
exhaustively utilizes information of co-expressed genes
where TF-gene interactions are inferred by the detection
of transcription binding motifs in the promoter and a
priori inter-TF protein-protein interaction network.
PANDA evaluates the strength of the interaction marked
by each edge connecting one TF and one targeted gene.
We augmented this approach to identify subsets of the
TF networks that were sex-specific by comparing the
edges in networks that have been established in different
types of cells between female and male.

Transcription factor motif
We downloaded the GRCm38 (mm10) genome assembly
of Mus musculus and its annotations of transcription
start sites (TSSs) from USCS Genome Browser (https://
genome.ucsc.edu/cgi-bin/hgTables, accessed August 10,
2018). We retained genes with one or two annotated
TSSs. Genes with more than two TSSs were discarded
because they may represent more complex regulatory
mechanisms that cannot be explicitly explained in this
study. We defined the promoter as a (− 750, + 250) re-
gion (in the unit of base pair) around the TSS of single-
TSS genes and as a (− 1000, + 500) region around the
middle point of two TSSs for double-TSS genes. We also
downloaded position weight matrices (PWM) of 663
Mus musculus transcription factor (TF) motifs available
at the Catalog of Inferred Sequence Binding Preferences
(http://cisbp.ccbr.utoronto.ca/, accessed August 5, 2018).
For each combination of a TF and the promoter region
of a gene, we examined the potential existence of TF-
binding by mapping the PWM of the TF to the pro-
moter region using the Find Individual Motif Occur-
rences software. We obtained potential TF-promoter
binding pairs between 359 TFs and 14,851 genes with a
p value threshold of 5 × 10−5.

Protein-protein interaction
We obtained a subset of the protein-protein interaction
network covering all 359 TFs identified from step 1 of
the PANDA network analysis. Interaction scores were
retrieved from StringDb version (v.) 10 (https://string-
db.org, accessed August 15, 2018).

PANDA networks
We first removed genes on sex chromosomes for both
brain and heart cells and retained genes which passed
quality control during preprocessing and had a potential
active TF-binding site. As a result, we obtained 9673
genes regulated by 318 TFs in 6490 brain cells as well as
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9722 genes regulated by 317 TFs in 4162 heart cells.
Specifically, TFs on the sex chromosomes were not dis-
carded (e.g., AR on the chromosome X). TF-motif regu-
latory matrix, protein-protein interaction matrix, and
read count matrix were trimmed accordingly. Finally, a
gene was used for network construction if it (i) was a
moderately expressed autosomal gene, (ii) had one or
two annotated TSSs, and (iii) could potentially interact
with at least one TF identified. For each cell type, we
adopted a previously established Jack-knife method to
construct sex-specific regulatory network ensembles
[23]. We randomly selected 10 cells of the same sex to
construct one PANDA regulatory network and used the
PANDA program to incorporate the information col-
lected above. We repeated this random selection and
network construction procedure until we obtained 100
female-specific and 100 male-specific networks for each
cell type.

Identification of differentially represented edges
The Z-scores generated by PANDA indicate the regula-
tory effectiveness of TFs and are normally distributed.
We performed Welch’s t tests to compare the resulting
Z-scores between female and male cells to investigate
sexually dimorphic targets for every cell type. Edges of
negative mean scores in both female and male network
ensembles were discarded as they were identified as
non-existent regulatory relationships. We obtained dif-
ferentially represented edges with an absolute Z-score
difference > 0.25 and an FDR < 5 × 10−5.

Identification of differentially targeting TFs
The overall activity of each TF was measured by the
“out-degree” score, originally defined by Glass et al. [23].
In each sex-specific network, the edge weights of active
edges (i.e., edges of positive mean scores in at least one
ensemble) involving one specific TF were summed.
Hence, we obtained 100 female-specific and 100 male-
specific out-degree scores for every TF. We performed
Welch’s t tests to compare the out-degrees of TFs in
female-specific and male-specific ensembles and defined
TFs with an absolute mean out-degree difference > 10
and an FDR < 0.05 as differentially targeting TFs.

Identification of differentially targeted genes
Similarly, we measured the extent to which each gene is
under the regulation of TFs by “in-degree” scores [23].
In each sex-specific network, the edge weights of active
edges involving one specific gene were summed. We also
performed Welch’s t tests and defined differentially tar-
geted genes as those having an absolute mean in-degree
difference > 10 and an FDR < 0.05.

Functional enrichment analysis
GO annotations of Mus musculus genes were retrieved
from the Mouse Gene Informatics database (http://www.
informatics.jax.org/function.shtml, accessed August 15,
2018). The R package topGO was used for GO term en-
richment analysis with the default settings. Statistical
significance was set at p value < 0.05 and an overlap of
≥ 5 genes with the background set. Since the tests per-
formed by topGO were not considered independent, no
correction for multiple-testing was applied and instead,
a ranked list of GO terms was considered [24]. When
performing GO term enrichment analyses of DE genes
and marker genes of sub-cell types, we set the back-
ground gene list as the 15,268 genes and 15,160 genes
that passed preliminary quality control for brain cell
types and heart cell types, respectively. Similarly, when
performing GO term enrichment analyses of genes on
differentially represented edges or genes that were over-
all differentially targeted, we set the background gene list
as 9673 genes and 9722 genes that were used for net-
work construction for brain cell types and heart cell
types, respectively.
Pathway analysis was performed using the R package

clusterProfiler with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) as pathway definitions. KEGG an-
notations of Mus musculus genes were retrieved from
the R database org.Mm.eg.db. Statistical significance was
set at FDR < 0.1 and with an overlap of ≥ 5 annotated
genes in the pathway. Pathways were visualized using
the R package pathway.

Results
A computational pipeline to identify gene regulatory
networks for multiple cell types from single cell RNA
sequencing data to understand sex-specific differences in
gene expression
This study set out to investigate heterogeneity in the tran-
scriptional regulation of sex-specific differences in tissues
from the Tabula Muris dataset. A computational pipeline
was developed to process the single cell RNA sequencing
(scRNA-seq) data and identify gene regulatory networks
that were tissue type and sex-specific (Fig. 1). Our study
was built from ten cell types from the brain and heart
samples in Tabula Muris [14] and restrictions to these ten
cell types was motivated by the availability of adequate
sample size of the data. Imputation of the data did not
introduce spurious sex dimorphism as the library sizes
after imputation increased proportionately for both female
and male cells (Supplementary Figure 2). On the other
hand, the overall data quality significantly improved as the
imputed data better reflected characteristics of the nega-
tive binomial distribution (Supplementary Figure 3).
While validating our imputed and normalized data, we
found that only 0.12% of the brain cells and 0.57% of the
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heart cells (Supplementary Figure 1 and Supplemen-
tary Table 1) showed inconsistent grouping with the
original cell type that they were annotated to. These
cells were removed from subsequent analyses. The
dominant source of variability in gene expression was
driven by cell type differences and, overall, the cells
did not show clear separation with respect to sex
(Supplementary Figure 1). No evidence of mouse
sample-driven gene expression pattern was observed
(Supplementary Figure 1).

Identifying genes with changes in differential distribution
versus differential expression between male and female
mice to characterize sex dimorphism
We investigated sex-specific differential distribution of
gene expression separately in each cell type using scDD
[13]. For each gene, scDD first models the log-
transformed nonzero expression values using a conju-
gate Dirichlet process mixture of normal distributions,
which partitions the expression values and identifies the
modality of a gene’s expression distribution. scDD cate-
gorizes differential distributions occurring between two
groups as one of the following categories DE, DM, DP,
DB, and NC (the “Methods” section and Supplementary
Figure 4). In addition, logistic regression models can be
used to assess whether genes showed a differential pro-
portion of zeros between female and male groups after

adjusting for the proportion of actively expressed genes
in each cell.
In this study, significant DE genes classified by scDD

were viewed as a separate category, since these genes rep-
resent differential regulation of gene expression in a stand-
ard sense. In contrast, the genes classified into the DM,
DP, DB, DZ, and NC categories were the main focus of
this study because of their altered non-standard distribu-
tions in the scRNA-seq profiles between males and fe-
males. We designated the union of genes classified as DM,
DP, DB, DZ, and NC as DD genes and provide summary
statistics for all genes in Supplementary Table 2. No sig-
nificant sex-dimorphic expression of housekeeping genes,
such as eukaryotic translation initiation factors and prote-
asome subunits (Supplementary Table 2), was observed.

Differentially expressed genes exhibit high cell type
specificity
Significant DE genes between male and female mice
were detected in all four brain cell types and all six heart
cell types. These genes had unimodal distributions with
different mean expression levels between sexes and were
associated with biological processes that relate to tissue-
specific regulation (Fig. 2a, b; Supplementary Table 3).
It is interesting to note that all cell types exhibited

sex-specific differential expression in ribosome subunits.
This result may serve as the foundation for a wide

Fig. 1 Schematic overview of processing cell type-specific scRNA-seq data. Expression data were cleaned, imputed, and validated by clustering.
Differential distribution analysis using scDD identified differentially expressed genes and various forms of differential distributions. Differentially
distributed genes were fed into GSVA to illustrate differential representation of pathways in each individual cell. Gene co-expression information
was combined with information of TF-gene motifs and TF-TF interactions in PANDA network inference. Differentially activated TF-gene couplings
(edges), differentially active TFs, and genes under differential intensity of TF-regulation were studied and compared among different cell types.
TFs are represented by diamonds. Genes are represented by ovals
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variety of differences in intracellular biochemical reac-
tions by influencing the overall regulation of translation.
Thirty-two genes coding for large ribosomal subunits
and 31 genes coding for small ribosomal subunits had
sex-biased expression in at least one cell type in this
study, among which Rps25 was more highly expressed in
female astrocytes, brain endothelial cells, microglia, oli-
godendrocytes, cardiac fibroblasts, cardiac smooth
muscle cells, and cardiac leukocytes. Similarly, Rpl6, was
more highly expressed in female brain endothelial cells,
microglia, endocardial cells, cardiac leukocytes.
While most genes that were differentially expressed be-

tween the sexes were not shared between cell types some
notable exceptions were observed (Fig. 2c, d). For ex-
ample, the mitochondrial leucyl-tRNA synthetase, Lars2,
was differentially expressed in all four brain cell types and
four other heart cell types where males had significantly
higher Lars2 expression, which could contribute to sex-
dimorphic mitochondrial functions in multiple cell types.
Long non-coding RNA Malat1 was more highly expressed
in male endocardial cells, fibroblasts, heart leukocytes, and
heart smooth muscle cells, suggesting widespread sex-
dimorphic post-transcriptional regulation [25].
In oligodendrocytes, genes related to the myelin sheath

and paranodal junction assembly exhibited sex-
dimorphic gene expression levels, and various genes in-
volved in the formation of these two pivotal structures
of oligodendrocytes were differentially expressed. For ex-
ample, neurofascin gene (Nfasc) was significantly upreg-
ulated in males compared to females [26]. Myelin sheath
was also affected in microglial cells, which control
remyelination in the central nervous system (CNS)
around the axons [27]. In heart endothelial cells, DE
genes were widely involved in structural formation of
the cardiopulmonary system. Three genes, Ctnnb1,
Notch1, and Nrp1 that regulate coronary artery morpho-
genesis were significantly upregulated in males. The,
genes Actb, Atp5b, Gnai2, Gnas, Kcna5, Kdr, and
Myadm, that are associated with the membrane raft
were also upregulated in male heart endothelial cells [28,
29]. Given that the membrane raft of endothelial cells is
essential for signal transduction through key signaling
molecules and ion channels [30, 31], this may be a new

source of additional regulation for sex dimorphism that
requires further investigation.
In astrocytes, genes related to the tetraspanin-

enriched microdomain, Tspan9 and Pdpn (cancer-re-
lated gene directly interacting with tetraspanin CD9
[32]), had significantly higher expression levels in
male cells; hyaluronic acid binding-related genes also
showed significant sex-biased expression, including
Bcan which was more expressed in males and Ncan
which was more expressed in females. Differential ex-
pression of these genes suggests potential sex di-
morphism in astrocyte activation and that could
translate to differences in response to injury.
In heart-infiltrating leukocytes, in addition to DE

genes annotated to immune-related terms such as MHC
class I protein complex and T cell receptor binding, the
GO term, Schaffer-collateral-CA1 synapse, was also
shown to be influenced by differential gene expression,
suggesting an interplay between heart, neurons in the
CNS, and sex differentiation. Examples of these DE
genes with increased expression were Capzb and Srgn in
females, as well as Actb and Ptpra in males. However,
though leukocytes infiltration is associated with neural
development in CNS [33], the potential association be-
tween cardiac leukocytes and cardiac nervous system has
not been fully elucidated. In cardiac smooth muscle
cells, myosin II complex and actomyosin structure
organization were influenced by sex-biased gene expres-
sion, which may directly contribute to sex dimorphism
in cardiac function. The heavy-chain coding gene Myh9
was upregulated in males while the light-chain coding
gene Myl9 was upregulated in females. Trpm7, a cation
channel coding gene has been reported to be responsible
for magnesium homeostasis in vascular smooth muscle
[34], was more highly expressed in males. In addition,
the cardiac troponin I coding gene Tnni3 was more
highly expressed in females, and this may reflect differ-
ential sensitivity to intracellular calcium flow during
muscular force production [35].
It is possible that the unequal sample size in sex

groups may influence the number of DE genes detected,
and hence the thresholds used for statistical significance
in our computational pipeline were set to be more

(See figure on previous page.)
Fig. 2 Cell type-specific differential gene expression. Volcano plots and GO annotations of differentially expressed genes in a oligodendrocytes
and b heart endothelial cells exhibited cell type-specific gene expression and related pathways. Distribution of DE genes showed disequilibrium
in females (red) and males (blue). In oligodendrocytes, more genes had female-specific expression, whereas in heart endothelial cells more had
male-specific expression. For each cell type, only genes identified by scDD as DE genes having an FDR among the smallest 3% were retained.
Only ten enriched GO terms of the smallest p values were presented. GO terms were categorized into biological process (bp), cellular component
(cc), and molecular function (mf). Venn diagrams of c brain cells and d heart cells showed imbalanced number and low conservation of DEGs
across cell types. Bar graphs record number of DEG in each cell type. In brain cells, 505 DEGs were specific to one cell type, while 65, 22, and 6
DEGs were shared by two, three, and four cell types; in heart cells, 297 DEGs were specific to one cell type, while 41, 7, and 2 DEGs were shared
by two, three, and four cell types. “Dendrocyte” in a represents oligodendrocyte, “Cardiac” in b represents cardiac muscle cell, and “Smooth” in b
represents smooth muscle cell
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stringent. Additionally, we noticed that when comparing
the direction of the gene expression differences between
male and female cells, one sex did not consistently dom-
inate the other, across all cell types (Supplementary Fig-
ure 5). For example, brain endothelial cells had more DE
genes that were upregulated in females (Supplementary
Figure 5B), whereas in heart endothelial cells and fibro-
blasts (Fig. 2b and Supplementary Figure 5F), more DE
genes were upregulated in males.

Scalable variability in distribution indicates widespread
sex-dimorphic regulation of gene expression.
The set of DD genes identified in each cell type varied
tremendously and there were very few DD genes that
were common across different types of cells (Supple-
mentary Figure 6 and Supplementary Table 4). Many
conserved DD genes were related to carcinogenesis in
brain cells which may contribute to the sex-specific pre-
disposition to various types of brain tumor, including
those based on oncogenes Nras [36] and Alkbh5 [37]
and genes associated with tumor cell proliferation and/
or metastasis in the brain such as Spry2 [38] and Cryab
[39, 40]. Additionally, Tsix, antagonist and repressor of
Xist, was also a conserved DD gene and identified across
four brain cell types.
Results of GSVA indicate that DD genes play an im-

portant role in sex dimorphism that complement the
pathways enriched for DE genes, though the underlying
regulatory mechanisms are less clear and interpretable.
Based on word cloud analysis of four cell types in which
the number of significantly differentially regulated gene
sets exceeded 100, we found that many gene sets were
associated with inter-cellular heterogeneity and hence
could explain the variability observed in gene expression,
such as differentiation, development, and morphogenesis
(Supplementary Figure 7A-D). There were many cell
type-specific functions that were also represented.
Many of the DD genes in fibroblasts were related to

transport, such as the transmembrane transport of fibro-
blast growth factor-related hormones (e.g., catechol-
amine, dopamine), cholesterol and various ions (e.g.,
calcium, chloride, potassium, sodium). This result is po-
tentially relevant to sex dimorphism with respect to the
regulation of fibroblast growth, fibroblast cholesterol
biosynthesis, and regulation and membrane potential in-
duction or maintenance. In contrast, in both brain and
heart endothelial cells, many differentially represented
gene sets were involved in signaling pathways and meta-
bolic pathways. For example, heart endothelial cells had
sex-dimorphic representation of collagen metabolism,
which could be related to the stimulating effect of endo-
thelium on collagen synthesis of cardiac fibroblasts [41].
GSVA also revealed findings about transcriptional

regulation underlying sex specificity and inter-cellular

heterogeneity from a new aspect. For example, using the
most significantly sex-dimorphic gene sets in fibroblast,
we observed that cells in male mice generally showed
stronger activities in pathways related to keratinization,
epidermis development (Supplementary Figure 7E), etc.
Differentially distributed expression of cytokeratin
(Krt17) [42] and stratifin Sfn [43] were responsible for
the differential representation of these two pathways,
both of which had significantly different proportions of
zeros and have been shown to play an essential role in
the differentiation of keratinocytes and fibroblast-
keratinocyte interaction.
It is noteworthy that a considerable proportion of cells

collected from female mice had these pathways even
more strongly represented than in male cells, though
they did not necessarily resemble their male counter-
parts in the expression pattern of every pathway. We
posited that for certain biological processes (e.g.,
keratinization) that are critical for fibroblasts in both fe-
males and males, some female cells might upregulate the
expression of specific genes so that the sex-dimorphic
effect can be mitigated. In female cells, activities of many
pathways seemed to be stronger than in male cells. The
pathway for “hormone activity” is one example, where
the differential proportion of zeros might be responsible
for sex-dimorphic fibroblast growth (Supplementary Fig-
ure 7E). For example, peptide YY (coded by Pyy) is a
gene that had differential proportion of zeros; it belongs
to the gene set “hormone activity” and this gene is
known to stimulate proliferation and collagen produc-
tion of cardiac fibroblasts [44].

Deconvolution of differential distribution in gene
expression to further explain cell-cell heterogeneity
We posited that DD genes could be used to identify new
sub-cell types within cell populations. Previous cluster
analysis and identification of cell types did not decom-
pose inter-cell expression variance into variance caused
by sex specificity and variance caused by cell type speci-
ficity. Intuitively, major cell types have distinct gene ex-
pression signatures that make them easily recognizable
by canonical algorithms because the variance is mainly
due to cell type specificity. However, when sex specificity
is the predominant cause of the variance, identifying
subpopulations of cell types is more challenging. We
presume that DD genes would be able to account for the
sex-specific variance without introducing new covariates.
Then, further classification can focus on sub-cell type
specificity and can be a promising approach to uncover-
ing biologically meaningful cell groups.
We sub-classified fibroblast cells using DD genes as

classifiers (the “Methods” section) and identified five cell
clusters (Fig. 3a). Two clusters (0 and 1) were predomin-
antly made up of female cells (97.0% of cluster 0 and
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97.2% of cluster 1) whereas two clusters (2 and 3) were
predominantly consisting of male cells (96.2% of cluster
2 and 97.8% of cluster 3; Fig. 3b). We found clusters 0
and 2 may have similar biological identities because the
highly expressed unique marker genes of cluster 0 were
moderately expressed in cluster 2 cells but not in other
clusters, and vice versa (Fig. 3c). Likewise, clusters 1 and

3 also exhibited high similarity as determined by similar
expression profiles of marker genes (Fig. 3c). Notably,
one mixture cluster (cluster 4) of both female and male
cells of comparable proportion exhibited different ex-
pression profiles compared to the other clusters. No evi-
dence for differential expression of housekeeping genes
and cell division or mitotic cell cycle-related genes was

Fig. 3 Sub-classification of fibroblast cells identified sub-cell types. a Five sub-cell types of heart fibroblast cells were identified by unsupervised
clustering. Most female cells formed cluster 0 and 1 while most male cells formed cluster 2 and 3. b Distribution of male/female cells in each
cluster. Cluster 0, 1, 2, and 3 exhibited dominance of one sex, while cluster 4 was a mixture of both sexes. c Expression of top ten marker genes
distinguishing each cluster from the other clusters indicated strong sub-cell type specificity. Nonetheless, expression patterns were perceptually
more similar between cluster 0 and 2 as well as those between cluster 1 and 3, than other pairs of clusters. Cluster 4 stood out as almost all
corresponding marker genes were hardly expressed in other four clusters. d Top 20 marker genes distinguishing cluster 0 from 1 (left) and cluster
2 from 3 (right) showed a strong overlap. Twelve marker genes were conserved in top 20 most significant marker genes for both pairs
of comparisons
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observed between female and male cells in clusters 0
and 2, clusters 1 and 3 and within cluster 4 (Supplemen-
tary Figure 8).
We then identified 238 marker genes that were differ-

entially expressed between clusters 0 and 1, as well as
291 marker genes that were differentially expressed be-
tween clusters 2 and 3. Among the two lists of marker
genes, 134 overlapped. These common marker genes
were strongly associated with cellular components of
extracellular space and basement membrane, and plasma
membrane binding of crucial molecules, such as heparin,
integrin, and calcium ion (Supplementary Table 5),
which are essential for proliferation and cell-matrix
interaction of fibroblast cells. Notably, marker genes that
were most differentially expressed, as determined by
FDRs, overlapped to a large extent (Fig. 3d), which sug-
gests that the similar transcriptomic reshaping is associ-
ated with the diversification of cells in both females and
males. In particular, Clec3b and Pi16, two genes known
to be significantly upregulated in Col14a1 matrix fibro-
blasts uniquely [45], had both higher level of expression
and larger proportion of actively expressing cells in clus-
ter 0 and 2, suggesting similarity of these two clusters to
Col14a1 matrix fibroblasts. In contrast, Id3 [46],
Tmem176b [47], and Igfbp3 [48], three genes widely in-
volved in cell proliferation and differentiation as well as
cellular aging in fibroblasts, were significantly upregu-
lated in cluster 1 and 3, implying that cells in these two
clusters might be involved in a dynamic process of
reproduction and differentiation.
Interestingly, though the marker genes for the distinct

mixed-sex cluster 4 had exclusive and unique expression
profiles, they were also associated with extracellular matrix/
cell surface-related components and functions as men-
tioned above (Supplementary Table 6). This emphasizes the
important role of signaling transduction, adhesion and cell-
cell interaction in establishing cell heterogeneity of fibro-
blast. Cells in this cluster, with actively transcribed Kcna6
and Kcna1 (Supplementary Figure 9), coding for potassium
voltage-gated channels Kv1.1 and Kv1.6, respectively, are
highly likely to be responsible for the generation and regu-
lation of voltage-dependent potassium currents in heart fi-
broblasts [49, 50]. Meanwhile, these cells expressed various
proteins that are commonly found in neural/glial cells, in-
cluding the artemin receptor component GFRA3, the
neural cell adhesion molecule L1-like protein CHL1, and
the solute carrier SLC35F1, suggesting a close relationship
with the nervous system.

Gene regulatory networks identify hidden differential
regulatory mechanisms and cell heterogeneity for sex-
based differences
To identify potential drivers of sex-dimorphic transcrip-
tional regulation, we augmented a Jack-knife-based

PANDA framework to generate 100 female-specific net-
works and 100 male-specific networks in each of the cell
types analyzed in this study (the “Methods” section). For
each of the four ensembles of brain-specific cell type
networks, interactions between 318 TFs and 9673 genes
were quantified as edge weights which were subjected to
parametric statistical tests. In the six ensembles of heart-
specific cell type networks, interactions between 317 TFs
and 9722 genes were measured and examined in the
same manner. We subsequently summarized differential
TF-regulation from four aspects: (1) genes on sex-
specific edges, (2) TFs on sex-specific edges, (3) TFs that
show differential levels of activity overall, and (4) genes
that are differentially targeted by the overall TF activity.
While the number of network statistics, 100, used in

each pair-wise Welch’s t test for differential edges was
consistent, we observed dramatic changes in the number
of significantly differentially represented edges across 10
cell types (Fig. 4a, b; and Supplementary Figure 10). Nat-
urally, the number of genes and TFs involved in these
differential edges also varied substantially. In most cases,
genes on sex-specific edges did not show any overlap be-
tween females and males, namely most genes appeared
exclusively in female-specific or male-specific edges, ex-
cept for cardiac muscle cells where 487 genes were
under both female-specific and male-specific regulatory
control (Supplementary Table 7). The TFs responsible
for sex-specific edges, on the other hand, showed strong
overlap which seems plausible as a large proportion of
TFs could be in control of both female-specific and male-
specific edges simultaneously (Supplementary Table 7).
Functional annotations of these genes that were differen-
tially targeted by specific TFs provided further information
underlying the regulation of tissue and cell type specificity
(Supplementary Table 8 and Supplementary Table 9). Par-
ticularly, for cardiac muscle cells and endocardial cells
where most genes were not differentially expressed, the
genes on sex-specific edges were involved in many pro-
cesses associated with specialized cellular functions. For
example, in male cardiac muscle cells, genes related to
positive regulation of tumor necrosis factor secretion were
more strongly targeted by TFs than in female cardiac
muscle cells (Fig. 4a). Sex-specific TF-gene binding pairs
involved in this process included SP1-Fzd5, SP1-Cyp2j6,
SP1-C1qtnf4, KLF4-Tlr2, NR5A2-Cd84, and ZFP281-
Arid5a. In female endocardial cells, aortic valve morpho-
genesis is one of the processes that had stronger TF-
targeting (Fig. 4b). Examples of sex-specific TF-gene bind-
ing pairs were SMAD3-Efna1, SP1-Emilin1, ZFP281-Emi-
lin1, ASCL2-Rb1, SRF-Rb1, SP1-Slit3, SP1-Smad6, and
ZFP281-Smad6.
While genes on differential edges exhibit high cell type

specificity, TFs in control of the differential regulation
through motif recognition and binding are highly
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conserved across cell types. From the illustration of sex-
specific edges present in cardiac leukocytes (Fig. 4c), we
observed several core nodes which are TFs with dense
sex-specific edges, such as SP1, SP4, KLF4, ASCL2, and
ZFP281. We further identified TFs that contribute the
most to the differential edges by gathering information
of all 10 types of cells under investigation (Fig. 5). These
core TF families are ASCL2, EGR family (EGR1 and
EGR2), GABPA, SP/KLF family (SP1, SP4, KLF4 and

KLF7), RXRα, and members of the Zinc Finger family
(ZFP281 and ZFP410). Despite the obvious variation in
the number of differential edges and TF on differential
edges, these TFs almost always initiate differential edges
most frequently in the 10 cell types.
In addition, we identified TFs with differential overall

activity which were quantified by summing the weights
of edges extending from the same TF and illustrated
these differentially targeting TFs using network

(See figure on previous page.)
Fig. 4 Differential edges influenced functional pathways in a cell type-specific manner. Volcano plots of edges in a cardiac muscle cells and b
endocardial cells visualized differential edges with an FDR < 5 × 10−5 and a mean edge weight difference > 0.25 between females (red) and males
(blue). Top five significantly enriched GO terms with smallest p values in female-specific edges (red letters) and male-specific edges (blue letters)
were selected, respectively. Terms were ordered with regard to their statistical significance, female-specific term with the smallest p value at the
top and male-specific term with the smallest p value at the bottom. c Network containing sex-specific edges in leukocytes was illustrated as it
displayed moderate complexity suitable for visualization. Labeled nodes are TFs and unlabeled nodes are genes. Female-specific edges are
colored red and male-specific edges are colored blue

Fig. 5 Core TF families were conserved in sex-specific regulatory TF-gene pairs. One row represents one TF. Light gray bins indicate that the
corresponding TF was not involved in any sex-specific edge in the corresponding cell type. In each cell type, TFs were ranked based on the
number of sex-specific edges from which they extend. The more sex-specific edges that a TF contributed to the PANDA network, the higher its
ranking is. TFs were arranged in alphabetic order for illustration of TF families. TFs families containing member(s) ranked top 5 (colored red) in
any one type of cell were viewed in zoomed-in windows. These TFs suggested seven core TF families showing remarkable property of
conservation in all types of cells
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ensembles of astrocytes and cardiac muscle cells (Fig. 6
and Supplementary Table 10). All TFs of previously
identified TF families that accounted for the most differ-
ential edges also had differential overall activity in either
of the two cell types shown, reinforcing their special role
in relevant sex-dimorphic regulatory mechanisms. TFs
belonging to the same TF family tended to have similar
patterns in the intensity of activated regulation, as evi-
denced by the closeness of the unsupervised clusters.
TFs are known to be universally responsible for sex de-
termination and differentiation, and some TFs exhibited
differential overall activity, including AR [51, 52], RAR
[53], IRF [54], STAT [55, 56], and GATA [57]. Some
TFs that have been known to be responsible for develop-
ment in particular tissues were shown to have sex-
dimorphic intensity of activity in the corresponding type
of cell, such as MYC in cardiac muscle cells, which is
able to regulate glucose metabolism and mitochondrial
biogenesis [58, 59]. Meanwhile, TFs may also have op-
posite sex-specific activity in different cell types. For ex-
ample, RARA had stronger overall activity in female
astrocytes while also in male cardiac muscle cells.
We also identified genes that were overall differentially

targeted by summing weights of edges pointing towards
the same gene. Due to the stringency of our threshold,

only in astrocytes did we identify a considerable number
of significantly differentially targeted genes (Supplemen-
tary Table 11). These genes were significantly enriched
for KEGG pathways that stood out in analyses above
such as ribosome, axon, and oxidative phosphorylation,
as well as terms pertaining to neuronal activities in GO
term enrichment analysis (Supplementary Table 12), but
also thermogenesis and processes associated with Hun-
tington’s disease which were the top two most enriched
pathways (Fig. 7b, c). A broad range of key receptors
and enzymes related to thermogenesis were under differ-
ential regulation, including exogenous hypothalamic
AMPK, cell membrane enzymes adenylate cyclase AC
and monoglyceride lipase MGL, and mitochondrial en-
zyme acetyl-CoA synthetase ACS and the electron trans-
port chain complexes, as well as the nuclear enzyme
JMJD1A, which is a H3 lysine 9 demethylase promoting
expression of thermogenic genes during acute cold stress
[60]. Dynactin, which is core to dynein/dynactin-medi-
ated vesicle transport, was more strongly targeted in fe-
males, while Clathrin which is responsible for Clathrin-
mediated endocytosis was more strongly targeted in
males (Fig. 7c), together suggesting differential regula-
tion of transport. Moreover, in both cardiac muscle cells
and heart smooth muscle cells, the chemokine receptor

Fig. 6 Significantly differential targeting TFs in astrocytes (left) and cardiac muscle cells (right). Each row represents one TF and each column
represents one network. In each plot, 100 randomly generated female-specific networks were placed on the left half and 100 randomly
generated male-specific networks were placed on the right without clustering. Relative out-degree values were obtained by subtracting median
summed edge weight of each TF in all 200 networks of astrocytes/cardiac muscle cells from each individual summed edge weight. Rows were
hierarchically clustered with distance measured by Pearson correlation. Bars mark TFs that were significantly more active in either females (red) or
males (blue)

Lu and Mar Biology of Sex Differences           (2020) 11:61 Page 15 of 20



Ccr5 which has been shown to be a key factor to athero-
genesis in vascular smooth muscle cells [61], was more
strongly targeted in females than in males (Supplemen-
tary Table 11). In both cardiac muscle cells and endocar-
dial cells, I7Rn6 which is responsible for maintaining
normal functioning of clara cells in lung development
[62], was more strongly targeted in females than males
as well. The cell adhesion molecule, NrCAM, though
mainly expressed in brain and endocrine tissues, had the
coding gene differentially targeted in cardiac leukocytes.

These differentially targeted genes might imply connec-
tion in developmental process between tissues (e.g.,
blood vessels and cardiac cells).
Instinctively, we would expect genes on sex-specific

edges and/or genes that are overall differentially targeted
to have a significant overlap with DD genes since ideally
TFs should change the expression pattern of their tar-
geted genes. In this study, genes on sex-specific edges
are more likely to be simultaneously differentially dis-
tributed for brain endothelial cells, cardiac muscle cells,

Fig. 7 Differentially targeted genes in astrocytes were involved in both life-sustaining and disease-relevant pathways. a Bubble plot shows
significantly enriched KEGG pathways (having at least five annotated genes) with an FDR < 0.1. Gene ratio stands for the proportion of
differentially targeted genes in corresponding pathways. KEGG pathways of b thermogenesis and c Huntington disease are illustrated.
Differentially targeted genes are colored red (female-specific) or blue (male-specific). Saturation is commensurate to the difference in summed
edge weight
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endocardial cells, fibroblast, and leukocytes (Supplemen-
tary Table 13). However, being differentially distributed
is independent of being overall differentially targeted in
astrocytes (Supplementary Table 14).

Discussion
Understanding baseline sex dimorphism at the molecular
level is fundamental to assessing more complex sex-specific
phenotypic differences, such as in disease pathogenesis,
drug response, and life span. scRNA-seq provides oppor-
tunities to more accurately estimate cell-to-cell transcrip-
tional variabilities and capture subtle cell type-specific
differences compared to conventional bulk RNA sequen-
cing. Leveraging Tabula Muris, a well-characterized large
mouse single cell expression tissue atlas that yields high
statistical power, we made extensive exploratory investiga-
tion into sex-dimorphic gene expression where DD and DE
genes play an important role; we also identified key tran-
scription factors that are potential drivers of sex-dimorphic
transcriptional landscape.
In this study, DE and DD genes both demonstrate

various functional importance. In addition to what has
been demonstrated in cardiac fibroblasts, DE and DD
genes are associated with diverse cell type-specific func-
tional sex dimorphism (Supplementary Table 15), in-
cluding but not limited to astrocyte-neuron symbiotic
interaction, endothelial cell-regulated behaviors such as
exploration and locomotion, and GABAergic neuron dif-
ferentiation in microglial cells. Interestingly, we found
more significant enrichment for DE genes and DD genes
that are located on autosomes than on the sex chromo-
somes (Supplementary Table 16). This result was con-
sistent with a recent study on sex-biased gene
expression in adult human brain by analyzing different
CNS regions [63]. We posit that differential expression
is strongly cell type-specific and that difference may be
undetectable for autosomal genes that are only differen-
tially expressed in one or several types of cells when
many existing studies investigated bulk samples. It is
also possible that though sex-biased expression of genes
on sex chromosomes may be prominent during early de-
velopment, the central role of these genes in maintaining
sex-specific differences may be dampened during adult-
hood. In contrast, the differential expression of
autosomal genes may be the result of complex transcrip-
tional regulation that permanently preserves sex-specific
differences after puberty. It is also worth highlighting
that the cutoffs imposed for differential expression were
far more stringent than previous studies, and hence
genes located on sex chromosomes that were identified
as DE genes in earlier studies may have not reached stat-
istical significance because of the higher degree of strin-
gency in our study. Overall, our study has contributed
substantial information to the understanding of

widespread sex-dimorphic gene expression in the mouse
using scRNA-seq data.
Our study has explored a new aspect of decomposing

cell heterogeneity by first accounting for sex-dominating
variance. Although we only selected fibroblasts for illus-
tration because none of the DD genes in fibroblasts were
uncategorized, the same method can be generalized to
all cell types. Also, although we manually controlled the
number of clusters being generated, more clusters can
certainly be created as long as biologically meaningful
interpretations are tenable. In addition to the compari-
son between female and male, DD genes can also be
identified under other conditions (e.g., tumor cells and
normal cells). This method can therefore be useful for
explaining how these conditions influence the formation
of subtypes of cells.
Our study also highlights the contribution of core TF

families and their roles in sex-dimorphic gene expression
regulation. These vital TFs include (i) ASCL2, a known
controller of stemness in intestinal stem cells [64]; (ii)
the EGR family, which are important for tissue plasticity
and inducing cell-specific responses to proliferation, dif-
ferentiation and apoptosis [65, 66]; (iii) GABPA, a neces-
sary TF for mitochondria biogenesis and mitochondrial
oxidation reactions [67]; (iv) KLF/SP family, a high-
impact TF family that sustains a wide variety of bio-
logical processes including the maintenance of stemness,
metabolism as well as differentiation [68]; (v) RXRα,
which is associated with morphogenesis, heart develop-
ment and cognitive abilities [69, 70]; and (vi) ZF family
which is required for the realization of pluripotency [71].
It is noteworthy that all of these TFs are targets of and/
or interact with the Wnt/β-catenin signaling pathway,
one of the paramount pathways in sex determination
and differentiation [72, 73]. Our analysis therefore sug-
gests that these TFs are long-term executors of pro-
grammed sex dimorphism. Since gene expression is not
necessarily regulated independently but instead interacts
with and is controlled by other processes in the cell, we
expect that sex-specific regulation of cell types may be
further elucidated through inputs based on single cell
DNA methylation and histone modifications.
Along with these findings, we have presented a novel

computational pipeline for the analysis of transcriptional
regulation underlying sex dimorphism at the single cell
level for RNA-seq data. Our pipeline puts into effect the
analysis of not only standard differential expression tests
but also recently refined measurements of differential
distribution that incorporate modality and quantify het-
erogeneity in gene expression directly. Our study has
shown that gene expression profiles with differential dis-
tributions can be utilized in transcriptional processes
that are tissue-specific and sex-specific through GSVA
to unravel subtle changes in pathways. Importantly, this
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pipeline has extended the transcript-based gene regulatory
network inference method, PANDA, to be applicable for
scRNA-seq data, which improves the inference from the
level of tissues to the level of identified cell types. Depend-
ing on the number of cells available, the statistically robust
Jack-knife method used for constructing gene regulatory
networks can also be generalized more broadly.
Our study has important limitations that are worth

highlighting. First of all, for each organ, the Tabula Muris
study sequenced several female and male mice. Though
the mice used in the study were from an inbred strain and
were housed under the same environmental conditions, it
is indefinable how representative each mouse is of the
general female or male mice population, because possible
confounding effects of somatic mutations, stochastic noise
introduced during rearing and sequencing, are elusive.
Therefore, we cannot deny the risk of sampling bias in
our study, which is, however, probably mitigated by the
large number of cells, and we strongly recommend our re-
sults be considered exploratory and interpreted accord-
ingly. It should also be noted that while each biological
sample was collected from the same anatomical region
from the female and male mice [14], heterogeneity may
still exist even after cell sorting. It is likely that our study
may still present results confounded to some degree by
mixed sub-cell types as we described. We refrained from
further profiling of identified sub-clusters due to gradually
reduced statistical power. Furthermore, though the imput-
ation method we adopted improved our data quality, no
data-driven approach, to our knowledge, specifically ac-
counts for various sources of potential bias arising from
sex chromosome-related regulatory mechanisms, includ-
ing dosage compensation [74]. While our primary findings
focus on targets identified on autosomes, differentially
expressed genes identified on the X chromosome must be
cautiously verified. Nevertheless, we anticipate future
studies with even larger sample sizes and higher cell type
profiling resolution to overcome these obstacles.

Perspectives and significance
In this study, we investigated sex-specific gene expres-
sion and transcriptional regulation from the single cell
transcriptomes of ten cell types in mouse brain and
heart. We made comprehensive observations on the
widespread control of sex-based dimorphism as indi-
cated by differences in the number of transcripts, the
proportion of cell type groups carrying distinct func-
tions, or their underlying regulatory potential as inferred
through network models. These findings, combined with
future experimental validations, are likely to provide a
good source for understanding sex differentiation of the
transcriptome, adjusting for sex-driven discrepancies in
disease or case-control studies, as well as benchmarking
transcriptomic studies of a large sample size.
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