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Abstract

Background: Although male and female rats differ in their patterns of alcohol use, little is known regarding the
neural circuit activity that underlies these differences in behavior. The current study used a machine learning
approach to characterize sex differences in local field potential (LFP) oscillations that may relate to sex differences in
alcohol-drinking behavior.

Methods: LFP oscillations were recorded from the nucleus accumbens shell and the rodent medial prefrontal
cortex of adult male and female Sprague-Dawley rats. Recordings occurred before rats were exposed to alcohol

(n =10/sex x 2 recordings/rat) and during sessions of limited access to alcohol (n = 5/sex x 5 recordings/rat).
Oscillations were also recorded from each female rat in each phase of estrous prior to alcohol exposure. Using
machine learning, we built predictive models with oscillation data to classify rats based on: (1) biological sex, (2)
phase of estrous, and (3) alcohol intake levels. We evaluated model performance from real data by comparing it to
the performance of models built and tested on permutations of the data.

Results: Our data demonstrate that corticostriatal oscillations were able to predict alcohol intake levels in males

(p <0.01), but not in females (p = 0.45). The accuracies of models predicting biological sex and phase of estrous
were related to fluctuations observed in alcohol drinking levels; females in diestrus drank more alcohol than males
(p =0.052), and the male vs. diestrus female model had the highest accuracy (71.01%) compared to chance
estimates. Conversely, females in estrus drank very similar amounts of alcohol to males (p =0.702), and the male vs.
estrus female model had the lowest accuracy (56.14%) compared to chance estimates.

Conclusions: The current data demonstrate that oscillations recorded from corticostriatal circuits contain significant
information regarding alcohol drinking in males, but not alcohol drinking in females. Future work will focus on
identifying where to record LFP oscillations in order to predict alcohol drinking in females, which may help
elucidate sex-specific neural targets for future therapeutic development.
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Background

Alcohol use contributes to 5.1% of the global disease bur-
den, accounting for 5% of all deaths in men and 1% of all
deaths in women in the USA alone [1-3]. While historic-
ally men drink more alcohol than women, this gender gap
is closing [4], and women tend to escalate to alcohol de-
pendence more rapidly than men [2, 5]. Though these sex
differences partly arise from sociocultural factors, there
are known sex differences in the activity of brain regions
that underlie substance use behavior [5, 6]. However, the
specific neurobiological underpinnings contributing to sex
differences in alcohol drinking are poorly understood, lim-
iting the development of more efficacious, targeted ther-
apies for problematic alcohol use.

One barrier to the development of better therapies for ex-
cessive alcohol use is the fact that the majority of preclinical
neuroscience studies have used only male animals [7, 8]. How-
ever, the available behavioral data in rodent models of alcohol
drinking demonstrate that female rats, in a non-dependent
state, drink more alcohol and show greater alcohol preference
than male rats [9], as well as display heightened sensitivity to
the rewarding effects of alcohol compared to males [10]. The
behavioral differences between females and males are bio-
logical in nature as neonatal masculinization of females re-
duces alcohol intake compared with intact female rats,
resulting in patterns of drinking similar to those displayed by
males [11]. In a similar study, intact female rats showed a
heightened reward response to alcohol than either males or
ovariectomized females, suggesting that ovarian hormones
help facilitate the reinforcing properties of alcohol [10]. Ovar-
ian hormone status has also been associated with small fluctu-
ations in alcohol consumption in intact females [12, 13].
However, it is currently unknown whether the neural circuits
that regulate alcohol consumption show sexually dimorphic
activity patterns (and whether these patterns are influenced by
ovarian hormone status) that may explain the sex differences
in alcohol drinking behavior.

The mechanistic role of corticostriatal circuits in regulating
the rewarding properties of alcohol is well characterized in
male rodents [14]. In rats (and humans), the nucleus accum-
bens (NAc) integrates cortical inputs and indirectly sends
feedback to frontal brain regions (medial prefrontal cortex in
humans (mPFC); prelimbic (PL), and infralimbic (IL) cortices
in rats) [15] and is particularly important in the motivating
properties of abused drugs [16]. The mPFC is also activated
in response to reward-related cues, and it has been suggested
that deficits in the ability to inhibit responses to drugs arises
from dysregulated communication between the mPFC and
striatal regions [17]. Thus, we hypothesize that male and fe-
male rats might display inherent (ie., trait-level) differences
in corticostriatal circuit activity, which may be associated
with sex differences in alcohol-drinking behaviors.

Activity in the corticostriatal circuit can be examined
longitudinally by measuring local field potential (LFP)
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oscillations in awake, freely behaving rats. LFP oscilla-
tions provide a readout of electrical potential from a
group of neurons that relates to individual neuronal ac-
tivity, as demonstrated by neuronal phase locking and
ensemble classification [18-20]. LFP oscillations re-
corded from reward-related regions have been shown to
change during behavior [21] and reflect pharmacologic
manipulation [22-24]. For instance, in male rats, low-
frequency oscillations decrease while high-frequency oscil-
lations increase following an injection of alcohol [25]. Fur-
thermore, low-frequency oscillations in the cortex and NAc
appear to be hypoconnected in alcohol-preferring rats (sex
not reported) compared to outbred rats, which was re-
versed by alcohol exposure [26]. LFP oscillations can there-
fore be a valuable readout of circuit dynamics related to
alcohol-drinking behaviors (i.e., amount of alcohol con-
sumed) in rodents.

In the current experiment, we measured corticostriatal
LFP oscillations in adult male and female rats prior to
and during alcohol-drinking behavior. Using an unbiased
machine learning approach, we aimed to determine
whether LFPs recorded from corticostriatal circuits con-
tained information regarding: (1) biological sex, (2) ovar-
ian hormone status, and (3) the amount of alcohol
consumed during an alcohol drinking session. We hy-
pothesized that sex differences in inherent corticostriatal
circuit activity might be related to sex differences in
alcohol-drinking behavior.

Methods

Subjects and housing

Male and female Sprague-Dawley rats (n = 10/sex) were
purchased from Charles River (Wilmington, MA, USA)
and arrived on postnatal day 60. All animals were
housed individually on a reverse 12-h light cycle with ad
libitum access to food and water. All experiments were
carried out in accordance with the National Institute of
Health Guide for the Care and Use of Laboratory Ani-
mals (NIH Publications No. 80-23) and were approved
by the Institutional Animal Care and Use Committee of
Dartmouth College.

Electrode construction and implantation

Electrodes were designed and constructed in-house and
were similar to those used in our previous publication [27].
Animals were anesthetized with isoflurane gas (4% induc-
tion, 2% maintenance) and secured into a stereotaxic frame.
Custom electrodes were implanted bilaterally targeting the
NAc shell (NAcSh; from bregma: DV -8 mm; AP +1.2
mm; ML + 1.0 mm) and PL/IL junction of the mPFC (from
bregma: DV -5 mm; AP + 3.7 mm; ML +0.75 mm). The
NACcSh was targeted based on previous work demonstrating
that deep brain stimulation of the NAcSh could reduce al-
cohol intake in male P rats and high-alcohol drinking
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outbred rats [28, 29]. Thus, we hypothesized that LFPs re-
corded from the NAcSh would contain information regarding
alcohol intake in rats. Four stainless steel skull screws were
placed around the electrode site and dental cement (Dentsply,
York, PA, USA) was applied to secure the electrodes in place.

Recording and processing local field potential oscillations
LFP oscillations were recorded in sound-attenuated
chambers distinct from the rats’ home cages. Rats en-
gaged in free behavior while tethered through a commu-
tator to a Plexon data acquisition system and time-
synchronized videos were recorded for each session
(Plexon, Plano, TX). Noise-free data from the entire re-
cording session were analyzed using established fre-
quency ranges from the rodent literature (delta (4) = 1-
4Hz, theta (0)=5-10Hz, alpha (a)=11-14Hz, beta
(B) =15-30Hz, low gamma (ly) =45-65Hz, and high
gamma (hy) 70-90 Hz [30, 31]) and standard LFP signal
processing was used to characterize the power spectral
densities (PSDs) within, and coherence between brain
regions for each rat using custom code written for
Matlab R2017b. A fourth order Chebychev type I notch
filter centered at 60 Hz was applied to all of the data to
account for 60-Hz line noise. The data was then down-
sampled by a factor of five from 2kHz to 400 Hz. A
threshold of +2 mV was used to identify noise artifacts
and remove data using intervals 12.5 milliseconds before
and 40 s after the artifacts. To capture the power and co-
herence dynamics of the signal, we used only epochs
that were at least 3 s long. For epochs that were longer
than 3 s, we segmented them into 3-s sections removing
the remainder to keep all of the data continuous over
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the same amount of time. An example trace LFP oscilla-
tion is shown in Fig. 1a.

PSDs were computed using MATLAB’s pwelch func-
tion using a 1.6-s Hamming window with 50% overlap.
The PSDs for each 3-s segment were then averaged to-
gether to get a single representative PSD for the 30-min
recording session. Total power (dB) was calculated for
each frequency range. To account for the 60-Hz notch
filter, power values of frequencies from 59 to 61 Hz were
not included in the analysis. The power per frequency
band was then normalized as a percent of the average
total power of the signal from 1 to 90 Hz (beginning of
A to end of hy).

Coherence was computed using the function mscohere
with a 1.3 s sliding Hamming window with 50% overlap.
The average coherence between each pair of frequency
bands from 1 to 90 Hz (excluding 59 to 61 Hz) was used
to normalize the average coherence of each frequency
band within that neural site pair.

Determination of estrous phase

After each baseline recording session, estrous cycle
was determined via vaginal lavage as described previ-
ously [13]. Slides were stained using thionin and the
stage of estrus was assessed using an AmScope light
microscope (Irvine, CA). Proestrus was characterized
as >75% of the cells in the sample being nucleated
epithelial cells. Estrus was characterized as dense
sheets of cornified epithelial cells, and diestrus was
characterized as scattered nucleated and cornified
epithelial cells, along with leukocytes (diestrus-1), or
the relative lack of any cells (diestrus-2).

-
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Fig. 1 A sample trace of corticostriatal oscillations used in the prediction models (a). Histology figures representing electrode placements in the
NAcSh and mPFC. Males are represented by black dots and females are represented by gray dots (b). Experimental timeline (c)
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Verification of electrode placement

At the end of the experiment, rats were euthanized using CO,
gas, brains were extracted and subsequently snap frozen in 2-
methylbutane on dry ice. Tissue was stored at — 20 °C prior to
being sectioned at 40 um using a Leica CM1850 cryostat and
stained with thionin. Electrode placement was verified using
an AmScope light microscope (Irvine, CA). Figure 1b shows
the electrode placements. Three animals’ (two males and one
female) brains were not preserved properly so we were unable
to verify electrode placements in those rats. However, based
on our previous experience targeting the NAcSh and mPFC
with < 1% misplacement, we elected to include the data from
that those animals’ in this study.

Experimental overview

Following 1week of habituation to the animal facility,
rats were implanted with bilateral recording electrodes
targeting corticostriatal regions. After at least 1 week of
recovery, baseline LFPs were recorded in two, 30-min
sessions for each male rat, and in each phase of estrous
(proestrus, estrus, and diestrus) for each female rat.
After baseline LFP recordings were collected, rats were
allowed to drink 10% alcohol (100% ethanol diluted with
tap water) in a limited access paradigm for 9 sessions
(90 min a day, MWF, in a neutral chamber) in order to
introduce each rat to alcohol. Animal weights and the
volume of alcohol consumed were measured following
each session in order to calculate g/kg of alcohol con-
sumed. Next, LFP oscillations were recorded without ac-
cess to alcohol for 15min, and then with access to
alcohol for 30 min, across five distinct sessions. It is im-
portant to note that the male rats in this study were also
used for a separate study investigating the impact of
deep brain stimulation on alcohol-drinking behaviors.
See Fig. 1c for an experimental timeline.

Statistical analysis

Linking corticostriatal LFPs to biological sex and phase of
estrous

In order to link corticostriatal activity to biological sex or
phase of estrous we used an unbiased machine learning ap-
proach similar to what we have published previously [32, 33].
We built predictive models using corticostriatal LFPs to clas-
sify rats by biological sex and female rats by phase of estrous.
Each recording session produced 60 LFP features: 24 mea-
sures of power (6 frequency bands x 4 channels) and 36 mea-
sures of coherence (6 frequency bandsx6 channel
combinations). We used a penalized regression method (lasso)
in order to capture potential combinations of LFP features
that correlated with biological sex or phase of estrous. The
Matlab package Glmnet [34] was used to implement the lasso
using a fourfold cross-validation with 100 repetitions for each
of the following models: (1) male vs. female (diestrus), (2) male
vs. female (estrus), (3) male vs. female (proestrus), (4) diestrus
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vs. estrus, (5) diestrus vs. proestrus. and (6) estrus vs. proes-
trus. The accuracy of the model is reported as the average
cross-validated accuracy.

Permutation testing

In order to assess the relative accuracy of the prediction
models, we compared the real model performance to models
built and tested on 100 different random permutations of
the data. As the outcomes of these models are binary, the
random permutation models should estimate chance predic-
tions. Thus, if the real models performed better than chance,
we determined that there is some information in the circuit
related to our binary outcome. Because we used multiple re-
cording sessions from the same rat as separate samples in
the real model, we also evaluated models built on permuta-
tions of binary rat groupings (group permutations). This was
done by keeping the LFP oscillation data together with the
rat it was recorded from and shuffling the group assignment
of each rat’s set of recordings. Biological sex was equally rep-
resented in each group (see Fig. 2). The group permutation
test thus evaluated the information contained within LFPs
about all possible rat groupings. We calculated the mean ac-
curacy and 95% confidence intervals of cross-validated accur-
acy from the real, random permutation, and group
permutation distributions, as well as z-scores comparing the
real and random permutation distributions.

Linking corticostriatal LFPs to alcohol intake levels
In order to analyze the impact of hormone status on alco-
hol intake during the recording sessions, we used a linear
mixed model because two females were lacking at least
one drinking day in either estrus or proestrus. Hormone
status (diestrus, proestrus, estrus, or male) was used as the
fixed effect, controlling for rat identification as the ran-
dom effect, to predict alcohol intake during each session.
We used a similar machine learning approach (as de-
scribed above) to link corticostriatal activity to alcohol
intake levels, except the outcomes were continuous (g/
kg of alcohol consumed by each rat across each day) ra-
ther than binary. P values were calculated to determine
the magnitude of the difference between the random
permutation distributions and the real distributions.
Additionally, if the lasso indicated that information
existed in the LFP signal, we implemented exhaustive
single feature regressions using each LFP predictor to
determine the relative information content of each fea-
ture, as we have previously described in detail [33].

Results

The ability of corticostriatal LFPs to predict biological sex
depends on female estrous phase

Models built from corticostriatal LFP features were able to
outperform randomly permuted data in predicting bio-
logical sex, and the accuracy of the model performance
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Fig. 2 Schematic representation of the permutation testing. Each set of bars represents data from one rat (if each rat has two recordings), with
males in blue and females in orange. Randomly permuted models are built on 100 iterations of shuffled data. Group permutation models are
built on all possible combinations of rats assigned to each group (e.g., male or female), but the two recordings from each rat are kept together

depended on the hormone status of the females. Models
predicting males vs. females in diestrus performed with the
highest average accuracy; Fig. 3 shows the predictive
models for males vs. females in diestrus (random permuta-
tion y =54.96+0.6%, real y =71.01+1%, z =1.71; 3A),
males vs. females in proestrus (random permutation y =
43.85 + 0.8%, real y =57.7 £ 1.5%, z = 1.09; 3B), and males
vs. females in estrus (random permutation y = 48.15 + 0.6%,
real y =56.1+1.3%, z =0.81; 3C). It is important to note,
however, that models built on group permutations of male

models (group permutation y =73.28 + 0.0002), indicating
that the magnitude of sex-based differences corticostriatal
circuit activity was no greater than random groupings of
rats (balanced for sex) in this sample.

For the female rats, the accuracy of models built from
corticostriatal LFP features to predict phase of estrous
fluctuated based on hormone status. Models predicting
estrus vs. diestrus performed with the highest accuracy;
Fig. 4 shows the predictive models for estrus vs. diestrus
(random permutation y =50.72 + 0.6%, real y =64.92 +

vs. females in diestrus performed just as well as the real 1.2%, z =1.57; 4A), estrus vs. proestrus (random
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Fig. 3 Biological sex (i.e, trait-level) prediction models (n = 10/sex x 2 recordings/rat). Corticostriatal LFP oscillations predicting males vs. females
in diestrus (random permutation u = 54.96 £ 0.6%, animal permutation u = 73.28 + 0.0002%; real u =71.01 + 1%, z = 1.71; a), males vs. females in
proestrus (random permutation u =43.85 +0.8%, real u =57.7 + 1.5%, z = 1.09; b), and males vs. females in estrus (random permutation u =
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Fig. 5 Predicting alcohol intake levels (n = 5/sex x 5 recordings/rat). Female rats in diestrus drank more alcohol than male rats (p = 0.052; a).
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permutation y =40.97 £ 0.6%, real 4 =53.94+1.5%, z =
1.38; 4B), and diestrus vs. proestrus (random permutation
U =57.49 £ 0.6%, real 4 =51.74 + 1.1%, z = - 0.65; 4C).

Corticostriatal LFPs predict alcohol intake levels in males,

but not females

Due to headcap failures, only 5 rats from each sex were
able to be recorded following being trained to drink alco-
hol. A linear mixed effect model indicated that hormone
status significantly impacted alcohol intake levels [F (3,
17.32) =4.11, p <0.05], with males drinking significantly
less alcohol than females in diestrus (p = 0.052; 5A). Dur-
ing proestrus and estrus, female drinking amounts were
not significantly different than male drinking amounts
(p =0.073 for proestrus; p = 0.702 for estrus).

We also evaluated whether we could predict biological sex
in the context of alcohol drinking by using LFP oscillations
collected during alcohol consumption. Figure 5b shows the
predictive models for males vs. females in diestrus (random
permutation g =44.99 + 0.2%, real 4 =86.81 £0.01%, z =
3.76; group permutation p =86.55+ 0.0008) while alcohol
was available. Again, corticostriatal oscillations do not con-
tain more information regarding biological sex (in the con-
text of alcohol drinking) than information about all possible
groupings of rats balanced for sex.

Notably, models built from corticostriatal LFPs to pre-
dict alcohol intake levels were able to outperform ran-
domly permuted data in males (random permutation
error =0.11 + 0.005, real error=0.03 +0.001, p <0.01;
4C), but not in females (random permutation error =
0.37 + 0.03, real error = 0.24 + 0.01, p = 0.45; 4D). Table 1
lists the top five neural features important in predicting
alcohol naive males vs. females in diestrus, as well as the
amount of alcohol males consumed.

Discussion

Here, we demonstrate that LFP oscillations recorded
within corticostriatal circuits contain significant informa-
tion regarding alcohol intake levels in males, but not in fe-
males. We also show that while corticostriatal LFPs may
contain some trait-level information (i.e., biological sex),
the amount of information is similar to that observed in

Table 1 Neural features important in model prediction accuracies
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group permutations of animals balanced for sex. In the fe-
males, we observed small fluctuations in model accuracies
as a function of ovarian hormone status, which correlated
with observed differences in alcohol intake across phases
of estrous and between sexes. Overall, the current experi-
ment suggests that inherent electrical activity within corti-
costriatal circuits is not substantially different between
sexes, but that the neural circuits that contain information
regarding alcohol intake are sexually dimorphic.

The most compelling data from this study is that corti-
costriatal oscillations predicted alcohol intake levels in
males, but not in females. When single feature logistic
regression models were applied to each neural feature,
we determined that low-frequency power in the NAcSh
(particularly in the 8, a, and 5 ranges) was negatively as-
sociated with alcohol intake levels in males. Interestingly,
NAcSh 6 power, while negatively correlated with alcohol
intake in males, also tended to be higher in males com-
pared to females in diestrus (when males were drinking
significantly lower amounts of alcohol compared to fe-
males). While these data are correlative, they do suggest
that NAcSh 8 power might represent a trait-level neural
feature that relates to the sex differences observed in al-
cohol consumption. Previous studies have demonstrated
that 6 oscillations in the striatum, which are coherent
with hippocampal rhythms, are implicated in working
memory and attention tasks, and are inhibited by NAc
dopamine receptor blockade [35-37]. Along with the
present study, these findings collectively suggest that
NAc 6 oscillations may be important in reward learning,
and that low-frequency NAcSh oscillations may perhaps
serve as a potential therapeutic target in future research.

This work is further supported by previous studies
using corticostriatal oscillations to characterize the
neurobiological underpinnings of alcohol-drinking be-
haviors in male rats. For instance, in male rats chronic-
ally exposed to alcohol, f power in the NAcSh is
reduced during alcohol-consumption periods compared
to alcohol-deprivation periods [21]. This change in
NAcSh S power coincides with an increase in NAcSh
dopamine content, suggesting that changes in NAcSh
oscillations are influenced by dopamine signaling in the

Male vs. female (diestrus)

Predicting alcohol intake levels: males

Feature Mean AUC Direction Feature R Slope
Left NAcSh 6 0818 Male > Female Right NAcSh a 0.505 —243.08
Right NAcSh 6 0.788 Male < Female Left NAcSh a 0483 —283.80
Left mPFC-right NAcSh Iy 0.782 Male < Female Left NAcSh 6 0422 —186.40
Left mPFC-right NAcSh hy 0.767 Male < Female Right mPFC - Right NAcSh ly 0409 —437
Left mPFC-left NAcSh A 0.766 Male > Female Right NAcSh 8 0.393 —82.98

The top 5 LFP features used in models predicting males vs. diestrus females and alcohol intake levels in males. Frequency bands [delta (4), theta (6), alpha (a),
beta (), low gamma (ly), and high gamma (hy)] are described for power features within and coherence features between neural sites
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striatum (or vice-versa). Additionally, alcohol-preferring P
rats (sex unspecified) show reduced PFC-NAc 6 coherence,
which is enhanced during alcohol drinking, compared to
Wistar rats, suggesting that reduced connectivity in corticos-
triatal circuits may be related to the increased alcohol con-
sumption in P rats [26]. A significant amount of future work
is required to understand the neural circuit dynamics of re-
ward behavior across rat strains and across spatial resolu-
tions (e.g,, from single-cell to multi-cell to LFP recordings),
but the current data supports the notion that electrical sig-
nals recorded in the NAcSh can serve as a valuable readout
of substance use behaviors in male rodents.

There are several potential circuits that may contain
more information regarding alcohol intake levels in fe-
males. In clinical samples, women tend to use alcohol for
negative reinforcement reasons, while men tend to use al-
cohol for positive reinforcement reasons [38]. Women are
also more sensitive to stress-induced relapse [5, 39], and
similar results have been seen in rodent models of alcohol
drinking, where female rats are more sensitive to stress-
induced reinstatement of alcohol seeking [40]. Therefore,
regions involved in emotional regulation may contain
more information about female drinking behavior. One
particular region of interest is the insula, which is acti-
vated by natural and drug rewards, is involved in craving,
and integrates emotional stimuli contributing to mood
regulation [14]. Clinical studies report that reduced insular
gray matter volume is correlated with increased alcohol
expectancy in female problem drinkers, but not in male
problem drinkers [41]. Interestingly, insular activation is
further enhanced by alcohol cues in alcohol-dependent
women compared to non-dependent women, while men
show greater alcohol cue reactivity in the striatum com-
pared to women [42, 43]. In light of these previous re-
ports, the current experiment supports the notion that
different neural circuits regulate alcohol-drinking behav-
jors in males and females. Ongoing work from our group
aims to elucidate what brain regions contain information
about female alcohol intake, focusing on the anterior in-
sula and amygdala.

The current findings align well with previous work de-
scribing sex differences in alcohol-drinking behavior.
Here, we replicate findings that female rats (in diestrus)
drink more alcohol than male rats when accounting for
body weight, with female alcohol intake levels fluctuating
slightly across the different phases of estrous [12, 13, 44].
Interestingly, when predicting phase of estrous in females
from corticostriatal LFPs, the accuracies of the prediction
models line up with differences in drinking levels across
estrous phases. Specifically, the model predicting estrus
from diestrus performed the best, which aligns with the
phases in which female drinking behavior is most differ-
ent. These data are particularly interesting considering
that ovarian hormone status has been shown to influence
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addictive behavior in female rats and in women (though
less so with alcohol and more so with other addictive sub-
stances like cocaine [5, 45, 46]). Our future work will con-
tinue to investigate the role of ovarian hormones in
altering substance use behaviors (and the underlying
neural circuits) with the aim of developing a more com-
prehensive picture of the neurobiology of addiction in fe-
male rodents.

It is important to consider a couple of caveats to the
current study. When attempting to predict males vs. fe-
males in diestrus, the real model outperformed models
built on random permutations (chance); however, the
group permutation models had a similar accuracy to the
real model. This adds a layer of complexity to the inter-
pretation of the data, as the accuracy of the group per-
mutations suggests that the information in the circuit
regarding biological sex is no greater than the informa-
tion describing natural variability in circuit activity be-
tween similar sized groups of animals (balanced for sex).
There are likely many psychological domains in which
corticostriatal circuit activity contains information; thus,
some of the group permutations may be finding real dif-
ferences between rats that are not related to biological
sex. However, if biological sex was associated with sub-
stantially different corticostriatal oscillations, we would
expect the real models to perform better than both the
random and group permutations. It is unclear whether
adding more rats to the experiment would have altered
the relative accuracies of the real models and group per-
mutations, so our future work will systematically analyze
how many animals/samples are necessary to build a
group permutation model with accuracies that approach
chance. Nevertheless, this limitation does not reduce the
importance of the present data. The models predicting
alcohol intake levels in males and females were within-
animal, meaning that the neural features identified in
the continuous prediction models are directly related to
the variability in alcohol intake in males.

Secondly, Sprague-Dawley rats tend to drink less alcohol
than other rodent strains [44], and the male rats in this
study were indeed drinking very small amounts of alcohol
with low variability compared to the females. This vari-
ability in alcohol drinking is an important factor in inter-
preting model performance (error in the prediction). We
would expect that models operating at chance (permuted
models) predicting data with higher mean values and vari-
ance (female data) would produce greater prediction er-
rors compared to permuted models trying to predict data
with lower means and variance (male data). Because the
error of the permuted models accounts for these differ-
ences in the distributions of the male and female drinking
data, we can interpret the real model error by the relation-
ship to the distribution of permuted error. Therefore, even
though the male drinking data had a lower mean and
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variance, the fact that the real model could predict indi-
vidual alcohol intake values with a significantly lower error
than the permuted models, indicates that these models
were performing better than would be expected by
chance—unlike the female models. Thus, we were able to
conclude that there was significant information contained
within corticostriatal LFPs regarding alcohol intake in
males (but not females).

Our future work aims to extend these findings to
alcohol-dependent rodents (which will lead to substan-
tial increases in alcohol intake) and other rodent strains.
The goal of future work is to provide a causal link by
specifically manipulating the neural features associated
with alcohol intake in the hopes of changing alcohol-
drinking behavior.

Perspectives and significance

The current dataset contributes to our long-term goal of
characterizing the neural circuits that underlie alcohol-
drinking behavior in males and females, and our data sug-
gest that these circuits are sexually dimorphic in nature.
Moreover, the present data set reinforces the need to de-
velop more personalized therapies for alcohol-related
problems, and to help achieve this aim, current work in
our laboratory attempts to identify the neural circuits that
underlie female alcohol-drinking behavior. Additionally,
we aim to characterize how circuit oscillations change
across states of alcohol dependence in males and females
in order to isolate (perhaps sex-specific) neural targets for
reducing problematic alcohol use.
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