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Abstract

Background: Sex influences susceptibility to many infectious diseases, including some manifestations of
leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen,
liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to
protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We
analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance.

Methods: We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of
Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3-4,-5-7,-9-11,-12,
-15-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental “donor” strain STS and
87.5% genes from the “background” strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained
sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA.

Results: The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of
eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was
higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage
analysis in F» hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14
(chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmri4 functions only
in males, the effect of Lmr25 is sex independent. Lmri5 (chromosome 11) and Lmr26 (chromosome 9) operate in
cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker
interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F,
hybrids in males, but not in females.

Conclusions: We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major
infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The
positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic
infiltration reflects ineffective inflammation.
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Background

Sex influences susceptibility to many infectious diseases
[1], including some manifestations of leishmaniasis [2], a
disease that threatens several hundred million people in
98 countries [3]. Disability-adjusted life years (DALYs)
due to leishmaniasis are globally increasing [4]. The
disease is caused by intracellular protozoan parasites of the
genus Leishmania and is transmitted to the vertebrates by
the bite of female phlebotomine sand flies.

Leishmania parasites infect the so-called professional
phagocytes (neutrophils, monocytes, and macrophages),
as well as dendritic cells and fibroblasts. The major host
cell is the macrophage, where parasites multiply, eventu-
ally rupturing the cell and spread to the uninfected cells
(reviewed in [5]). Infected monocytes and macrophages
circulating in the peripheral blood are believed to be
carriers of the parasite to distal sites [6]. In the dermis,
parasites cause the cutaneous form of the disease (which
can be localized or diffuse), whereas infection of the mu-
cosa gives rise to mucocutaneous leishmaniasis. The meta-
static spread of the infection to the spleen and liver results
in visceral leishmaniasis. Although these are the major
sites of visceral disease, parasites can also enter other or-
gans, such as the bone marrow, lymph nodes, and lungs
(reviewed in [5]). Presence of parasites in organs usually
induces inflammation through cascade of signals that
leads to recruitment of inflammatory cells, such as neutro-
phils, macrophages, eosinophils, and dendritic cells. These
innate immune cells might phagocytose parasites and/or
produce cytokines and chemokines that activate both in-
nate and adaptive immune responses. Resulting responses
can be protective and eliminate parasites, or ineffective
and lead to chronic inflammation [7].

The sex of the host influences the incidence of disease,
parasite burden, pathology, mortality, and immunological
response against various parasites, including Leishmania
both in humans and in rodents (reviewed in [7—12]).

In general, sex bias is observed after infection with
Leishmania parasites, and men are more frequently in-
fected than women ([13-15]; reviewed in [11, 12]), al-
though in certain areas no sex bias in prevalence of
disease was observed [16]. The higher susceptibility of
males also applies to hamster [17] and mouse [18, 19];
reviewed in [12] models of leishmaniasis. The effect of
male orchidectomy and female testosterone replacement
studies suggests that the hormone testosterone can modu-
late systemic L. major infection in BALB/cAnPt, DBA/2N,
DBA/2], and F; hybrids (BALB/cAnPt x DBA/2N) mouse
strains [18].

Importantly, the host genes, including those regulated
differently in males and females, play a significant role in
determining susceptibility and organ tropism for infec-
tious diseases. Experimental data have shown different
sex influence on susceptibility to relatively closely related
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pathogen species [20, 21], different sex biases in suscep-
tibility to the same Leishmania species in different host
genotypes [21, 22], and different sex and genetic influ-
ence on organ-specific pathology [21, 23, 24]. For ex-
ample, high resistance to skin lesions induced by L.
mexicana was observed in females but not in males of
DBA/2 mice, but the sex effect was opposite in L. major
infection [20].

Genotype influence on sex differences was defined in
the studies of L. major infection [22, 24]. Giannini [22]
found no sex effect on L. major-induced skin pathology
and mortality in BALB/cJ mice, but a higher susceptibility
of B10.129(10M)ScSn females than males. The compari-
son of L. major susceptibility in two strains, BALB/cHeA
and CcS-11 [24], has shown that there is no significant
sex influence on skin lesion development, splenomegaly,
and hepatomegaly in these strains. However, parasite
numbers in lymph nodes are higher in both BALB/c and
CcS-11 males; moreover, CcS-11 males have higher para-
site load in spleens, showing an organ-specific, sex-, and
genotype-dependent pathology [24].

In the present study, we address influence of genotype
and sex on infiltration of eosinophil leukocytes into the in-
guinal lymph nodes of L. major-infected mice. Eosinophils
are granulocytes that develop in the bone marrow from
pluripotent progenitors. They are released into the
peripheral blood in phenotypically mature state and can
be activated and recruited into tissues in response to ap-
propriate stimuli, most notable IL-5, and the eotaxin
chemokines [25].

Eosinophils contribute to the initiation of inflamma-
tory and adaptive responses due to their bidirectional in-
teractions with dendritic cells and T cells, as well as
their large spectrum of secreted cytokines and soluble
mediators. They have key immunoregulatory roles as
professional antigen-presenting cells and modulators of
functions of CD4" T cells, dendritic cells, B cells, mast
cells, neutrophils, and basophils [26].

Eosinophil-associated disorders can affect practically
all tissues and organs in the body, either individually or
in combination. They are involved in inflammatory condi-
tions affecting the skin, cardiovascular, nervous and renal
system, gastrointestinal tract, and upper and lower airways
[27, 28], are key effector cells in eosinophilic asthma [29],
and their interaction with peripheral nerves has impact on
pathology of many diseases. In addition, they are also in-
volved in regulatory mechanisms modulating local and
systemic immune responses and remodeling and repair
mechanisms [30].

Eosinophils may have an important role in maintaining
host survival in life-threatening viral infections [31].
They combat worms such as Angiostrongylus cantonensis
[32], Nippostrongylus brasiliensis [33], Litomosoides
sigmodontis [34], and Brugia pahangi [35]; but their role
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in response to other nematoda is more complex. Eosinophils
have no role in protection against Schistosoma mansoni
[36]. They even promote larval growth in primary in-
fection with Trichinella spiralis [37], but they mediate
protective immunity against secondary infection with
this nematode [38].

Activated eosinophils can kill [39] or support killing of
L. major parasites [40]; however, in chronic disease, eo-
sinophil infiltration might be a consequence of an inef-
fective elimination of these parasites and/or an excessive
inflammatory response to the present pathogens [41].

Here, we analyzed genetic influence on eosinophil in-
filtration after L. major infection into the lymph nodes
of strains BALB/cHeA (BALB/c), STS/A (STS), and se-
lected 12 (out of 20) RC strains of CcS/Dem series [42].
Each of the 20 RC CcS/Dem strains contains a different
unique set of approximately 12.5% genes of the donor
strain STS on the genetic background of BALB/c. We
found surprisingly high numbers of eosinophils in the
inguinal lymph nodes of the strain CcS-9, males contain-
ing higher numbers of eosinophils than females. We an-
alyzed genetics of this infiltration using microsatellite
DNA markers and mapped four loci that control eosino-
phil numbers after L. major infection, one of them being
strongly influenced by sex. We also found that the num-
bers of eosinophils in the lymph nodes correlate posi-
tively with the parasite load and that this correlation is
partly genetically controlled and is higher in males than
in females.

Methods

Mice

Tests of strain differences in eosinophil infiltration: Mice of
the strains BALB/c (27 females, 27 males), STS (8 females, 9
males), CcS-1 (10 females, 13 males), CcS-3 (10 females, 10
males), CcS-4 (13 females, 12 males), CcS-5 (19 females, 27
males), CcS-7 (8 females, 12 males), CcS-9 (15 females, 10
males), CcS-11 (13 females, 13 males), CcS-12 (16 females,
12 males), CcS-15 (7 females, 12 males), CcS-16 (10 females,
13 males), CcS-18 (5 females, 3 males), and CcS-20 (13
females, 18 males) were infected with L. major as described
previously [43, 44]. Mice were tested in eight successive
experimental groups and were euthanized 8 weeks after in-
fection. The age of mice at the time of infection was 7 to
47 weeks (mean 15 weeks, median 14 weeks).

A linkage study of eosinophil infiltration: F, hybrids
between CcS-9 and BALB/c (age 11 to 21 weeks at the
time of infection, mean and median age 14.8 and
15 weeks, respectively) were produced at the Institute of
Molecular Genetics. When used for these experiments,
the CcS-9 was in the 40th generation of inbreeding and
therefore highly homozygous. Two hundred fifty-four F,
hybrids between BALB/c and CcS-9 comprised 139
females and 115 males. Mice of the background parental
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strains BALB/c (18 females, 17 males) and STS (8 fe-
males, 6 males) and the RC strain CcS-9 (16 females, 14
males), 7 to 20 weeks old at the time of infection (mean
13 weeks, median 13 weeks), were used as controls. During
the experiment, male and female mice were placed into sep-
arate rooms and males were caged individually. F, mice
were tested in three independent experimental groups.

Ethical statement

All experimental procedures in this study comply with the
Czech Government Requirements under the Policy of
Animal Protection Law (N0.246/1992) and with the regula-
tions of the Ministry of Agriculture of the Czech Republic
(No0.207/2004), which are in agreement with all relevant
European Union guidelines for work with animals and were
approved by the Institutional Animal Care Committee of
the Institute of Molecular Genetics AS CR and by Depart-
mental Expert Committee for the Approval of Projects of
Experiments on Animals of the Academy of Sciences of the
Czech Republic (permissions Nr. 274/2011; 89/2013).

Parasites

L. major LV 561 (MHOM/IL/67/LRC-L137 JERICHO II)
was maintained in rump lesions of BALB/c females.
Amastigotes were transformed to promastigotes using
SNB-9 [43]. 107 promastigotes from the passage, two
cultivated for 6 days were inoculated in 50 pl sterile sa-
line s.c. into mouse rump [44].

Disease phenotype

The size of the primary skin lesion was measured weekly
using a Vernier caliper gauge. The mice were killed
8 weeks after infection and inguinal lymph nodes draining
the site of infection were collected for further analysis.

Histological analysis

Inguinal lymph nodes of female and male mice were fixed
in 10% neutral buffered formalin (NBF; approximately 4%
formaldehyde) and embedded in paraffin using automatic
tissue processor. Tissue sections (5—7 pm) were stained
with hematoxylin, differentiated into 1% acid alcohol,
stained with 1% alcoholic eosin, dehydrated, assembled
with permanent mounting medium, and analyzed under a
light microscope (Olympus BX51; Olympus Optical Co.
(EUROPA) GMBH., Hamburg, Germany).

Eosinophil infiltration in the experiment with parental
strains BALB/c, STS, and 12 RC strains was assessed using
a semi-quantitative scoring system: 0, no eosinophil; 0.25,
1 eosinophil; 0.5, 2 eosinophils; 0.75, 3—4 eosinophils; 1, 5
eosinophils; 1.5, 6 eosinophils; 2, 7 eosinophils; 2.5, 8-9
eosinophils; 3, 10-15 eosinophils; and 4, more than 15 eo-
sinophils per lymph node section (one section was used in
experiment with parental strains BALB/c, STS and 12 RC
strains).
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In F, mice, as well as the parental strains BALB, STS,
and CcS-9, eosinophil numbers were determined quanti-
tatively. The total number of eosinophils was counted in
the node section and each lymph node was assessed in
four independent sections. The mean value of these four
counts was used to calculate the role of genetic factors in
control of eosinophil infiltration. Sixty slides from 15 mice
were blindly recounted by an independent investigator
with concordant results (R = 0.913, P value = 5.66 x 10%%).

Genotyping of F, mice by PCR

DNA was isolated from tails using a standard proteinase
procedure. The strain CcS-9 differs from BALB/c at
STS-derived segments on eight chromosomes ([45] and
unpublished results). These differential segments were
typed in the F, hybrid mice between CcS-9 and BALB/c
using 18 microsatellite markers (Research Genetics,
Huntsville, FL, USA): D2Mit283, D2Mit148, D4Mitl172,
D4Mit23, D4Mit53, D4Mitl7, D5Mit24, D5Mitl43,
D6Mitl122, D6Mit274, DOMitl5, D11Mitl41, D11Mit242,
D11Nds18, D11Ndsl0, D16Mitl9, D17Mit120, and
D17Mit122. The markers were selected because their gen-
omic location makes them suitable to detect linkage. The
maximum distance between any two markers in the
chromosomal segments derived from the strain STS or from
the nearest BALB/c derived markers was 1246 cM, and
mean distance was 4.67 c¢cM. The PCR genotyping for
markers with fragment length difference more than 8 bp
was performed using unlabeled primers as in [46, 47]. The
PCR genotyping for markers with fragment length difference
less than 8 bp was performed using [y->*P]JATP end-labeled
primers as described elsewhere [48].

Measurement of parasite load in lymph nodes

Total DNA was isolated from the frozen lymph nodes, and
parasite load was measured using PCR-ELISA according to
the previously published protocol [49]. Briefly, for detection
of Leishmania parasite DNA, in total DNA, PCR was per-
formed using two primers (digoxigenin-labeled F 5'-ATT
TTA CAC CAA CCC CCA GTT-3" and biotin-labeled R
5'-GTG GGG GAG GGG CGT TCT-3" (VBC Genomics
Biosciences Research, Austria). The 120-bp fragment within
the conserved region of the kinetoplast minicircle of
Leishmania parasite was amplified. In each PCR reaction,
50 ng of extracted total DNA was used. As a positive con-
trol, 20 ng of L. major DNA per reaction was amplified as a
highest concentration of the standard. A 26-cycle PCR reac-
tion was used for quantification of parasites. Parasite load
was determined by measurement of the PCR product with
the modified ELISA protocol (Pharmingen, San Diego,
USA). The concentration of Leishmania DNA was mea-
sured at the ELISA Reader Tecan with the curve fitter pro-
gram KIM-E (Schoeller Pharma, Prague, Czech Republic)
using least squares-based linear regression analysis [24, 49].
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Statistical analysis

The differences among BALB/c, STS, and CcS/Dem
strains in eosinophil numbers in lymph nodes were evalu-
ated by the analysis of variance (ANOVA) and Newman-
Keuls multiple comparison test at 95% significance using
the program Statistica for Windows 12.0 (StatSoft, Inc.,
Tulsa, OK, USA).

Differences between sexes in BALB/c, STS, and CcS/
Dem strains were calculated by ANOVA (Statistica for
Windows 12.0; StatSoft, Inc., Tulsa, OK, USA).

The role of genetic factors in control of eosinophil infil-
tration in F, hybrids was examined by ANOVA (Statistica
for Windows 12.0; StatSoft, Inc., Tulsa, OK, USA). In
order to obtain normal distribution of the analyzed par-
ameter required for ANOVA, the obtained values were
transformed as shown in the legends of tables. Markers
and interactions with P < 0.05 were combined in a single
comparison. In all ANOVA analyses strain or genotype,
sex, and age were fixed factors, and the experiment was
considered a random parameter.

For each independent variable, the partial R* was com-
puted in the usual way by subtracting the regression
sums of squares of the model without the variable
(SS(b1,b2,b3,b4|b0)) of interest from the regression sums
of squares of the full model (SS(b1,b2,b3,b4,b5|b0)); this
difference divided by total regression sums of squares
((SS(b1,b2,b3,b4,b5|b0)):

(SS(b1,b2,b3,b4|b0)) — (SS(bl,b2,b3,b4,b5[b0))
(SS(b1, b2, b3, b4, b5|b0)

indicated the contribution of the independent variable.

To obtain whole-genome significance values (corrected
P values) the observed P values (aT) were adjusted
according to Lander and Schork [50] using the formula:

O(T>l<z [C-i- 2th(T)}(XT

where G =175 Morgan (the length of the segregating
part of the genome: 12.5% of 14 M); C=8 (number of
chromosomes segregating in cross between CcS-9 and
BALB/c); p = 1.5 for F, hybrids; #(T) = the observed sta-
tistics (F ratio).

The Spearman correlation coefficients between para-
site numbers and eosinophil infiltration in the lymph
nodes of F, hybrid mice were computed using the pro-
gram Statistica for Windows 12.0 (StatSoft, Inc., Tulsa,
OK, USA).

Results

Infiltration of eosinophils into the inguinal lymph nodes
in parental strains BALB/c and STS and selected RC strains
We infected with L. major both females and males of
the strains BALB/c, STS, and RC strains CcS-1, CcS-3,
CcS-4, CcS-5, CcS-7, CcS-9, CcS-11, CcS-12, CcS-15,
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CcS-16, CcS-18, and CcS-20 and used semi-quantitative
scoring system to assess eosinophil infiltration (Table 1).

These studies showed mild and no infiltration into the
lymph nodes of parental strains BALB/c (Fig. 1a, b) and
STS (Fig. 1c, d), respectively. Strains CcS-9 (P = 0.00020)
(Fig. 1e, f) and CcS-12 (P =0.0024) exhibit significantly
higher eosinophil infiltration in their lymph nodes than
the background parental strain BALB/c. BALB/c and
CcS-9 males presented higher eosinophil infiltration
than females of these strains P=0.0089 and P =0.016,
respectively. 80% of examined CcS-9 males in compari-
son with 26.67% of CcS-9 females contained infiltrating
eosinophils, 50% of males having 7 and more eosinophils
in their lymph nodes (Table 1). Sex difference in strains
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CcS-7,-11, and -18 was not significant. Strain CcS-9 with
the highest eosinophil infiltration (Table 1) was selected
for further genetic studies.

Four novel loci control eosinophil infiltration in leishmaniasis
We examined eosinophil numbers in lymph nodes in 254
F, hybrids between the strains BALB/c and CcS-9. The
strain CcS-9 differs from BALB/c at STS-derived genetic
regions located at eight chromosomes ([45], Sima unpub-
lished data). These differential STS-derived segments were
genotyped in the F, hybrid mice using 18 microsatellite
markers. A statistical analysis of linkage revealed four gen-
etic loci that influence eosinophil infiltration into the in-
guinal lymph nodes after L. major infection.

Table 1 Eosinophil numbers in inguinal lymph nodes of L. major-infected mice

% of mice with number of eosinophils (graded as 0-4) in section of inguinal lymph node

0 0.25 05 0.75 1 15 2 25 3 4
Strain Sex 0 1 2 3-4 5 6 7 8-9 10-15 >15
BALB/c Females 100.00 0 0 0 0 0 0 0 0 0
Males 81.48 0 3.70 0 3.70 3.70 741 0 0 0
STS Females 100.00 0 0 0 0 0 0 0 0 0
Males 100.00 0 0 0 0 0 0 0 0 0
CcS-1 Females 80.00 0 0 0 10.00 0 10.00 0 0 0
Males 76.92 7.69 0 0 1538 0 0 0 0 0
CcS-3 Females 100.00 0 0 0 0 0 0 0 0 0
Males 90.00 0 0 0 10.00 0 0 0 0 0
CcS-4 Females 9231 0 7.69 0 0 0 0 0 0 0
Males 91.67 0 0 0 0 0 0 0 8.33 0
CcS-5 Females 100.00 0 0 0 0 0 0 0 0 0
Males 96.30 0 0 0 3.70 0 0 0 0 0
CcS-7 Females 100.00 0 0 0 0 0 0 0 0 0
Males 75.00 0 0 0 25.00 0 0 0 0 0
CcS-9 Females 7333 0 0 0 20.00 0 6.67 0 0 0
Males 20.00 0 10.00 0 20.00 0 10.00 20.00 20.00 0
CcS-11 Females 84.62 0 769 769 0 0 0 0 0 0
Males 61.54 0 23.08 0 7.69 0 769 0 0 0
CcS-12 Females 56.25 0 0 0 31.25 6.25 0 0 6.25 0
Males 50.00 0 833 0 16.67 0 16.67 0 0 8.33
CcS-15 Females 100.00 0 0 0 0 0 0 0 0 0
Males 91.67 0 833 0 0 0 0 0 0 0
CcS-16 Females 90.00 0 10.00 0 0 0 0 0 0 0
Males 100.00 0 0 0 0 0 0 0 0 0
CcS-18 Females 100.00 0 0 0 0 0 0 0 0 0
Males 33.33 0 66.67 0 0 0 0 0 0 0
CcS-20 Females 9231 0 0 0 769 0 0 0 0 0
Males 95.00 0 0 0 5.00 0 0 0 0 0

Eosinophil numbers in lymph nodes depending on genotype and sex. Eosinophil infiltration was evaluated as described in the “Methods” section.

Numbers higher than 75% are shown in italics
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The effects of Lmri4 (L. major response 14) linked to
D2Mit283 (corrected P value = 0.0081) and Lmr25 linked
to D5Mit143 (corrected P value = 0.044) were detectable
and significantly independent of each other or other
genes (the main effects) (Table 2). Lmri4 operated only
in males (corr. P value of marker and sex interaction
=0.0085)(Table 2, Fig. 2), higher numbers of eosinophils
were associated with presence of BALB/c (C) allele
(Fig. 2c). The P value for Lmri4 was significant only in
cross (CcS-9 x BALB/c)F, (where the mother of the F;
hybrids was CcS-9 and the father was BALB/c) (Fig. 2c),
but not in cross (BALB/c x CcS-9)F, (where the mother
was BALB/c and the father was CcS-9) (Fig. 2d). How-
ever, interaction between the cross and marker
D2Mit283 was not significant (corr. P =0.6). The effect
of Lmr25 was not influenced by sex, and higher numbers
of eosinophils were observed in heterozygotes (Table 2).

In contrast to the main effects of Lmri4 and Lmr25,
Lmrl5 (linked to D11Ndsl0) and Lmr26 (linked to
D9Mit15) operated in cooperation with each other (non-
additive, epistatic, interaction) (corrected P =0.010). F,
male mice of the cross (BALB/c x CcS-9)F, with homo-
zygous BALB/c (CC) alleles at both Lmr26 and Lmri5
had nearly nine times higher numbers of eosinophils in
the lymph nodes than mice with homozygous STS (SS)
alleles at both these loci, and nearly 90 times higher than
mice with homozygous CC alleles at Lmr26 and CS al-
leles at Lmri5 (Table 3). The linkage was detected only
in males, but the interaction between sex and marker
was not significant (corr. P =0.19).

Positive correlation between parasite numbers and
eosinophils in the inguinal lymph nodes

We have determined parasite load in the lymph nodes of
the F, hybrids between BALB/c and CcS-9 and analyzed
the relationship between parasite numbers in lymph
nodes and eosinophil infiltration to this organ. In both
sexes pooled, there was a positive correlation between
parasite numbers and eosinophil infiltration R =0.39,
P=13x10"" and the correlation was significant in
males R=0.29, P=0.0017, but not in females R = 0.14,
P =0.10. This correlation is at least partly controlled by
Lmr loci, because in F, hybrid mice, this correlation was
positive in male homozygous for the Lmri4 (D2Mit283)
BALB/c allele (CC) (R=0.51, P=0.016) and STS allele
(SS) (R=0.50, P=0.00088), but no correlation was ob-
served in heterozygotes (R = -0.013, P = 0.92).

Discussion

Eosinophil infiltration in strain CcS-9 exceeds that of both
parents

Strain CcS-9 that contains a set of approximately 12.5%
genes of the donor strain STS and 87.5% genes of the
background strain BALB/c exhibited numbers of infil-
trating eosinophils (Fig. 1, Table 1) exceeding those in
both parental strains BALB/c and STS. The observations
of progeny having a phenotype, which is beyond the
range of the phenotype of its parents, are not rare in
traits controlled by multiple genes. It was detected in
different tests of immune responses of RC strains in
vitro [51-56] and in vivo [21, 57-60], and in analysis of



Slapnickova et al. Biology of Sex Differences (2016)

7:59

Page 7 of 12

Table 2 Main effect of loci that control eosinophil numbers in the inguinal lymph nodes of L. major-infected F, hybrids between

CcS-9 and BALB/c

Locus Group Marker Genotype P value Corr. % of
cc s s P value expl. var.
Lmr14  Both sexes D2Mit283  2.62 1229 +0003 3.62 1234 +0002 2.67 1.229 +0.002 NS NS NA
(n=57) (n=111) (n=74)
Females 1.24 1217  +0003 1.45 1220 0002 1.62 1221 +0.003 NS NS NA
(n=35) (n=61) (n=32)
Males both crosses 5.15 1239 £0005 894 1247 +0003 4.02 1.236 +0004 55x107% NS NA
(n=22) (n=50) (n=41)
Males (BALB/c x CcS-9)F, 3.37 1233 +0006 9.09 1242 +0004 3.78 1235 +0.005 NS NS NA
(n=15) (n=32) (n=27)
Males (CcS-9 x BALB/o)F, 13.63 1253 +0005 1834 1257 40004 4.51 1237 0005 108x10°* 811x1073 36.22
n=7) (n=18) (n=14)
Lmr25 Both sexes D5Mit143  2.07 1225 £0003 4.33 1237 £0002 1.96 1.225 +0003 953x10" 436x1072 5.02
(n=66) (n=107) (n=67)
Females 1.09 1215 +0003 2.04 1225 +0002 1.20 1216 0003 63x10° NS NA
(n=37) (n=156) (n=36)
Males 5.71 1241 +0004 7.40 1244 +0003 4.41 1237 +0.004 NS NS NA
(n=31) (n=>51) (n=31)

Mean and SE values were obtained by analysis of variance. In order to obtain normal distribution required for analysis of variance, the value of eosinophil

numbers in the inguinal lymph nodes was transformed by using the 0.1th power of natural logarithm of the (observed value x1000). The numbers in bold give

the average non-transformed values. C and S indicate the presence of BALB/c and STS allele, respectively
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Table 3 Interaction between loci controlling eosinophil numbers in the inguinal lymph nodes in L. major-infected F, hybrids

between CcS-9 and BALB/c

DOMit15 (Lmr26)

cC cs )
P=37x10"? Corr. P=NS % of expl. var. = NA
D11Nds10 (Lmr15) CcC 4.24 1.236 +0.006 3.03 1.231 +0.004 2.19 1.226 +0.005
Both sexes (n=13) (n=26) (n=17)
CsS 1.45 1.220 +0.004 3.76 1.235 +0.003 3.88 1.235 +0.003
(n=21) (n=63) (n=39)
SS 2.56 1.229 +0.005 237 1.228 +0.004 3.36 1233 +0.005
(n=17) (n=30) (h=16)
P=067 Corr. P=NS % of expl. var. = NA
D11Nds10 (Lmr15) CcC 1.89 1.224 +0.007 1.60 1.221 +0.004 1.42 1219 +0.005
Females (n=6) (n=18) (h=10)
Both crosses (& 1.37 1.219 +0.005 1.53 1.220 +0.003 2.28 1.227 +0.005
(n=11) (n=138) (n=17)
SS 1.67 1.222 +0.007 1.46 1.220 +0.004 1.06 1214 +0.007
(n=7) (n=16) (n=6)
P=263x10"* Corr. P=1.037 x 1072 % of expl. var. = 15.35
D11Nds10 (Lmr15) CcC 11.71 1.251 +0.010 12.05 1.251 +0.008 3.49 1.234 +0.008
Males (n=7) (n=28) (n=7)
Both crosses (@) 1.06 1214 +0.007 23.15 1.260 +0.005 12.22 1.251 +0.004
(h=10) (n=25) (n=22)
SS 6.55 1.243 +0.008 5.18 1.239 +0.005 7.27 1.244 +0.007
(n=10) (n=14) (n=10)
P=041 Corr. P=NS % of expl. var. = NA
D11Nds10 (Lmr15) CcC 10.37 1.249 +0.008 12.60 1.252 +0.006 6.78 1.243 +0.008
Males (n=2) (n=2) (n=13)
Cross CcS-9 x BALB cs 8.49 1246 +0.022 21.20 1.258 +0.004 9.85 1.248 +0.007
(n=2) (n=10) (n=10)
SS 6.92 1.244 +0.012 3.75 1.235 +0.007 13.88 1253 +0.022
(n=4) (n=4) (n=2)
P=397x10"* Corr. P=1.629x 107 % of expl. var. = 21.19
D11Nds10 (Lmr15) CcC 44.01 1.267 +0.012 32.78 1.264 +0.010 8.88 1.247 +0.016
Males (n=5) (n=6) (n=4)
Cross BALB x CcS-9 (&) 0.47 1.199 +0.010 13.04 1.252 +0.006 12.40 1252 +0.006
(n=8) (n=15) (n=12)
SS 9.73 1.248 +0.011 6.78 1.243 +0.007 4.84 1.238 +0.008
(n="6) (n=10) (n=8)

Mean and SE values were obtained by analysis of variance. In order to obtain normal distribution required for analysis of variance value of eosinophil numbers in
serum inguinal lymph nodes was transformed by using the 0.1th power of natural logarithm of the (observed value x1000). The numbers in bold give the average
non-transformed values. C and S indicate the presence of BALB/c and STS allele, respectively

n number of mice

expression quantitative trait loci (QTLs) from the livers of
chromosome substitution strains [61]. These observations
are due to multiple gene-gene interactions of QTLs, which
in new combinations of these genes in RC or chromosomal

substitution strains can lead to the appearance of new phe-
notypes that exceed their range in parental strains. In
addition, with traits controlled by multiple loci, parental
strains often contain eosinophil high infiltration alleles at
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some of them and eosinophil low infiltration alleles at
others, and some progeny may receive predominantly eo-
sinophil high infiltration alleles from both parents.

Sex influence on eosinophil infiltration

Our data show a sex influence on eosinophil numbers in the
inguinal lymph nodes. Differences between the immune
system of females and males have been well documented
[62—64] and could result in differences in susceptibility to
diseases with immune component. Immune responses in-
cluding those involving eosinophils might be modulated by
steroid hormones [65, 66]. Moreover, some of the differ-
ences between females and males might be due to sex-
specific genetic architecture, characterized by profound
gene-sex interactions [67, 68]. This would mean that some
genes controlling response to L. major might operate differ-
ently in the two sexes. Indeed, locus Lmri4 controls eosino-
phil infiltration only in males. Genes controlling infections
that appear to be sex dependent have been observed also
with other infectious agents such as viruses [69-71], bacteria
[72], parasites [58], and fungi [73] and helminths [74]. Some
of sex-dependent QTLs exhibit a higher or exclusive influ-
ence on susceptibility in females [58, 69, 71-73] or males
[69, 71-74], phenotypic effect of other genes is present in
both sexes, but with opposite direction of effect [69, 70]. All
these reported loci are situated on autosomal chromosomes.
In contrast to the sex chromosomes, the autosomal genome
is shared by both sexes. However, although the DNA se-
quence, gene structure, and frequency of polymorphism on
the autosomes do not differ between males and females, the
regulatory genome is sexually dimorphic [68].
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Future genetic and functional studies will help to es-
tablish the mechanistic basis of the observed gene-sex
interactions.

Loci controlling eosinophil infiltration and other immune
traits

The Lmr loci influencing eosinophil infiltration may be
related to QTLs that determine certain immunologically
relevant traits, because they co-map with other immuno-
logical functional polymorphisms.

Interestingly, two of the eosinophil controlling loci,
Lmri5 and Lmr26 co-localize with loci that determine
hemopoietic cell cycling measured by cobblestone area-
forming cell (CAFC) assay using cells from the bone
marrow [75]. Lmrl5 encompasses the mouse ortholog of
human gene IL5, whose polymorphism was found to be
associated with eosinophil counts in the blood [76], and
Lmr26 co-localizes also with locus Tria5 that modifies in
vitro proliferation of mouse splenocytes stimulated by
soluble anti-CD3 [77].

The four described loci comprise several genes (Fig. 3),
whose biological function is compatible with the effects on
eosinophil infiltration [78-90] and their potential role can
now be investigated. However, the effects of these Lmr loci
might be also caused by genes that are at the present not
considered as candidates. The issue of identity of eosinophil
controlling genes and their possible relationship to other im-
mune traits will be resolved by a recombinational analysis.

The positive correlation between eosinophil infiltration
and parasite load suggests that the observed eosinophilic
infiltration reflects ineffective inflammation. This is in
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agreement with kinetic studies showing that parasite
presence preceded presence of infiltrating cells including
eosinophils. This infiltration was higher in mice that
were unable to control infection [41].

We have found positive correlation between eosinophil
infiltration and parasite numbers in Lmri4 in homozy-
gous (CC or SS), but not in heterozygous (CS) F, hybrid
males. The lack of positive correlation between eosino-
phil infiltration and parasite load in Lmri4 heterozygotes
(CS) may reflect a more effective inflammation process,
perhaps facilitated by other phenotypic effects of Lmri4
that include circulating levels of IFNy, TNE, IgE, and IL-
12 [91] and possibly other as yet undetected regulatory
effects. This possibility has to be tested in future
experiments.

Conclusions
This is the first demonstration of genetic loci and sex in-
fluence controlling infiltration of eosinophils into the
lymph nodes and its relationship with parasite load.
Some of these loci comprise genes with broader bio-
logical and immunological effects, so they might be rele-
vant also in control of other diseases and symptoms
mediated by eosinophils.

Our data also suggest that ignoring sex in gene map-
ping might prevent detection of sex-dependent QTLs.

Abbreviations

CcS/Dem: Series of recombinant congenic strains derived from the mouse
donor strain STS/A (STS) and the background strain BALB/cHeA (BALB/c);
QTL: Quantitative trait locus; RCS: Recombinant congenic strains

Acknowledgements

M. Slapnickova is a PhD student of Faculty of Science, The University of South
Bohemia, Ceské Budé&jovice, Czech Republic. M. Cepickova and M. Sima are PhD
students of Faculty of Sciences, Charles University, Prague, Czech Republic.

Funding

This investigation was supported by Czech Science Foundation (Grants GACR
14-30186S, GACR 16-22346S, and GACR 13-41002P), by the Ministry of Education,
Youth and Sports of the Czech Republic (Grant Kontakt LH 12049) and The Czech
Academy of Sciences (Project grant RVO: 68378050). This article is also based upon
work from the COST Action BM1404 Mye-EUNITER (www.mye-euniter.eu),
supported by COST (European Cooperation in Science and Technology). COST is
part of the EU Framework Program Horizon 2020.

Availability of data and materials
The datasets collected and analyzed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions

MSI helped to conceive the study, performed animal experiments with RC
strains, carried out all histological analyses, and contributed to the writing of
the manuscript. W performed statistical analyses and contributed to the writing
of the manuscript. MC carried out animal experiments with F, hybrids, typed F,
hybrids, and contributed to the writing of the manuscript. TK estimated parasite
load in lymph nodes and re-counted eosinophils in number of mice. MSf
helped with typing of F, hybrids, defined precisely STS-derived segments of
strain CcS-9, and contributed to the writing of the manuscript. MSv cultivated
parasites and helped with parasitology experiments. PD helped to analyze the
data and contributed to the writing of the manuscript. ML conceived the study,
analyzed the data, and wrote the manuscript. All authors read and approved
the final manuscript.

Page 10 of 12

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable. This study did not include human subjects.

Ethics approval
Not applicable. This study did not include human subjects.

Author details

'Laboratory of Molecular and Cellular Immunology, Institute of Molecular
Genetics, Academy of Sciences of the Czech Republic, Videriskd 1083, 142 20
Prague, Czech Republic. 2Faculty of Science, Charles University, 128 44
Prague, Czech Republic. *Roswell Park Cancer Institute, Buffalo, NY 14263,
USA.

Received: 18 June 2016 Accepted: 15 November 2016
Published online: 22 November 2016

References

1. Vom Steeg LG, Klein SL. SeXX matters in infectious disease pathogenesis.
PLoS Pathog. 2016;12:21005374.

2. Mukhopadhyay D, Mukherjee S, Ghosh S, Roy S, Saha B, Das NK, Chatterjee
M. A male preponderance in patients with Indian post kala-azar dermal
leishmaniasis is associated with increased circulating levels of testosterone.
Int J Dermatol. 2016;55:250-5.

3. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, et al. Leishmaniasis
worldwide and global estimates of its incidence. PLoS One. 2012;7:¢35671.

4. GBD 2013 DALYs and HALE Collaborators. Global, regional, and national
disability-adjusted life years (DALYs) for 306 diseases and injuries and
healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the
epidemiological transition. Lancet. 2015,386:2145-91.

5. Lipoldovd M, Demant P. Genetic susceptibility to infectious disease: lessons
from mouse models of leishmaniasis. Nat Rev Genet. 2006;7:294-305.

6. Noronha FS, Cruz JS, Beirdo PS, Horta MF. Macrophage damage by
Leishmania amazonensis cytolysin: evidence of pore formation on cell
membrane. Infect Immun. 2000,68:4578-84.

7. Rodriguez NE, Wilson ME. Eosinophils and mast cells in leishmaniasis.
Immunol Res. 2014;59:129-41.

8. Klein SL. Hormonal and immunological mechanisms mediating sex
differences in parasite infection. Parasite Immunol. 2004,26:247-64.

9. Snider H, Lezama-Davila C, Alexander J, Satoskar AR. Sex hormones and
modulation of immunity against leishmaniasis. Neuroimmunomodulation.
2009;16:106-13.

10.  Alexander J, Irving K, Snider H, Satoskar A. Sex hormones of host responses
against parasites. In: Klein SL, Roberts CW, editors. Sex hormons and
immunity to infection. Dordrecht, London, New York: Springer Heildelberg;
2010. p. 147-86.

11. Roberts CW, Walker W, Alexander J. Sex-associated hormones and immunity
to protozoan parasites. Clin Microbiol Rev. 2001;14:476-88.

12, Bemin H, Lotter H. Sex bias in the outcome of human tropical infectious diseases:
influence of steroid hormones. J Infect Dis. 2014;15(209 Suppl 3)S107-13.

13.  Al-Jawabreh A, Dumaidi K, Eregat S, Al-Jawabreh H, Nasereddin A, Azmi K,
Barghuthy F, Sawalha S, Salah |, Abdeen Z. Molecular epidemiology of
human cutaneous leishmaniasis in Jericho and its vicinity in Palestine from
1994 to 2015. Infect Genet Evol. 2016. doi: 10.1016/j.meegid.2016.06.007.
[Epub ahead of print].

14, Armijos RX, Weigel MM, Izurieta R, Racines J, Zurita C, Herrera W, Vega M.
The epidemiology of cutaneous leishmaniasis in subtropical Ecuador. Trop
Med Int Health. 1997;2:140-52.

15.  Guerra-Silveira F, Abad-Franch F. Sex bias in infectious disease
epidemiology: patterns and processes. PLoS One. 2013,8:¢62390.

16. Khosravani M, Moemenbellah-Fard MD, Sharafi M, Rafat-Panah A.
Epidemiologic profile of oriental sore caused by Leishmania parasites in a
new endemic focus of cutaneous leishmaniasis, southern Iran. J Parasit Dis.
2016;40:1077-81.

17. Travi BL, Osorio Y, Melby PC, Chandrasekar B, Arteaga L, Saravia NG. Gender
is a major determinant of the clinical evolution and immune response in
hamsters infected with Leishmania spp. Infect Immun. 2002;70:2288-96.

18. Mock BA, Nacy CA. Hormonal modulation of sex differences in resistance to
Leishmania major systemic infections. Infect Immun. 1988;56:3316-9.


http://www.mye-euniter.eu/
http://dx.doi.org/10.1016/j.meegid.2016.06.007

Slapnickova et al. Biology of Sex Differences (2016) 7:59

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

Mock BA, Fortier AH, Potter M, Nacy CA. Genetic control of systemic
Leishmania major infections: dissociation of intrahepatic amastigote
replication from control by the Lsh gene. Infect Immun. 1985;50:588-91.
Alexander J. Sex differences and cross-immunity in DBA/2 mice infected
with L. mexicana and L. major. Parasitology. 1988,96:297-302.

Kobets T, Havelkova H, Grekov |, Volkova V, Vojtiskova J, Slapnickové M,
Kurey |, Sohrabi Y, Svobodové M, Demant P, Lipoldové M. Genetics of host
response to Leishmania tropica in mice—different control of skin pathology,
chemokine reaction, and invasion into spleen and liver. PLoS Negl Trop Dis.
2012,6:21667.

Giannini MSH. Sex-influenced response in the pathogenesis of cutaneous
leishmaniasis in mice. Parasite Immunol. 1986;8:31-7.

Kobets T, Grekov |, Lipoldové M. Leishmaniasis: prevention, parasite
detection and treatment. Curr Med Chem. 2012;19:1443-74.

Kurey |, Kobets T, Havelkova H, Slapnickovéd M, Quan L, Trtkové K, Grekov |,
Svobodova M, Stassen AP, Hutson A, Demant P, Lipoldova M. Distinct
genetic control of parasite elimination, dissemination, and disease after
Leishmania major infection. Immunogenetics. 2009;61:619-33.

Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in
health and disease. Nat Rev Immunol. 2013;13:9-22.

Akuthota P, Wang HB, Spencer LA, Weller PF. Immunoregulatory roles of
eosinophils: a new look at a familiar cell. Clin Exp Allergy. 2008;38:1254-63.
Akuthota P, Weller PF. Spectrum of eosinophilic end-organ manifestations.
Immunol Allergy Clin North Am. 2015;35:403-11.

Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv Immunol. 2009;
101:81-121.

Gusareva ES, Kurey |, Grekov |, Lipoldové M. Genetic regulation of
immunoglobulin E level in different pathological states: integration of
mouse and human genetics. Biol Rev Camb Philos Soc. 2014;89:375-405.
Raap U, Wardlaw AJ. A new paradigm of eosinophil granulocytes:
neuroimmune interactions. Exp Dermatol. 2008;17:731-8.

Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, Lee NA,
Domachowske JB, Rosenberg HF. Activated mouse eosinophils protect
against lethal respiratory virus infection. Blood. 2014;123:743-52.

Sasaki O, Sugaya H, Ishida K, Yoshimura K. Ablation of eosinophils with anti-
IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus
cantonensis in the mouse. Parasite Immunol. 1993;15:349-54.

Shin EH, Osada Y, Chai JY, Matsumoto N, Takatsu K, Kojima S. Protective
roles of eosinophils in Nippostrongylus brasiliensis infection. Int Arch Allergy
Immunol. 1997;114 Suppl 1:45-50.

Martin C, Le Goff L, Ungeheuer MN, Vuong PN, Bain O. Drastic reduction of
a filarial infection in eosinophilic interleukin-5 transgenic mice. Infect
Immun. 2000;68:3651-6.

Ramalingam T, Porte P, Lee J, Rajan TV. Eosinophils, but not eosinophil
peroxidase or major basic protein, are important for host protection in
experimental Brugia pahangi infection. Infect Immun. 2005;73:8442-3.
Swartz JM, Dyer KD, Cheever AW, Ramalingam T, Pesnicak L, Domachowske
JB, Lee JJ, Lee NA, Foster PS, Wynn TA, Rosenberg HF. Schistosoma mansoni
infection in eosinophil lineage-ablated mice. Blood. 2006;108:2420-7.

Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ,
Appleton JA. Eosinophil deficiency compromises parasite survival in chronic
nematode infection. J Immunol. 2009;182:1577-83.

Huang L, Gebreselassie NG, Gagliardo LF1, Ruyechan MC, Luber KL, Lee NA,
Lee JJ, Appleton JA. Eosinophils mediate protective immunity against
secondary nematode infection. J Immunol. 2015;194:283-90.

Oliveira SH, Fonseca SG, Roméao PR, Figueiredo F, Ferreira SH, Cunha FQ.
Microbicidal activity of eosinophils is associated with activation of the
arginine-NO pathway. Parasite Immunol. 1998;20:405-12.

Beil WJ, Meinardus-Hager G, Neugebauer DC, Sorg C. Differences in the
onset of the inflammatory response to cutaneous leishmaniasis in resistant
and susceptible mice. J Leukoc Biol. 1992;52:135-42.

Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D. A natural model
of Leishmania major infection reveals a prolonged “silent” phase of parasite

amplification in the skin before the onset of lesion formation and immunity.

J Immunol. 2000;165:969-77.

Demant P, Hart AAM. Recombinant congenic strains—a new tool for
analysing genetic traits determined by more than one gene.
Immunogenetics. 1996;24:416-22.

Grekov I, Svobodova M, Nohynkova E, Lipoldové M. Preparation of highly
infective Leishmania promastigotes by cultivation on SNB-9 biphasic
medium. J Microbiol Meth. 2011,87:273-7.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Page 11 of 12

Lipoldova M, Svobodové M, Krulové M, Havelkovd H, Badalova J, Nohynkova
E, Holan V, Hart AAM, Volf P, Demant P. Susceptibility to Leishmania major
infection in mice: multiple loci and heterogeneity of immunopathological
phenotypes. Genes Immun. 2000;1:200-6.

Stassen AP, Groot PC, Eppig JT, Demant P. Genetic composition of the
recombinant congenic strains. Mamm Genome. 1996;7:55-8.

Sohrabi Y, Havelkovd H, Kobets T, Sima M, Volkova V, Grekov |, Jarosikova T,
Kurey 1, Vojtiskova J, Svobodova M, Demant P, Lipoldové M. Mapping the
genes for susceptibility and response to Leishmania tropica in mouse. PLoS
Negl Trop Dis. 2013;7:€2282.

Sima M, Kocandova L, Lipoldovéa M. Genotyping of short tandem repeats (STRs)
markers with 6 bp or higher length difference using PCR and high resolution
agarose electrophoresis. Protoc Exch. 2015. doi:10.1038/protex.2015.054.

Krulova M, Havelkova H, Kosafova M, Holan V, Hart AA, Demant P, et al. IL-2-
induced proliferative response is controlled by loci Cindal and Cinda2 on
mouse chromosomes 11 and 12: a distinct control of the response induced
by different IL-2 concentration. Genomics. 1997,42:11-5.

Kobets T, Badalové J, Grekov |, Havelkova H, Svobodova M, Lipoldova M.
Leishmania parasite detection and quantification using PCR-ELISA. Nat
Protoc. 2010;5:1074-80.

Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;
265:2037-48.

Lipoldova M, Kosafova M, Zajicova A, Holan V, Hart AA, et al. Separation of
multiple genes controlling the T-cell proliferative response to IL-2 and anti-
CD3 using recombinant congenic strains. Immunogenetics. 1995;41:301-11.
Holan V, Lipoldovéd M, Demant P. Identical genetic control of MLC reactivity
to different MHC incompatibilities, independent of production of and
response to IL-2. Immunogenetics. 1996;44:27-35.

Havelkové H, Badalova J, Demant P, Lipoldova M. A new type of genetic
regulation of allogeneic response. A novel locus on mouse chromosome 4,
Alan2 controls MLC reactivity to three different alloantigens: C57BL/10,
BALB/c and CBA. Genes Immun. 2000;1:483-7.

Lipoldova M, Havelkovd H, Badalové J, Demant P. Novel loci controlling
lymphocyte proliferative response to cytokines and their clustering with loci
controlling autoimmune reactions, macrophage function and lung tumor
susceptibility. Int J Cancer. 2005;114:394-9.

Havelkova H, Holan V, Karnik |, Lipoldova M. Mouse model for analysis of non-
MHC genes that influence allogeneic response: recombinant congenic strains
of OcB/Dem series that carry identical H2 locus. Cent Eur J Biol. 2006;1:16-28.
Lipoldova M, Havelkova H, Badalova J, Vojtiskova J, Quan L, Krulové M,
Sohrabi Y, Stassen AP, Demant P. Loci controlling lymphocyte
production of interferon y after alloantigen stimulation in vitro and
their co-localization with genes controlling lymphocyte infiltration of
tumors and tumor susceptibility. Cancer Immunol Immunother. 2010;59:
203-13.

Lipoldova M, Svobodové M, Havelkovéd H, Krulové M, Badalova J, et al.
Mouse genetic model for clinical and immunological heterogeneity of
leishmaniasis. Immunogenetics. 2002;54:174-83.

Sima M, Havelkové H, Quan L, Svobodova M, Jarostkové T, Vojtiskova J, Stassen
APM, Demant P, Lipoldovad M. Genetic control of resistance to Trypanosoma
brucei bruceiinfection in mice. PLoS Negl Trop Dis. 2011;5:e1173.

Szymanska H, Sitarz M, Krysiak E, Piskorowska J, Czarnomska A, Skurzak H,
Hart AA, de Jong D, Demant P. Genetics of susceptibility to radiation-
induced lymphomas, leukemias and lung tumors studied in recombinant
congenic strains. Int J Cancer. 1999,83:674-8.

Palus M, Vojtiskova J, Salat J, Kopecky J, Grubhoffer L, Lipoldova M,
Demant P, Rizek D. Mice with different susceptibility to tick-borne
encephalitis virus infection show selective neutralizing antibody
response and inflammatory reaction in the central nervous system.

J Neuroinflamm. 2013;10:77.

Shockley KR, Churchill GA. Gene expression analysis of mouse chromosome
substitution strains. Mamm Genome. 2006;17:598-614.

Halberg F, Hamerston O, Bittner JJ. Sex difference in eosinophil counts in
tall blood of mature B1 mice. Science. 1957;125:73.

Madalli S, Beyrau M, Whiteford J, Duchene J, Singh Nandhra I, Patel NS,
Motwani MP, Gilroy DW, Thiemermann C, Nourshargh S, Scotland RS.
Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil
recruitment and tissue injury in acute inflammatory states. Biol Sex
Differ. 2015,6:27.

Case LK, Teuscher C. Y genetic variation and phenotypic diversity in health
and disease. Biol Sex Differ. 2015,6:6.


http://dx.doi.org/10.1038/protex.2015.054

Slapnickova et al. Biology of Sex Differences (2016) 7:59

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Hamano N, Terada N, Maesako K, Numata T, Konno A. Effect of sex
hormones on eosinophilic inflammation in nasal mucosa. Allergy Asthma
Proc. 1998;19:263-9.

Keselman A, Heller N. Estrogen signaling modulates allergic inflammation
and contributes to sex differences in asthma. Front Immunol. 2015;6:568.
Bhasin JM, Chakrabarti E, Peng DQ, Kulkarni A, Chen X, Smith JD. Sex
specific gene regulation and expression QTLs in mouse macrophages from
a strain intercross. PLoS One. 2008;3:e1435.

Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human
disease. Nat Rev Genet. 2008,9:911-22.

Butterfield RJ, Roper RJ, Rhein DM, Melvold RW, Haynes L, et al. Sex-specific
quantitative trait loci govern susceptibility to Theiler's murine
encephalomyelitis virus-induced demyelination. Genetics. 2003;163:1041-6.
Schuurhof A, Bont L, Siezen CL, Hodemaekers H, van Houwelingen HC, et al.
Interleukin-9 polymorphism in infants with respiratory syncytial virus infection:
an opposite effect in boys and girls. Pediatr Pulmonol. 2010;45:608-13.

Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R,
Vidal SM. Mapping of clinical and expression quantitative trait loci in a sex-
dependent effect of host susceptibility to mouse-adapted influenza H3N2/
HK/1/68. J Immunol. 2012;188:3949-60.

Min-Oo G, Lindgvist L, Vaglenov A, Wang C, Fortin P, et al. Genetic control
of susceptibility to pulmonary infection with Chlamydia pneumoniae in the
mouse. Genes Immun. 2008;9:383-8.

Carroll SF, Loredo Osti JC, Guillot L, Morgan K, Qureshi ST. Sex differences in
the genetic architecture of susceptibility to Cryptococcus neoformans
pulmonary infection. Genes Immun. 2008,9:536-45.

Hayes KS, Hager R, Grencis RK. Sex-dependent genetic effects on immune
responses to a parasitic nematode. BMC Genomics. 2014;15:193.

De Haan G, Van Zant G. Genetic analysis of hemopoietic cell cycling in mice
suggests its involvement in organismal life span. FASEB J. 1999;13:707-13.
Gudbjartsson DF, et al. Sequence variants affecting eosinophil numbers
associate with asthma and myocardial infarction. Nat Genet. 2009;41:342-7.
Havelkové H, Kosafova M, Krulova M, Demant P, Lipoldové M. T-cell
proliferative response is controlled by loci Tria4 and Tria5 on mouse
chromosomes 7 and 9. Mamm Genome. 1999;10:670-4.

Dibbert B, Daigle |, Braun D, Schranz C, Weber M, Blaser K, Zangemeister-
Wittke U, Akbar AN, Simon HU. Role for Bcl-xL in delayed eosinophil
apoptosis mediated by granulocyte-macrophage colony-stimulating factor
and interleukin-5. Blood. 1998,92:778-83.

Simson L, Foster PS. Chemokine and cytokine cooperativity: eosinophil
migration in the asthmatic response. Immunol Cell Biol. 2000;78:415-22.
Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA,
Charo IF, Luster AD. Mouse CCL8, a CCR8 agonist, promotes atopic
dermatitis by recruiting IL-5+ T(H)2 cells. Nat Immunol. 2011;12:167-77.
Otero K, Vecchi A, Hirsch E, Kearley J, Vermi W, Del Prete A, Gonzalvo-Feo S,
Garlanda C, Azzolino O, Salogni L, Lloyd CM, Facchetti F, Mantovani A,
Sozzani S. Nonredundant role of CCRL2 in lung dendritic cell trafficking.
Blood. 2010;116:2942-9.

Yang XO, Zhang H, Kim BS, Niu X, Peng J, Chen Y, Kerketta R, Lee YH,
Chang SH, Corry DB, Wang D, Watowich SS, Dong C. The signaling
suppressor CIS controls proallergic T cell development and allergic airway
inflammation. Nat Immunol. 2013;14:732-40.

Pero RS, Borchers MT, Spicher K, Ochkur SI, Sikora L, Rao SP, Abdala-Valencia
H, O'Neill KR, Shen H, McGarry MP, Lee NA, Cook-Mills JM, Sriramarao P,
Simon M|, Birnbaumer L, Lee JJ. Galphai2-mediated signaling events in the
endothelium are involved in controlling leukocyte extravasation. Proc Natl
Acad Sci U S A. 2007;104:4371-6.

El-Shazly A, Yamaguchi N, Masuyama K, Suda T, Ishikawa T. Novel
association of the src family kinases, hck and c-fgr, with CCR3 receptor
stimulation: a possible mechanism for eotaxin-induced human eosinophil
chemotaxis. Biochem Biophys Res Commun. 1999;264:163-70.

Lotfi R, Lee JJ, Lotze MT. Eosinophilic granulocytes and damage-associated
molecular pattern molecules (DAMPs): role in the inflammatory response
within tumors. J Immunother. 2007;30:16-28.

Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei K,
Foster PS, Rothenberg ME. IL-13 induces eosinophil recruitment into the
lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin
Immunol. 2001;108:594-601.

Hakansson L, Venge P. Priming of eosinophil and neutrophil migratory
responses by interleukin 3 and interleukin 5. APMIS. 1994;102:308-16.

88.

89.

90.

92.

93.

Page 12 of 12

Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels
RA, Bluethmann H. Attenuation of allergic airway inflammation in IL-4
deficient mice. Clin Exp Allergy. 1994;24:73-80.

Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ,
Ovington KS, Behm CA, Kéhler G, Young IG, Matthaei K. IL-5-deficient
mice have a developmental defect in CD5+ B-1 cells and lack
eosinophilia but have normal antibody and cytotoxic T cell responses.
Immunity. 1996;4:15-24.

Kvarnhammar AM, Petterson T, Cardell LO. NOD-like receptors and RIG-I-like
receptors in human eosinophils: activation by NOD1 and NOD2 agonists.
Immunology. 2011;134:314-25.

Havelkova H, Badalova J, Svobodova M, Vojtiskova J, Kurey |, Vladimirov V,
Demant P, Lipoldova M. Genetics of susceptibility to leishmaniasis in mice:
four novel loci and functional heterogeneity of gene effects. Genes Immun.
2006;7:220-33.

Badalovd J, Svobodové M, Havelkova H, Vladimirov V, Vojtiskova J, Engova J,
Pileik T, Volf P, Demant P, Lipoldové M. Separation and mapping of multiple
genes that control IgE level in Leishmania major infected mice. Genes
Immun. 2002;3:187-95.

Vladimirov V, Badalova J, Svobodové M, Havelkova H, Hart AAM, Blazkova H,
Demant P, Lipoldovéa M. Different genetic control of cutaneous and visceral
disease after Leishmania major infection in mice. Infect Immun. 2003;71:2041-6.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

¢ Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Mice
	Ethical statement
	Parasites
	Disease phenotype
	Histological analysis
	Genotyping of F2 mice by PCR
	Measurement of parasite load in lymph nodes
	Statistical analysis

	Results
	Infiltration of eosinophils into the inguinal lymph nodes in parental strains BALB/c and STS and selected RC strains
	Four novel loci control eosinophil infiltration in leishmaniasis
	Positive correlation between parasite numbers and eosinophils in the inguinal lymph nodes

	Discussion
	Eosinophil infiltration in strain CcS-9 exceeds that of both parents
	Sex influence on eosinophil infiltration
	Loci controlling eosinophil infiltration and other immune traits

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval
	Author details
	References

