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Abstract

Background: The higher prevalence of obesity-related metabolic disease in males suggests that female sex
hormones provide protective mechanisms against the pathogenesis of metabolic syndrome. Because browning
of white adipose tissue (WAT) is protective against obesity-related metabolic disease, we examined sex differences
in B3-adrenergic remodeling of WAT in mice.

Methods: Effects of the 33-adrenergic receptor agonist CL316,243 (CL) on browning of white adipose tissue were
investigated in male and female C57BL mice. The role of ovarian hormones in female-specific browning was
studied in control female C57BL mice and mice with ovarian failure induced by 4-vinylcyclohexene diepoxide
treatment for 15 days.

Results: We found that treatment with CL-induced upregulation of brown adipocyte markers and mitochondrial
respiratory chain proteins in gonadal WAT (gWAT) of female mice, but was without effect in males. In contrast,

CL treatment was equally effective in males and females in inducing brown adipocyte phenotypes in inguinal

WAT. The tissue- and sex-specific differences in brown adipocyte recruitment were correlated with differences in
sympathetic innervation, as determined by tyrosine hydroxylase immunostaining and western blotting. Levels of
the neurotrophins NGF and BDNF were significantly higher in gWAT of female mice. CL treatment significantly
increased NGF levels in gWAT of female mice but did not affect BDNF expression. In contrast, estradiol treatment
doubled BDNF expression in female adipocytes differentiated in vitro. Ovarian failure induced by 4-vinylcyclohexene
diepoxide treatment dramatically reduced BDNF and TH expression in gWAT, eliminated induction of UCP1 by CL,
and reduced tissue metabolic rate.

Conclusions: Collectively, these data demonstrate that female mice are more responsive than males to the recruitment
of brown adipocytes in gonadal WAT and this difference corresponds to greater levels of estrogen-dependent
sympathetic innervation.
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Background

Increased adiposity positively correlates with higher sus-
ceptibility to metabolic disease, yet this correlation is
modified by sex [1, 2]. The greater prevalence of obesity-
related metabolic disease in males suggests that female
sex hormones provide protective mechanisms against
the pathogenesis of metabolic syndrome, possibly by
modulating metabolic phenotypes in adipose tissue.

Adipose tissue can store excess energy, mainly as
triglyceride, and mobilize free fatty acids (FFA) in re-
sponse to systemic needs, thereby contributing to energy
homeostasis [3]. Dysregulation of lipid metabolism in
adipose tissue can lead to ectopic lipid accumulation in
non-adipose organs. This results in lipotoxicity, which is
a major player in the development of insulin resistance
and obesity-related metabolic disease [1, 4].

In general, adipose tissue can be subcategorized into
white and brown adipose tissue [1]. A main physiological
role of white adipose tissue (WAT) is to buffer fluctuat-
ing energy supply, while brown adipose tissue (BAT) is
specialized for non-shivering thermogenesis to maintain
body temperature [5]. In brown adipocytes, uncoupling
protein 1 (UCP1) can uncouple the mitochondrial pro-
ton gradient from ATP synthesis during oxidative phos-
phorylation to generate heat [5]. Thus, high levels of
mitochondria and UCP1 expression specify the meta-
bolic phenotype of brown adipocytes [5]. In addition to
constitutive brown adipocytes in classic brown adipose
tissue depots [5], brown adipocytes can appear in WAT
depots in response to cold temperature and -adrenergic
stimulation [6, 7]. Inducible brown adipocytes in WAT
are considered a distinct cell type, and called beige (or
BRITE, for BRown in whITE) adipocytes [8, 9]. Non-
shivering thermogenesis in brown and beige/BRITE adi-
pocytes has been studied as a means to increase energy
expenditure and therefore as a potential therapeutic tar-
get to treat metabolic disease associated with obesity [3].

The ability to recruit brown adipocytes in WAT varies
depending on the anatomical location of the adipose tis-
sue depots [1, 7]. The reasons for this variation are not
clear but could involve distinct committed lineages or
extrinsic factors, like tissue microenvironment. Microen-
vironmental factors that can affect adipose tissue func-
tion include vascularization, variation in local growth
factors, and peripheral sympathetic innervation [1].
While BAT is more densely innervated by peripheral
sympathetic nerves than WAT [10, 11], innervation
levels of adipose tissues positively correlate with the abil-
ity to recruit brown adipocytes in WAT [12]. For ex-
ample, subcutaneous inguinal white adipose has greater
sympathetic innervation and higher norepinephrine
turnover rate [11, 13] compared to gonadal fat depots.
Although activation of brown/beige adipocytes by
sympathetic nerve activity improves metabolic profiles
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[14, 15], the factors that control physiological sympa-
thetic innervation levels in adipose tissue from various
anatomic locations are not fully understood.

Because females are more resistant to obesity-related
metabolic disease, sex hormones have been suggested as
major factors leading to sexual dimorphism in the
pathogenesis of metabolic diseases [16]. Indeed, crucial
roles of female sex hormones in adipose tissue metab-
olism have been demonstrated [16, 17], and it has
been shown that estrogen can directly activate lipoly-
sis through estrogen receptor alpha signaling in adi-
pocytes [17-19]. In addition to direct activation of
lipolysis, sex hormones influence body fat distribution,
and subcutaneous fat is more abundant in women [2].
However, sex differences in sympathetic innervation
and the induction of thermogenic adipocytes in ana-
tomically analogous WAT has not been investigated.

In this study, we examined lipid metabolism and
browning of abdominal and subcutaneous WAT depots
in male and female mice during p3-adrenergic stimula-
tion. The selective [33-adrenergic receptor agonist
CL316,243 (CL) specifically induced the expression of
thermogenic brown adipocyte markers in female go-
nadal white adipose tissue (gWAT). Interestingly, the
level of sympathetic innervation, measured by tyrosine
hydroxylase (TH) levels, was significantly greater in
gWAT of female mice versus male mice. Levels of
nerve growth factor (NGF) and brain-derived neuro-
trophic factor (BDNF) were significantly greater in
gWAT of female versus male mice. Ovarian failure,
induced by 4-vinylcyclohexene diepoxide (VCD) treat-
ment, reduced TH protein levels and CL-induced
browning of gWAT, similar to the levels observed in
male mice, suggesting that differential sympathetic
innervation of gWAT is sex hormone dependent. Collect-
ively, these data indicate that differences in sympathetic
activity are responsible for the greater ability of females to
induce brown adipocytes in gWAT and suggest that the
female-specific induction of brown adipocytes in WAT
contributes to protection against metabolic disease.

Methods

Animals

All animal protocols were approved by the Institutional
Animal Care and Use Committees at Yonsei University
(A-201605-228-01). All animal experiments were con-
ducted in strict compliance with the guidelines for
humane care and use of laboratory animals as speci-
fied by the Ministry of Food and Drug Safety. C57BL/
6 mice were obtained from Orient Bio (Gyeonggi-Do,
South Korea) and were fed a standard chow diet. The
mice were housed at 22 °C and maintained on a 12-h
light/12-h dark cycle with free access to food and
water at all time.



Kim et al. Biology of Sex Differences (2016) 7:67

Metabolic measurement was obtained using indirect
calorimetry system (PhenoMaster, TSE system, Bad
Homburg, Germany). The mice were acclimatized to
the cages for 2 days, and O, consumption (VO,), CO,
production (VCO,), food intake and locomotor activ-
ity were monitored for 2 days while food and water
were provide ad libitum.

For 3-adrenergic receptor stimulation, the mice were
injected with CL316,243 (Sigma) (intraperitoneal injec-
tion, 1 mg/kg) daily for up to 5 days. The mice were eu-
thanized in the ad libitum fed state after 4 h, 3 days, or
5 days of CL treatment, and WAT and serum were col-
lected. To induce ovarian failure, 4-week-old mice were
intraperitoneally injected daily with 4-vinylcyclohexene
diepoxide (VCD) (Sigma) at a concentration of 150 mg/
kg for 15 consecutive days [20]. The control animals
were injected with a sesame oil vehicle control. Vaginal
cytology was monitored daily to determine ovarian fail-
ure as previously described [20]. Serum concentrations
of 17 beta-estradiol were determined by ELISA (Abcam,
MA, USA), according to the manufacturer’s instruction.

Mitochondrial electron transport activity of adipose
tissue minces were detected in situ by measuring the
reduction of 2,3,5-triphenyltetrazolium chloride (TTC,
Sigma), as previously described [21]. Alternatively, to
measure the O, consumption rate (OCR) of adipose tis-
sue, a piece of minced adipose tissue (~5 mg) were
plated in Seahorse XF24 Cell Culture Microplates with
XF base medium (Seahorse bioscience), containing
4.5 g/l of glucose, L-glutamine, and sodium bicarbonate
and the concentration of O, in media was monitored
using Seahorse X24e/XF24 analyzers (Seahorse Bio-
science) at 37 °C. XF cell Mito stress test kit (Seahorse
Bioscience) was used to measure mitochondrial function
with a final concentration of 1 pM oligomycin and
0.5 pM rotenone. Uncoupled respiration was calculated
by subtraction of rotenone-induced OCR from oligomy-
cin A-induced OCR [22].

In vivo lipolysis was monitored by serum levels of gly-
cerol and FFA using the free glycerol reagent (Sigma) and
FFA detection kit (HR Series NEFA-HR (2), Wako), re-
spectively, according to the manufacturer’s instructions.

Fractionation of adipocytes and stromovascular cells in
WAT and cell cultures

Stromovascular cells (SVC) and adipocyte fractions were
isolated from mouse gWAT as previously described [7].
Fractionated adipocytes and SVC were used for messen-
ger RNA (mRNA) analysis. For primary cell culture,
PDGFRa + adipocyte progenitors were isolated from
SVC from gWAT of control mice by magnetic cell sort-
ing (MACS). PDGFRa" cells were cultured to confluence
in growth medium (Dulbecco’s modified Eagle’s medium,
DMEM; Sigma) supplemented with 10% fetal bovine
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serum (FBS; Gibco) and 1% penicillin/streptomycin
(Gibco) at 37 °C in a humidified atmosphere with 5%
CO, and exposed to differentiation medium (DMEM
supplemented with 10% FBS, 1% penicillin/streptomycin,
2.5 mM isobutylmethylxanthine (Cayman Chemical),
1 uM dexamethasone (Cayman Chemical), and 1 pg/ml
insulin (Sigma)) for 3 days and maintained in mainten-
ance medium (DMEM supplemented with 10% FBS, 1%
penicillin/streptomycin, 1 pg/ml insulin) for 4 days.

Immunohistochemistry and immunocytochemistry
Adipose tissues were fixed and processed for histological
analysis, as previously described [7]. Paraffin sections (5-um
thick) were subjected to immunohistochemical analysis, as
previously described [7]. The antibodies used for immuno-
chemical detection were anti-UCP1 antibody (rabbit,
0.5 pg/ml, Alpha Diagnostic International), perilipin 1
(rabbit, 1:100, Cell Signaling), and tyrosine hydroxylase
antibody (mouse, 1:400, Merck Millipore). Secondary anti-
bodies used were goat anti-rabbit-Alexa Fluor 488 and goat
anti-mouse-Alexa Fluor 594 (1:500, Invitrogen, Molecular
Probes). IgG controls (normal rabbit IgG, Santa Cruz) were
used as negative controls for IHC analysis, when the infor-
mation on the concentration of primary antibodies was
available (Additional file 1: Figure S1). Otherwise, the omis-
sion of primary antibody was used as a negative control.
DAPI (Sigma) was used as a nuclear counter stain.

Gene expression

RNA was extracted using TRIzol® reagent (Invitrogen)
and converted into complementary DNA (cDNA) using
High Capacity cDNA synthesis kit (Applied Biosystems,
Waltham, MA, USA). Quantitative real-time polymerase
chain reaction (PCR) was performed using SYBR Green
Master Mix (Applied Biosystems) and ABI StepOne
PLUS (Applied Biosystems) for 45 cycles, and the fold
change for all samples was calculated by the comparative
cycle-threshold (Ct) method (i.e., 2-AACt method).
Peptidylprolyl isomerase A (PPIA) was used as the
housekeeping gene for mRNA expression analysis. There
was no significant difference in Ct values of PPIA among
adipose tissue samples from the experimental groups.
¢DNA was amplified using the following primers for
NGEF: 5'-ACAGCCACAGACATCAAGGG-3’ (forward),
and 5'-TGACGAAGGTGTGAGTCGTG-3" (reverse).
The primers used for BDNF were as follows: 5 -CA
CTCCACTGCCCATGATGT-3’ (forward), and 5'-G
GACCAAAATGGGAGGAGGG-3" (reverse). All other
cDNAs were amplified using previously described
primers [7, 23].

Western blot analysis
Protein extracts were prepared as previously described
[13]. Western blotting was performed using primary



Kim et al. Biology of Sex Differences (2016) 7:67

antibodies against adipose triglyceride lipase (ATGL)
(rabbit, Cell Signaling), hormone sensitive lipase (HSL)
(rabbit, Cell Signaling), p-HSL (rabbit, Cell Signaling),
tyrosine hydroxylase (TH) (mouse, Merck Millipore),
UCP1 (rabbit, Alpha Diagnostic International) oa/f tubu-
lin (rabbit, Cell Signaling), B-actin (mouse, Santa Cruz
Biotechnology), and Total OXPHOS Rodent WB Anti-
body Cocktail (Abcam) including CI subunit NDUFBS,
CII-30 kDa, CIII Core protein 2, CIV subunit I, and CV
alpha subunit. Secondary anti-mouse/rabbit horseradish
peroxidase antibodies were as described previously [13].
Blots were visualized with SuperSignal West Dura Sub-
strate (Pierce, Invitrogen).

Statistical analysis

Statistical analyses were performed using GraphPad
Prism 5 software (GraphPad Software, La Jolla, CA,
USA.). Data are presented as mean+ SEM. Statistical
significance between two groups was determined by un-
paired ¢ test or Mann-Whitney test, as appropriate.
Comparison among multiple groups was performed
using a one-way analysis of variance (ANOVA) or two-
way ANOVA, with Bonferroni post hoc tests to deter-
mine p values.

Results

Browning of WAT by f33-adrenergic receptor stimulation
is higher in gWAT of female than male mice

Six-week-old male and female mice were treated with a
selective B3-adrenergic receptor agonist, CL for 3 days,
and mRNA and protein levels of brown adipocyte
markers and mitochondrial function was analyzed in ab-
dominal and subcutaneous WAT. gWAT and inguinal
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WAT (iWAT) were analyzed as representative dissectible
abdominal and subcutaneous WAT, respectively.

We found that in gWAT, CL treatment robustly induced
expression of UCP1 protein in female mice but was
without effect in males (Fig. 1a). Consistently, qPCR and
immunohistochemical analysis showed that UCP1 expres-
sion was greatly upregulated in female but not male mice
(Fig. 1b, c). We examined several mitochondrial proteins
that constitute the mitochondrial respiratory chain:
NDUEFB8 (CI subunit: NADH Dehydrogenase [Ubiquin-
one] 1 Beta Subcomplex 8), SDHB (CII subunit: Succinate
dehydrogenase complex iron-sulfur subunit B), UQCRC2
(CIII Core protein 2, Ubiquinol-Cytochrome C Reductase
Core Protein II), and ATP5A (CV alpha subunit-ATP syn-
thase, H+ transporting, mitochondrial F1 complex, alpha
subunit 1). Of the mitochondrial respiratory chain compo-
nents analyzed, subunits CV, CIII, and CI were expressed
at significantly higher levels in gWAT of female mice
treated with CL for 3 days compared to males (Fig. 2a, b).
Similarly, functional analysis by TTC staining demon-
strated that O, consumption was higher in female gWAT
than male gWAT (Fig. 2d). Cytochrome c oxidase subunit
VIIb (Cox8b) and peroxisome proliferator-activated
receptor, gamma, and coactivator 1 alpha (Ppargcla),
a transcription factor that upregulates mitochondrial
biogenesis were also expressed significantly higher in
female gWAT after 3 days of CL treatment (Fig. 2c).
Expression of other brown adipocyte markers, deiodi-
nase iodothyronine type II (Dio2), and elongation of
very long chain fatty acids 3 (Elovl3) was significantly
higher in gWAT of female mice than in gWAT of
male mice (Fig. 2c). These results indicate that gWAT
of female mice is highly susceptible to browning of
WAT upon B3-adrenergic stimulation.
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Fig. 1 CL treatment induces brown adipocyte maker UCP1 expression in gWAT female specifically. a, b Immunoblot (a) and quantitative PCR (b)
analysis of UCP1 expression in gWAT of male and female mice treated with CL for 3 days and untreated control mice. Two-way ANOVA revealed
significant main effects of sex in UCP1 expression (a: p=0.012, b: p=0.032) and significant interaction of sex and treatment (a: p=0.012, b: p=
0.033). Significant differences between male and female were determined by post hoc pairwise comparison with Bonferroni correction (p=0.012,
mean + SEM; n =4, **p < 0.01). ¢ Representative images of UCP1 immunostaining in paraffin sections of gWAT from male and female mice treated
with CL for 3 days and untreated control mice. Nuclei were counterstained with DAPI. Size bar = 20 pm
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(See figure on previous page.)

Fig. 2 CL treatment induces expression of brown adipocyte markers in gWAT female specifically. a,b Immunoblot analysis of mitochondrial
proteins involved in oxidative phosphorylation. Two-way ANOVA revealed significant main effects of sex in mitochondrial proteins (ATP5A:
p=0.013, UQCRC2: p = 0.034, NDUFB8: p = 0.004) and significant interaction of sex and treatment (NDUFB8: p = 0.0054). Significant differences
between male and female were determined by post hoc pairwise comparison with Bonferroni correction (mean +SEM; n=6, *p < 0.05,
**p <0.01). ¢ gPCR analysis of brown adipocyte markers and genes involved in mitochondrial FFA oxidation in gWAT of male and female
mice treated with CL for 3 days and untreated control mice. Two-way ANOVA revealed significant main effects of sex in brown adipocyte
markers (Ppargcla: p = 0042, Cox8b: p=0.011, Dio2: p <0. 0001) and significant interaction of sex and treatment (Ppargcla: p = 0.008, Cox8b: p=0.013,
Dio2: p= 0. 001). Significant differences between male and female were determined by post hoc pairwise comparison with Bonferroni correction
(mean £ SEM; n=4, **p <0.01). d Mitochondrial respiration in gWAT of male and female mice treated with CL for 3 days (mean + SEM;
n=4, *p <0.05) as determined by reduction of the electron acceptor dye TTC. e-h VO2 (e), energy exchange ratio (RER) (f), and energy
expenditure (EE) (g) are shown. h Total EE for 24 h (dark, 12 h; light, 12 h) without stimulation (h, left panel) and total EE for 12 h after CL injection

(h, right panel). Arrows indicate the time of CL injection. Mean + SEM, n =6 per group

To compare whole-body energy expenditure, we per- female and male mice (Fig. 3a, b, d). Levels of mito-
formed indirect calorimetry analysis (Fig. 2e—g). There  chondrial respiration measured by TTC staining
was no significant sex difference in O, consumption, re- were also similar between male and female iWAT
spiratory exchange ratio (VCO,/VO,), or energy expend-  (Fig. 3c). To determine intrinsic differences in the
iture. Although there was a significant difference in potential of browning of WAT derived from precur-
browning of gWAT, its contribution to whole-body en- sors in female and male adipose tissues, we per-
ergy expenditure is relatively low compared to that of formed primary cultures with PDGFRa" cells isolated
classic BAT and thus would be difficult to discern by in-  from gWAT and did not find any significant differ-
direct calorimetry. ences in the induction levels of brown adipocyte

In contrast to gWAT, CL was equally effective in indu- markers in response to isoproterenol treatment
cing brown adipocyte markers in inguinal WAT of (Additional file 1: Figure S2).
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Fig. 3 Induction of brown adipocyte phenotype in subcutaneous adipose tissue by CL treatment. a, b Immunoblot analysis of UCP1 protein
expression and quantification. Mean + SEM; n =4, two-way ANOVA, interaction of sex and treatment (p = 0.9094) and effect of sex (p = 0.8949)
were not significant. Significant main effect of CL treatment (p < 0.0001). ¢ Mitochondrial respiration in brown adipose tissue and iIWAT of male
and female mice treated with CL for 3 days (mean + SEM; n=4) as determined by reduction of the electron acceptor dye TTC. d gPCR analysis of
brown adipocyte markers and genes involved in mitochondrial FFA oxidation in iWAT of male and female mice treated with CL for 3 days and
untreated control mice. (mean + SEM; n=4)
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Lipolysis in response to 33-adrenergic receptor stimulation
is higher in gWAT of male than female mice

We next addressed the mechanisms involved in the sex
differences in UCP1 induction. We examined the acute
lipolytic responsiveness of male and female mice to CL
because FFA are known PPAR ligands that support cata-
bolic remodeling of gWAT [24]. Surprisingly, male mice
were more responsive, indicated by greater elevation of
serum FFA and glycerol after 4 h of CL treatment
(Fig. 4a, b). Hormone sensitive lipase (HSL) and adipose
triglyceride lipase (ATGL) are the major enzymes re-
sponsible for triglyceride hydrolysis in adipose tissue.
Therefore, we examined the expression levels of HSL
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and ATGL Immunoblot analysis showed that CL sharply
elevate phosphorylation of HSL in male but not in fe-
male mice (Fig. 4c). These observations indicate that the
acute intrinsic responsiveness gWAT to CL is not dimin-
ished in male mice. Following treatment with CL for
3 days, the levels of phosphorylated HSL returned to
basal levels (Fig. 4d). In contrast, there were no sex dif-
ferences in the basal levels and CL-induced upregulation
of HSL and p-HSL levels in iWAT in response to CL
treatment (Additional file 1: Figure S3).

Interestingly, Adrb3 expression was higher in gWAT
of male mice compared to female mice and was sharply
downregulated by 3 days of CL treatment (Fig. 4e). This
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difference in the expression of Adrb3 in gWAT between
sexes may explain why [3-adrenoceptor stimulation
acutely increased the activation of the lipolysis pathway
in male gWAT.

Sympathetic innervation levels are significantly higher in
gWAT of female mice than male

It is well established that the metabolic activity of brown
adipose tissue is controlled by sympathetic nerve activity
[5]. In addition to metabolic activation, the potential of
WAT to induce brown adipocyte phenotypes is propor-
tional to the basal levels of sympathetic innervation [12].
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Therefore, we hypothesized that differential levels of
sympathetic innervation might affect recruitment of
brown adipocyte phenotypes in gWAT of each sex. To
measure the level of sympathetic innervation, we
performed immunoblot analysis of the TH protein, the
enzyme that mediates the rate-limiting step of norepin-
ephrine biosynthesis. We found the TH levels were
threefold higher in gWAT of females versus male gWAT
(Fig. 5a). Consistent with this result, immunohistochemi-
cal analysis revealed that gWAT of female mice treated
with CL contains more TH+ nerve fibers (Fig. 5¢). In
contrast to gWAT, there were no sex differences in TH
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protein levels, indicated by immunoblot and IHC ana-
lysis (Fig. 5b, d).

Neurotrophic factors are significantly higher in gWAT of
female mice than male

To identify potential factors that affect sympathetic in-
nervation, we examined levels of neurotrophic factors
[25]. Interestingly, NGF expression was slightly higher in
gWAT of female mice and was significantly upregulated
by CL treatment (Fig. 6a). BDNF expression levels were
also higher in gWAT of female mice. However, BDNF
expression in gWAT of female mice was not upregulated
following CL treatment (Fig. 6a). Because it has been re-
ported that NGF regulates axonal outgrowth and the
developmental targeting of postganglionic sympathetic
nerves to target tissues [25], we examined developing
adipose tissues from weanling mice. We found that NGF
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levels in gWAT were twofold higher in weanling females
compared to males. The NGF levels declined by 6 weeks
of age, and NGF could be upregulated by 3 days of CL
treatment in female, but not male, mice (Fig. 6a).

Adipose tissue is a mixture of cell types. To determine
which cell types express neurotrophic factors, gWAT
was fractionated into stromovascular cells (SVC) and ad-
ipocytes. While the expression levels of NGF were
slightly higher in SVC compared to levels in adipocytes
under control conditions, CL treatment significantly in-
creased NGF expression in SVC, but not in adipocytes
(Fig. 6b). BDNF expression was 2.5-fold higher in adipo-
cytes fraction compared to SVC, and the expression was
not affected by CL treatment (Fig. 6b).

To determine sex hormone effects on beige/BRITE
adipocyte characteristics, primary cultured adipocytes
from WAT of mice were treated with 17p-estradiol. In
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line with CL effect in vivo, B-adrenergic receptor agonist,
isoproterenol increased NGF expression, but not BDNF.
In addition, we found that estradiol treatment in-
creased BDNF levels (Fig. 6¢), suggesting that estra-
diol increases the production of neurotrophic factors
in adipocytes, resulting in higher levels of innervation
in female gWAT.

Sex hormone is required for beige/BRITE adipose
phenotype of gonadal adipose tissue

To determine whether sex hormones are required for
the beige/BRITE adipose phenotype of gonadal adipose
tissue, we used the 4-vinylcyclohexene diepoxide (VCD)
model to induce ovarian failure and thereby remove the
source of estrogen [20]. Controls and mice with chem-
ically induced ovarian failure were treated with CL, and
TH and UCP1 protein levels were determined by immu-
noblot analysis. VCD treatment decreased innervation
levels and abolished the ability of CL to induce UCP1
expression (Fig. 7a). Real-time metabolic analysis showed
that basal and uncoupled mitochondrial respiration were
reduced in gWAT of VCD-treated mice compared to ve-
hicle treated mice after 3 days of CL treatment (Fig. 7b).
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In addition, levels of BDNF mRNA expression were sig-
nificantly reduced in gWAT of VCD-treated mice com-
pared to vehicle treated mice (Fig. 7c).

Discussion

Obesity increases cardiometabolic risk in males, yet the
correlation in females is less clear [2]. Furthermore, epi-
demiologic studies and in vivo experiments support the
observation that females have lower cardiometabolic risk
compared to males with similar levels of adiposity [2,
26]. Sex hormones influence body adiposity as well as
the regional distribution of adipose tissue [18]. There-
fore, it is possible that the sex dimorphisms observed in
the pathophysiology of metabolic disease are associated
with sex-difference in the metabolic function of adipose
tissue. In general, increasing in the mass of subcutane-
ous adipose tissue is beneficial to metabolic profiles,
while abdominal adipose tissue is related to insulin
resistance and disease states [27]. Thus, higher levels of
subcutaneous fat in women have been considered a main
factor contributing to female-specific resistance to
metabolic disease [2, 26]. However, sex-differences in
sympathetic innervation levels and the induction of
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thermogenic adipocytes in anatomically analogous ab-
dominal WAT have not been investigated. In this study,
we hypothesized that the lipid metabolism of anatomic-
ally similar abdominal WAT can be affected by sex hor-
mones. To test this, the metabolic phenotypes of
anatomically corresponding WAT from male and female
mice were analyzed to determine differences between
sexes, focusing on the browning of gWAT and iWAT in
response to 3-adrenergic stimulation.

Browning of WAT is a promising pathway to increase
energy expenditure as well as a potential therapeutic tar-
get to combat obesity and related metabolic disease. In
this study, we demonstrated that the levels of lipolysis
and browning of gWAT differed by sex and this differ-
ence is, in part, due to differential levels of sympathetic
innervation to gWAT between the sexes. Previous work
has shown that tonic sympathetic activity is important in
maintaining the ability of WAT to undergo browning in
response to CL treatment [12]. Although there is vari-
ation between strains of mice, in general, gWAT is con-
sidered the most refractory to thermogenic stimuli in
male C57BL/6 mice [28, 29]. Our current study shows
that gWAT of female C57BL/6 mice was able to adopt a
beige/BRITE phenotype. Although the mechanisms are
not fully certain, we demonstrated that higher BDNF ex-
pression in gWAT of females is sex hormone dependent.
The difference in NGF expression between the sexes was
greater in the developing gWAT of mice, indicating that
NGF may play an important role in the differential in-
nervation of postganglionic sympathetic nervous system
to gWAT developmentally. Interestingly, NGF expres-
sion was induced by CL treatment, suggesting positive
feedback regulation of 3-adrenergic tone.

Although BDNF expression is much higher in gWAT
of adult female mice (e.g., 6 weeks old), BDNF expres-
sion levels did not exhibit any sex differences in develop-
ing adipose tissue. Importantly, BDNF expression was
upregulated by estrogen treatment in vitro, and VCD-
induced ovarian failure reduced BDNF expression. These
data indicated that BDNF is an estrogen-sensitive neuro-
trophic factor that contributes to differential sympathetic
innervation of gWAT. Although the mechanism of
BDNF induction by estrogen is not determined in this
study, the promoter of the BDNF gene contains estrogen
response elements (ERE) [30-32]. VCD, a well-
established ovarian toxicant, has been used to induce
ovarian failure [20]. However, we do not exclude un-
known off-target effects of VCD treatment. Thus, fur-
ther confirmation with surgical ovariectomy models in
combination with estrogen replacement would be in-
formative to support ovarian steroid hormone-specific
effects on browning of gWAT. As mentioned above, in-
nervation levels in iWAT did not differ between male
and female mice, suggesting that distinct mechanisms
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may be involved in development and maintenance of
postganglionic sympathetic neurons in various anatomic
locations.

While sex differences in the browning of gWAT have
not been previously investigated, the higher metabolic ac-
tivity of classic brown adipose tissue in females has been
previously reported [33-35]. For example, studies using
'8E_FDG positron emission tomographic and computed
tomographic scans indicated that metabolically active
BAT is more frequently observed in woman than in men
[35]. Previous studies have identified higher levels of
BMPS8 expression as a molecular mechanism of estrogen-
induced upregulation of metabolic activity in classic BAT
of female mice [36]. Interestingly, recent studies demon-
strated that thermogenic/browning effect of central
BMP8b and AMPK activation in hypothalamus is re-
stricted to female, showing estrogen dependency [34, 37,
38]. Further studies are needed to address whether the
central regulation is involved in sex-dimorphic browning
of gWAT. In addition to controlling BAT metabolism, im-
portant roles of estrogen in energy homeostasis have been
intensively studied [16, 39]. For example, ovariectomy in
rodents impairs glucose tolerance and increases WAT
mass [16]. Moreover, studies using knockout mice have
shown that estrogen receptor-a suppresses adipose tissue
expansion in male and female mice [19].

In addition to sexual difference in browning of gWAT,
male and female mice had different lipolytic responses.
Generally, both lipolysis and thermogenic response are reg-
ulated by sympathetic activity. The current study suggested
that greater TH levels maintain the ability to respond to CL
for the induction of thermogenic gene expression. However,
it is not clear how higher levels of innervation preferentially
activated oxidative mechanisms over lipolysis. We speculate
that higher levels of innervation might downregulate Adrb3
expression in females, which explain lower lipolytic respon-
siveness to acute CL treatment [12]. Differential compart-
ments of cAMP-dependent signaling are required for the
enzymatic activation of TG hydrolysis and transcriptional
activation of the thermogenic program [40, 41]. Thus, it is
possible that higher basal levels of sympathetic activity may
lead compartmentalization of PKA signaling to nucleus tar-
geted downstream to sensitize thermogenic stimuli. Al-
though levels of phosphorylated HSL in gWAT and serum
levels of FFA and glycerol indicate activation of lipolysis in
gWAT, we did not monitor lipolytic flux directly. Nonethe-
less, the sexually dimorphic upregulation of mitochondria
in gWAT and elevated oxygen consumption measured ex
vivo are consistent with greater oxidation of mobilized FFA
in female gWAT.

Conclusions
We have demonstrated that the sex differences in sym-
pathetic activity result in gWAT beige/BRITE phenotype
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in female mice and suggest that the distinctively female-
specific induction of brown adipocytes in gWAT could
be involved in the protection of female mice against
metabolic disease. Obesity-related metabolic disease is
known as a sex-biased disease. An understanding of sex
dimorphism in the physiology and mechanisms of
adipose tissue function may lead to the development of
new therapeutics to prevent obesity-related metabolic
disease.
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receptor activation.
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