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The influence of biological sex and sex

hormones on bile acid synthesis and
cholesterol homeostasis
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Abstract

Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis,
a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce
serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing
atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered
among the most successful compounds developed for the treatment of cardiovascular disease. However, recent
debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering
therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that
convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat
atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these
pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary
in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they
influence but also in the expression and activity of the proteins affected and in the manner in which men and
women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes
involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic
potential.
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Background
Bile acids (BAs) are synthesized from cholesterol in liver he-
patocytes and are secreted into the small intestine to emulsify
and promote absorption of dietary lipids [1]. Approximately
95% of BAs are reabsorbed by the intestinal epithelium and
returned to the liver via the portal vein [2]. The remaining
5% of the total BA pool is excreted daily and replaced by
hepatic de novo cholesterol synthesis [1, 2]. A small percent-
age of BAs is not immediately recycled, and these have re-
cently been identified as systemic signaling molecules with
important roles in glucose and lipid homeostasis [2].
Sexual dimorphisms in BA synthesis and excretion
Although many roles have been described for BAs with re-
gard to cholesterol homeostasis and endocrine signaling
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in both hepatic and extrahepatic tissues, we focus this re-
view on conversion of cholesterol to BAs and sexual di-
morphisms in the activity and regulation of enzymes
involved in this process. In mice and humans, the rate of
BA synthesis and BA pool composition are sexually di-
morphic [3]. Wild-type female mice, for example, have a
larger total BA pool than male mice; however, females ex-
crete less fecal BA and catabolize less cholesterol via BA
production than males [3–5]. Age-related differences in
hormone levels are implicated in the differential produc-
tion of BA in females [6]. Systemic cholesterol homeosta-
sis is achieved by its synthesis and conversion to BAs in
the liver as well as feedback mechanisms mediated by
BAs. Consideration of sexual dimorphisms in BA synthesis
is a critical complement to known modulation of cardio-
vascular and hepatic diseases by biological sex.
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Synthesis of BAs in the liver
Cytochrome P450s (CYPs) comprise the majority of the
estimated 17 enzymes involved in BA synthesis, with ab-
normalities in their expression or function leading to
liver, digestive, and systemic pathologies secondary to el-
evated cholesterol [1, 7]. CYPs convert 27-carbon (C27)
cholesterol to 24-carbon (C24) BAs that are character-
ized by a carboxylated side chain (carbons 20–24) and
hydroxyl groups at various positions on the steroid core
(carbons 1–19) (Table 1) [1]. Although two pathways are
responsible for their production, 75% of the total BA
pool is produced by the classical (neutral) pathway. The
production and ratio of the BAs cholic acid (CA) and
chenodeoxycholic acid (CDCA), the major BA species in
humans, are also mediated by the classical pathway [8].
By contrast, the alternative (acidic) pathway completes
side chain oxidation prior to modification of the steroid
ring and results in production of CDCA only [9]. The
yield of the alternative pathway is significantly smaller
than that of the classical pathway and varies between
species; in humans, the alternative pathway produces ap-
proximately 10% of the total BAs to replace those ex-
creted from the intestines [10]. Nevertheless, the activity
of alternative pathway enzymes can be upregulated by
excess cholesterol or with hepatic pathology, and using
enzymes shared with the classical pathway enzymes, can
produce both CA and CDCA [11].
Of mice or men
Although mouse models have been critical in identifying
the roles of enzymes in the BA synthetic pathways, it is
important to note features that distinguish humans from
rodents in this regard. Notably, in mice, the yield of the
classical pathway represents approximately 60% of the
total BAs [12], whereas in humans, this pathway is
Table 1 Major classical and alternative pathway enzymes with subc
modification, and product(s) formed

Major enzymes Localization Reaction P

Classical pathway

CYP7A1 Endoplasmic Reticulum Sterol ring modification C

AKR1D1 Cytosol Sterol ring modification C

CYP8B1 Endoplasmic Reticulum Sterol ring modification C

CYP27A1 Mitochondria Side chain modification C

CYP3A4 Endoplasmic Reticulum Sterol ring modification C

Alternative pathway

CYP27A1 Mitochondria Side chain modification C

CYP7B1 Endoplasmic Reticulum Sterol ring modification C

AKR1D1 Cytosol

CYP27A1 Mitochondria Side chain modification C
responsible for 90% of BA synthesis [9]. Additionally, BA
species are more variable in mice and include muricholic
acids that are not present in healthy humans [13]. Despite
these differences, mouse models displaying dysfunction of
the classical pathway show significant attenuation in the
excretion of fecal BAs similar to that of humans [8].
Where appropriate, we indicate sexual dimorphisms in
human and rodent studies throughout the text and
conclude with a review of the role of sex hormones
in regulation of the genes involved in BA synthesis
(Tables 2 and 3). The role and respective sex differ-
ences of critical CYPs that participate in the synthesis
and metabolism of sex hormones are not considered here
but have been reviewed extensively elsewhere [14].
Enzymes of the classical and alternative bile acid
synthesis pathways
There are approximately 17 enzymes involved in BA synthe-
sis in the liver. Each is regulated by complex networks that
involve both cholesterol and BAs as well as by signaling me-
diated by sex hormones. We limit our review to highlight
those enzymes that (1) have critical roles in BA synthesis
that when disrupted lead to clinical pathology in humans
and (2) have evidence for regulation by biological sex or sex
hormones. Enzymes that lack sexual dimorphisms or regula-
tion by sex hormones are not included in this review but are
reviewed elsewhere [2, 7]. For example, although oxysterol
7α-hydroxylase (CYP7B1) is an integral enzyme in the
alternative pathway of BA synthesis, disruption of the gene
causes no significant pathology in the liver and cholesterol
homeostasis is normal. For each enzyme section, we begin
with a brief summary of the function of the enzyme and
regulation of its expression followed by a description of the
phenotype resulting from experimental manipulation of the
gene (for complete review see [2, 7]). Each section concludes
ellular location, reaction type and position of structure

osition on Cholesterol Product

7 7a-hydroxycholesterol

5 5b-reduced intermediates

12 7a, 12a-dihydroxy-4-cholestan-3-one

27 27-hydroxycholesterol

4 4alpha-hydroxy-cholesterol

27 27a-hydroxylcholesterol 25a-hydroxycholesterol
24a-hydroxycholesterol

7 7a-hydroxylated intermediates

5b-reduced intermediates

27 CDCA



Table 2 Sexual dimorphisms in mice lacking enzymes that participate in formation of bile acids with clinical phenotypes in humans
(differences between sexes not considered in these studies)

Bile Acid Synthetic Enzyme Phenotype in knockout in terms of BAs & cholesterol Human phenotype when gene is mutated

CYP7A1 Lithogenic composition of gallstones with increased dietary
cholesterol in females [30]

Statin-resistant hypercholesterolemia [28]

BA pool - larger in females [30]

BA pool composition - higher CA in females [30]

Hepatic cholesterol accumulation with increased dietary
cholesterol in females (males not reported) [31]

94% reduction in fecal BA excretion [28]

Maternal consumption of high fat diet results in male
offspring with lower expression than females [33]

Premature atherosclerosis [28]

CYP8B1 BA pool increases in male more dramatically than in females [3]

Greater compensatory response by CYP7A1 in female knockout,
resulting in increased CDCA [3]

CYP27A1 Sex differences not reported [55, 59] Cerebrotendinous xanthomatosis [55]

Vascular and muscle cholesterol deposition [60]

ARK1D1 Higher hepatic BA concentration and lean phenotype in males [69]

CYP3A4 Sex differences not reported in genome-edited rats [75]
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with a review of the sexual dimorphisms in enzyme expres-
sion or function as well as resulting phenotypes.

CYP7A1
The first enzyme in the classical pathway, cholesterol
7α-hydroxylase (CYP7A1), catalyzes the rate-limiting
step of BA synthesis from cholesterol [15] (Fig. 1).
CYP7A1 hydroxylates the 7α-position on cholesterol to
produce 7α-hydroxycholesterol (Table 1). Due to its im-
portance in regulating the rate of BA synthesis, its ex-
pression is tightly regulated by a complex mechanism
involving cholesterol and BA interactions with nuclear
receptors. Transcription is promoted by interactions be-
tween cholesterol and the cholesterol-sensor liver X re-
ceptor alpha (LXRα) and is negatively regulated by BAs
via interaction with farnesoid X receptor (FXR) [17, 18].
BA activation of FXR induces expression of the orphan
nuclear receptor small heterodimer partner (SHP), which
then interacts with liver receptor homolog-1 (LRH1) to
inhibit CYP7A1 expression via its BA response element
(BARE) [19, 20]. BAs in the intestines indirectly inhibit
Table 3 Regulation of enzymes involved in bile acid synthesis by ho

Enzyme Hormone/receptor

CYP7A1 17alpha-ethynylestrodrial (EE2)/ER-alpha

GPR30

CYP8B1 17alpha-ethynylestrodrial (EE2)/ER-alpha

Estrogen (with biliary diversion, not intact enterohepatic circu

CYP27A1 Estrogen/ER-alpha & ER-beta

Androgens/androgen receptor

CYP3A4 Estrogen

AKR1D1 Testosterone
CYP7A1 expression by promoting expression of fibro-
blast growth factor (FGF) 15/19, which is released and
binds to hepatic FGF receptor 4 (FGFR4). Subsequent
activation of c-Jun N-terminus kinase (JNK) signaling in-
hibits production of the CYP7A1 transcript [20, 21].
The BA pool in mice lacking Cyp7a1 is approximately

60% of the size of wild-type mice with a lower concentration
of CA [15]. Although BAs are amphipathic molecules, the
relationship between the hydrophilic α-side defined primarily
by the presence of hydroxyl groups, and of the hydrophobic
β-side defined by methyl groups, contributes significantly to
the efficiency of sterol solubilization in the intestines [22].
For example, CA and CDCA, both of which are classi-
fied as hydrophobic BAs, solubilize sterols at a higher
rate in the intestines and regulate expression of genes
involved in BA synthesis more efficiently than those
that are hydrophilic [23–26]. Reduction in these BAs
significantly reduces the uptake of sterols from the in-
testines; therefore, genetic removal of Cyp7a1 promotes
increased intestinal sterol synthesis and increases 12-
alpha-hydroxylase (Cyp8b1) expression aimed at
rmones and their respective hormone receptors

Regulation Reference

Downregulates CYP7A1 expression [123]

Upregulates CYP7A1 expression [113]

Downregulates CYP8B1 expression [123[

lation) Downregulates CYP8B1 expression [124]

Downregulates CYP27A1 expression [122]

Upregulates CYP27A1 expression [122]

Downregulates CYP3A4 [114]

Inhibits upregulation of AKR1D1 by Estrogen [114]



Fig. 1 Schematic overview of bile acid synthesis from cholesterol in the liver. Enzymes in white boxes indicate endoplasmic reticulum
localization, while gray boxes indicate cytosolic localization. Black boxes indicate mitochondrial membrane localization. Products of enzymatic
reactions are listed below each cytochrome P450. Classical pathway enzymes are linked with solid arrows, and alternative pathway enzymes are
connected with dashed arrows [16]. Inset: structure of cholesterol with numbered carbons. CA cholic acid, CDCA chenodeoxycholic acid. Adapted
from Fuchs, 2003
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restoring appropriate systemic cholesterol concentra-
tions [27]. In agreement with these data, Cyp7a1
knockout mice are resistant to developing metabolic
disorders and have increased glucose sensitivity in re-
sponse to high dietary fat and cholesterol [15].
As in mice, humans with mutations in Cyp7a1 that re-

sult in loss of function exhibit significantly reduced BA
pool as low as 6% of the normal size [28]. Cyp7a1 muta-
tions correlate with high levels of LDL cholesterol and
elevated hepatic cholesterol that can lead to premature
atherosclerosis [28]. Supplementation with CA restores
BA pool size, BA and sterol excretion, and fractional
cholesterol absorption, but also increases intestinal and
hepatic cholesterol levels [15, 29]. Additionally, Cyp7a1
knockout mice expressing human Cyp7a1 exhibit different
responses to altered diets than wild-type counterparts
[17]. This discrepancy is likely due to the lack of an LXRα
binding sequence in the promoter region of the human
gene [17]. BA composition can, therefore, be experimen-
tally manipulated highlighting the potential usefulness of
CYP7A1 as a therapeutic target for human disease.
Indeed, transgenic mice overexpressing Cyp7a1 are resist-
ant to obesity, fatty liver disease, and insulin resistance
when fed a high-fat diet and exhibit both increased secre-
tion of very low-density lipoproteins (VLDL) and a more
hydrophobic BA pool [30].

CYP7A1 in males versus females
Male Cyp7a1 knockout mice have lower levels of CA,
smaller BA pools, and lower rates of intestinal cholesterol
absorption than females despite the lack of BA synthesis
via the classical pathway [27, 30, 31]. Male null mice also
demonstrate a negligible response to increased dietary
cholesterol. However, females exhibited a threefold in-
crease in hepatic cholesterol levels and a lithogenic gall-
bladder composition [31, 32]. These data suggest that
differences in alternative BA pathway activity in Cyp7a1-
deficient mice involve sexually dimorphic regulators other
than cholesterol [31]. Indeed, recent evidence suggests a
sexual dimorphism in the regulation of Cyp7a1 by thyroid
hormone (T3), where T3 can reduce Cyp7a1 mRNA and
protein in male but not female mice that express human
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CYP7A1 [33]. However, this difference does not seem to
extend to humans with thyroid dysfunction [33] (Table 2).
Interestingly, maternal diet also affects murine hepatic
function in a sexually dimorphic manner; male offspring
from mothers who consumed high-fat diets had reduced
expression of Cyp7a1 with concomitant lipid storage in
the liver. Male offspring also exhibited increased Cyp8b1
expression, similar to the Cyp7a1 knockout mice [34].
CYP8B1
12-α-Hydroxylase (CYP8B1) catalyzes 12-α-hydroxylation
of substrates emerging from both the classical and alterna-
tive pathways [35] (Fig. 1). Substrates are either converted
by CYP8B1 to precursors of CA, or by aldo-keto redutase
1D1 (AKR1D1) to precursors of CDCA [8]. While
CYP7A1 controls the size of the BA pool produced, activ-
ity of CYP8B1 controls the ratio of CA to CDCA in the
BA pool; decreased activity results in increased CDCA
and a more hydrophobic BA pool, whereas increased ac-
tivity results in increased CA and a more hydrophilic BA
pool [36, 37]. Cholesterol uptake, phospholipid transport
in the liver, and hepatotoxicity are also regulated by differ-
ential expression of CYP8B1 [36, 37]. CA is an established
ligand for FXR and association with FXR induces expres-
sion of SHP, a negative regulator of both Cyp8b1 and
Cyp7a1 transcription [19]. In the presence of BAs, hepatic
nuclear factor 4 alpha (HNF4α) downregulates Cyp8b1
transcription via upregulation of Shp [37]. Peroxisome
proliferator activated receptor alpha (PPARα) is also a
regulator of both Cyp7a1 and Cyp8b1, and signaling from
retinoic acid-related orphan receptor-α may additionally
have a role in Cyp8b1 expression [38, 39]
In Cyp8b1 knockout mice, the amount of CA produced

is significantly reduced [40]. In response, the classical
pathway enzyme CYP7A1 is upregulated, due to a lack of
negative regulation, to produce more CDCA that compen-
sates for missing CA; the size of the BA pool is not only
restored, but is significantly increased in both male and fe-
male mice [3, 40]. Knockout of Cyp8b1 ultimately causes
steatorrhea and related symptoms attributed to decreased
intestinal absorption of lipids and BA reuptake [35, 40].
However, targeted inhibition protects against development
of type 2 diabetes mellitus and cholestasis [35, 40].
Upregulation of Cyp8b1 when its negative inhibitor SHP

is genetically deleted decreases deposition of atheroscler-
otic plaques when accompanied by apolipoprotien E
(APOE) knockout in spite of dietary CA supplementation
or high fat [41, 42]. Conversely, genetic removal of both
Cyp8b1 and APOE increased aortic plaques [43]. Al-
though other regulators have been identified, this apparent
susceptibility to the SHP/FXR pathway and reversal by
CA makes the gene potentially well suited for targeted
pharmacological upregulation [42].
Cyp8b1 in males and females
In mice lacking expression of Cyp8b1, the total BA pool
increases in males by a larger amount than females: 37%
in males and 20% in females [3] (Table 2). Moreover, fe-
male mice lacking Cyp8b1 expression also have signifi-
cantly more CA secondary to higher CYP7A1 activity
[3]. As a result of higher BA production in knockout
and wild-type females, greater intestinal absorption of
sterols is observed compared to males [3]. In fasted
wild-type female rabbits, a sevenfold increase in mRNA
levels and enzymatic activity was observed; however, in
fasted male rabbits, no alteration of either mRNA or ac-
tivity of CYP8B1 was observed [44, 45].

CYP27A1
Sterol 27-hydroxylase (CYP27A1) primarily hydroxylates
cholesterol to 27-hydroxycholesterol in the first step of
BA synthesis in the alternative pathway [46] (Fig. 1). The
enzyme also hydroxylates C-27 intermediates produced
by CYP7A1 in the classical pathways [47]. Expression
and activity of CYP27A1 can be regulated transcription-
ally by altering the stability of its mRNA and through
variation of available substrate [48, 49]. Specificity pro-
tein 1 (SP-1) and HNF4α binding sites and a BARE in
the promoter region of the gene have each been re-
ported in human and rat, which when exposed to BAs,
produces a downregulation of Cyp27a1 mRNAs [50, 51].
Like other enzymes in the BA synthesis pathways, upreg-
ulation of Cyp27a1 and BA synthesis is induced by chol-
esterol [52]. Indeed, overexpression of Cyp27a1 is
sufficient to increase BA synthesis, suggesting a role for
the enzyme in responding to hyperlipidemia [52, 53]. In
vitro experiments in human hepatocytes have also re-
vealed a role for growth hormone, insulin-like growth
factor-1, and glucocorticoids in upregulating activity of
CYP27A1 [54]. Further research is necessary to deter-
mine the clinical relevance of these data.
More than 30 different mutations in Cyp27a1 cause cere-

brotendinous xanthomatosis (CTX) in humans, which is as-
sociated with a variety of symptoms including abnormal
synthesis of BAs and deposition of cholesterol and its deriv-
atives primarily in the nervous system and tendons [55]. Pa-
tients with CTX lack appropriate regulation of Cyp7a1,
leading to an accumulation of cholestanol and C-27 bile al-
cohols [56]. This phenotype manifests as premature, rapidly
progressing atherosclerosis and coronary artery disease
[57]. However, the symptoms of CTX are not exclusively
related to deficiencies in liver BA synthesis, suggesting ex-
trahepatic roles for CYP27A1 or its products in humans.
Indeed, Cyp27a1 is expressed in many extrahepatic tissues,
likely due to its presence in macrophages and endothelial
cells, where it plays an important role in the hydroxylation
of the C-27 vitamin D3 [58]. Notably, genetic removal of
Cyp27a1 in mice does not fully recapitulate the symptoms
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of CTX, revealing an important species divergence in the
function or localization of the enzyme [59]. Cyp27a1
knockout mice exhibit reduced BA synthesis, increased ex-
pression of Cyp7a1, and elevated serum lipid profiles, simi-
lar to patients with CTX [60, 61]. However, none of the
tendon or neurological phenotypes are present in the
Cyp27a1 knockout mice [61].

CYP27A1 in males and females
Interest in sexually dimorphic drug metabolism and liver
disease development lead to several studies describing
Cyp27a1 expression and activity differences in adult
males and females. Basal levels of Cyp27a1 expression
appear to be equal in men and women; however, the
concentration of its product, 27-hydroxycholesterol, is
lower in females suggesting differences in activity levels
[62]. The presence of high cholesterol in the diet causes
a downregulation of Cyp27a1 expression in males and
females equally [63] (Table 2). The sex of knockout mice
was not indicated in previous studies.

AKR1D1
Aldo-keto redutases are a conserved group of NADPH-
dependent oxido-reductase enzymes that reduce ketoste-
roids [64, 65] (Fig. 1). The 5β-reductases (AKR1D1-3) com-
prise a unique subfamily that catalyzes the reduction of
double bonds of Δ4-3-ketosterols in an efficient and stereo-
specific manner based on residues presumably located at
their active sites [66, 67]. Although the subfamily includes
three isoforms, only AKR1D1 is expressed in humans [68].
High concentrations of CDCA are toxic to hepatocytes,

and AKR1D1 enzymatic activity is a key regulatory point
in controlling the balance of BAs [69]. For example, over-
expression of AKR1D1 in isolated human hepatocytes
leads to increased expression of CYP3A4 and other CYPs
involved in metabolism of xenobiotics. Conversely, genetic
reduction of akr1d1 reduces expression of cytochrome
P450s, similar to diabetic patients in whom decreased hep-
atic expression of Akr1d1 and decreased production of
CDCA are observed [70]. CDCA decreases plasma lipids
in hypertriglyceridemic patients; the mechanisms mediat-
ing this effect in diabetic patients are currently unknown
[71]. Additionally, infants with a deficiency in 5β-
reductase activity have reduced primary BA synthesis and
accumulation of Δ4-3-keto- and 5α-reduced (allo-) BAs
[66]. Effects of this metabolic disorder are severe and
manifest as cholestasis and neonatal liver damage, which
are likely caused by the accumulation of potentially hep-
atotoxic levels of BAs [66].

AKR1D1 in males and females
Male mice with genetic removal of Akr1d1 exhibit four-
fold higher BA concentrations in the liver and lower
body fat compared to females [72]. Akr1d1-deficient
mice also display a sexually dimorphic metabolic phenotype
with female mice being protected from the adverse meta-
bolic effects of a high-fat diet. In mature mice lacking
ark1d1, no differences in glucose tolerance is observed, and
mice are the same weight as wild-type counterparts [73].
However, after 20 weeks of high-fat diet feeding, female
Akr1d1 knockout mice are protected from diet-induced
weight gain, unlike males, who have enhanced insulin sensi-
tivity, suggesting a role in metabolic diseases [73].

CYP3A4
Members of the CYP3A family are the most abundant
CYP450s in the liver and are responsible for the metabol-
ism of approximately 50% of pharmaceuticals available in
the USA [74, 75]. Among the four CYP3A isoforms in
humans, CYP3A4 is the most highly expressed; eight
CYP3A isoforms are expressed in mice [59]. In addition to
its role in drug metabolism, CYP3A4 converts cholesterol
to 4β-hydroxycholesterol and regulates lipid metabolism
as an activator of the LXRα receptor [75, 76] (Fig. 1).
CYP3A4 is also responsible for protecting the liver against
the toxic effects of high concentrations of BAs thereby serv-
ing as a master regulator of expression of many enzymes
involved in BA synthesis to protect against cholestasis [77].
Expression of Cyp3a causes an accumulation of 25-

hydroxycholesterol, while genetic deletion of the enzyme
significantly reduces the concentration [78]. Not only is
25-hydroxycholesterol a precursor to BAs, but it is also an
oxysterol that suppresses the sterol sensor SREBP-2 and
downregulates de novo cholesterol synthesis [78]. Lower
cholesterol levels were observed in livers of Cyp3a knock-
out mice; however, more studies are required to clarify the
role of CYP3A4 in cholesterol homeostasis [78]. Differ-
ences in CYP3A4 expression between individuals can be
greater than 50-fold. While over 30 single-nucleotide poly-
morphisms have been identified, they occur at a frequency
of less than 5% in humans and are consistently heterozy-
gous, suggesting that individual differences may result
from other mechanisms [79, 80].
Post-translational modifications are predicted to signifi-

cantly regulate CYP3A4 activity and expression [80]. The
protein has at least three phosphorylation sites, although
phosphorylation may be related to ubiquitination [81].
Two miRNAs have also been identified to regulate
CYP3A4 [80]. One inhibits expression in human embry-
onic kidney 293 cells, and the other negatively regulates
human pregnane X receptor (PXR) and therefore, indir-
ectly inhibits CYP3A4 translation [80]. In silico methods
have identified additional miRNAs that may significantly
regulate expression, though more research is needed [80].

CYP3A4 in males and females
Significant sex differences attributed to CYP3A4 activity
have been described in the context of drug and
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xenobiotic metabolism. Expression and activity of
CYP3A4 are higher in women compared to men, a dif-
ference that is diminished after menopause with the loss
of estrogen [82]. Differences in rates of cholestasis in
women, especially caused by pregnancy, are thought to
be attributed to differential regulation of CYP3A4 [83].
However, interpretation of data should be made with
caution due to the important role of CYP3A4 in the me-
tabolism of estrogen [84].

The influence of biological sex on BA synthesis
Biological sex has long been recognized as an important
modulator of cardiovascular and hepatic diseases [85–88].
Although differences in body composition, hormonal sta-
tus, and fat distribution complicate interpretation of data, it
is clear that premenopausal women compared to age-
matched men are at lower risk of developing non-toxin-
related liver and cardiovascular diseases including those at-
tributable to elevated serum cholesterol [89, 90]. The lipid
profiles of pre-menopausal women are less pro-atherogenic
with higher concentrations of high-density lipoproteins
containing cholesterol [91]. Sexual dimorphisms in serum
cholesterol extend to the liver where sex differences are
also observed in BA pool composition and size [92, 93].
The release pattern of growth hormone and subsequent

control of signal transducer and activator of transcription
5b (STAT5b) are involved in sexual dimorphism of hep-
atic CYPs [94]. Other hepatic transcription factors in-
volved in sex-specific expression of P450s include
hepatocyte nuclear factor 4α (HNF4α) [69] and retinoid X
receptor (RXRα), the co-receptor for many nuclear recep-
tors in hepatocytes [95]. When HNF4α expression is re-
moved, for example, 372 sex-specific genes are specifically
affected in the livers of male mice versus only 61 in the fe-
males. Additionally, in female mice, the BA pool is ap-
proximately 60% larger and more hydrophobic than in
males, and higher fecal levels of excreted BAs are also ob-
served in females [91, 93]. The composition of the bile
acid pool is also sexually dimorphic with females produ-
cing more CDCA than males [96]. The excess BAs cannot
be attributed to Cyp7a1 expression, which is paradoxically
lower in females [4]. However, when challenged with a
high-cholesterol diet, female mice exert a 50% higher rate
of CYP7A1 activity compared to males [4]. These data sig-
nificantly confound interpretation of data from rodent
models: unlike female mice, women have lower BA pool
size compared to men [92] (Table 2).

The role of sex hormones in cholesterol
homeostasis
Female sex and estrogens are emerging as important regu-
lators of BA production and through critical hepatic feed-
back mechanisms, serum cholesterol levels. Most of the
early data on sex differences in serum lipid profiles, BA
synthesis, and BA pool composition were derived from
observations of pre- versus postmenopausal women, of in-
dividuals receiving estrogen supplementation, and of
women with polycystic ovarian syndrome in whom circu-
lating sex hormone levels are abnormal [97, 98]. Nearly
half of women administered an estrogen receptor (ER) an-
tagonist as a treatment for certain breast cancers develop
hepatic steatosis within 2 years of beginning treatment
[99]. Similarly, mice that are deficient in estrogen or are
not responsive to estrogen signaling are obese and have el-
evated triglycerides levels that are linked to the develop-
ment of hepatic steatosis, a condition that is reversible
through administration of estrogen [100, 101]. Steatosis
that develops in the setting of depleted estrogen may be
further exacerbated by exposure to endocrine disruptors
with possible estrogen-blocking effects like bisphenol A
present in many plastics [102]. Interestingly, in women,
high levels of circulating estrogen during pregnancy are
associated with development of cholestasis via a mechan-
ism that likely involves inhibition of BA transport to the
liver from the intestines rather than synthesis [103, 104].
These conflicting effects may also be explained by the use
of both physiological and non-physiological concentra-
tions of estrogen. Despite this, both synthetic and en-
dogenous estrogens have been implicated in sex
differences observed in liver dysfunction and are thought
to be generally beneficial at normal levels in premeno-
pausal women in terms of preventing and limiting pro-
gression of liver and cardiac diseases [105, 106].

Transcriptional effects of estrogen
Estrogen exerts genomic effects through ligand-bound
ERs that translocate to the nucleus and bind to estrogen
response elements (EREs). Non-genomic effects are also
mediated by membrane-bound ERs via activation of cell
signaling cascades [107]. Although the impacts are best
described in breast cancer cells, the significance of the
modulatory effects of estrogen in the liver is being ex-
plored. Estrogen-induced cholestasis is caused by re-
duced BA synthesis and transport [108]. Hepatocytes
express ERα and are, therefore, responsive to both the
genomic and non-genomic effects of estrogen [109]. Rat
hepatocytes exposed to physiological levels of estrogen
exhibit increased CYP7A1 activity along with small tran-
sient increases in BA production [110]. However, in vivo
effects appear to be diet- and time-dependent. Similarly,
livers of ovariectomized baboons on a high fat and chol-
esterol diet exhibited higher activity of CYP7A1 [111].
Single injection of supraphysiological concentrations of
estrogen in rats did not induce changes in CYP7A1 ac-
tivity at the level of the microsome, whereas 21-day
treatment inhibited activity [112]. It is, therefore, unclear
whether cholestasis caused by various estrogen supple-
mentation therapies is due solely to altered CYP7A1
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expression or activity [113, 114]. Through activation of
the estrogen receptor ER-α, synthetic estrogen also upre-
gulates Cyp7b1 and decreases CYP8B1 signaling; ER-β
does not appear to have a role in regulation of BA syn-
thesis enzymes. A recently identified but not well under-
stood estrogen receptor, GPR30, also appears to
positively regulate expression of Cyp7a1 [115] (Table 3).
An ERE has been identified in the promoter region of

Akr1d1 [64]. Higher levels of estrogen may help to re-
duce the effects of AKR1D1-deficient individuals, since
testosterone is an inhibitory substrate for AKR1D1
[116]. Testosterone has two binding sites that both block
binding of other hormones like estrogen to AKR1D1
[116]. EREs have not been identified in many cyto-
chrome P450s involved in BA synthesis; however, other
proteins and sequences like the transcription factors ac-
tivator protein 1 (AP-1) and Sp-1 and half-palindromic
estrogen response sequences (half-sites) in promoters
can mediate the transcriptional activity of nuclear ERs.
Estrogen interacts with Sp-1, and this association is re-
quired for enhanced transcription of many genes includ-
ing RXRα and LXRα [117]. In agreement with this,
expression of RXRα is significantly higher in the livers of
females compared to males [118]. Additionally, CYP3A4
has an important role in the 4-hydroxylation of estrogen,
the first step in hepatic metabolism of estrogens [84].
Accordingly, estrogen itself negatively regulates expres-
sion of Cyp3a4, likely through interactions with ERs in
the promoter region of the gene [119, 120]. Indeed, as
age increases and estrogen levels decline in women, hep-
atic levels of CYP3A4 are reduced [119].
Estrogen exerts effects on BA synthesis that influence en-

zymatic activity as well as BA pool composition. Cyp27a1
expression, for example, is inhibited in HepG2 liver-derived
cells by estrogen treatment. Both ERα and ERβ associate
with the promoter region of the Cyp27a1 gene to inhibit ex-
pression; conversely, androgens promote expression of
Cyp27a1 in the same cell line likely via induction of JNK sig-
naling [121, 122]. Interestingly, CYP27A1 enhances ER-ERE
interactions in liver cells and may promote upregulation of
Cyp7b1 [123]. Transfection of human embryonic kidney
293 cells with ERα and ERβ combined with estrogen treat-
ment upregulates expression and activity of CYP7B1 [124].
Cyp7b1 expression is negatively regulated by androgens in
prostate cancer cells, in which opposing effects of estrogen
are observed [124]. In agreement with these data, examin-
ation of the composition of the BA pool has revealed that
men have higher CDCA than women [6]. Additionally, in
animal models, the concentration of CDCA in bile is re-
duced with estrogen signaling through ERα [125, 126].

Conclusions
Drug development for atherosclerosis and BA synthesis
deficiencies are increasingly focused on BA biosynthetic
pathways. Potential pharmacological targets include the
nuclear receptors FXR and SHP; however, excretion of
BAs to prevent cytotoxic concentrations will need to be
considered. For example, although SHP itself lacks a
DNA-binding domain, it interacts with multiple nuclear
receptors including ERs, thereby inhibiting their transcrip-
tion [127, 128]. The SHP promoter harbors an AP-1 bind-
ing site that when mutated, removes negative regulation
induced by BAs [129]. The biological effects of estrogen
on these nuclear receptors appear to vary based on cell
type; therefore, it is critical to thoroughly examine their ef-
fects in hepatocytes and in the liver in vivo.
Sex differences in the therapeutic response to com-

pounds that target BA synthesis may vary significantly not
only with respect to the CYPs that mediate drug metabol-
ism but also in the CYPs that regulate BA concentration
and composition between the sexes. Lessons from cardio-
vascular disease should inform the development of these
therapies, and a complete understanding of molecular sex-
ual dimorphisms regulating BA synthesis will help in ad-
dressing these issues. Importantly, post-menopausal
women may be less sensitive to drugs that intend to in-
crease BA synthesis due to diminished levels of estrogen
that normally promote activity of enzymes that produce
BAs. Whole-genome examination of promoters for canon-
ical ERE s has been performed, revealing no perfect or
near-perfect estrogen binding sites for enzymes involved
in BA synthesis except AKR1D1 [130]. However, half-ERE
sites that bind SP-1 and AP-1 sites should be considered
in greater detail to understand the role of estrogen in
regulation in BA synthesis and cholesterol homeostasis in
the liver.

Perspectives and significance
Cholesterol homeostasis has been recognized as an im-
portant modulator of the cardiovascular system in health
and disease. Indeed, drugs that lower systemic cholesterol
such as statins that reduce hepatic cholesterol production
improve outcomes of cardiovascular diseases. However,
neglecting to consider sex differences in the expression
and activity of lipid-handling proteins targeted by
cholesterol-lowering drugs has led to limitations in their
utility. For example, women experience a significantly
higher incidence of myalgia and reduced survival benefit
from statins compared to men (Legato et al., [131]). Strat-
egies that reduce cholesterol through modulation of BA
synthesis may benefit those who cannot tolerate statins or
for whom the drugs are ineffective. To avoid unexpected
effects due to biological sex, development of these drugs
should address sex differences in the enzymes that pro-
duce BAs.
Sex differences in BA synthesis have been reported in

humans and rodents for nearly 50 years. Lessons from
studies on cholesterol in cardiac health should inform



Phelps et al. Biology of Sex Differences           (2019) 10:52 Page 9 of 12
further examination of the roles of both estrogen and
androgens in regulating expression of enzymes involved
in BA synthesis. We recommend systematic experiments
that include addition of exogenous estrogen and andro-
gens and gonadectomized males. This system would
allow examination of the roles of both androgens and es-
trogen. The resulting phenotypes could reveal important
information about not only mechanisms regulating BA
production but also about the possible hepatic effects of
gender-affirming hormone supplementation in trans-
gender individuals, a vastly underrepresented field of
study. Comparable studies performed in mice that exam-
ine cardiac function have found detrimental effects in
gonadectomized mice receiving doses of estrogen rele-
vant to the serum of pre-menopausal females. The same
may be true for BA synthesis and cholesterol homeosta-
sis because similar mechanisms mediate the regulation
of genes important to bile acid synthesis.
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