Liu et al. Biology of Sex Differences (2015) 6:26 Vj BIOLOGY OF

DOI 10.1186/513293-015-0044-8
. SEX
DIFFERENCES
RESEARCH Open Access

Large-scale transcriptome sequencing e
reveals novel expression patterns for key
sex-related genes in a sex-changing fish

Hui Liu1*, Melissa S. Lamm2'3, Kim Rutherford', Michael A. Black? John R. Godwin®? and Neil J. Gemmell'

Abstract

Background: Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most
astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses
(Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial

importance, yet its underlying molecular basis remains poorly explored.

Methods: RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting
sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation
and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene
products and genetic pathways between males and females.

Results: Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between
males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such
sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly
enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters
and steroid hormones. When compared to other species, many genes previously implicated in male sex determination
and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However,
some critical female-pathway genes (e.g., rspol and wnt4b) exhibited unanticipated expression patterns. In the brain,
gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex
differences observed.

Conclusions: Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an
evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory
network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data
on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also
sheds some light on the evolution of diverse sex determination and differentiation systems.
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Background

Sexual dimorphism is ubiquitous in nature: males and
females differ not only in their gonadal structure and
function, but also in many aspects of their morphology,
physiology, and behavior [1-3]. While sex-determination
mechanisms are relatively conserved in mammals and
birds, teleost fishes show remarkably diverse sexual devel-
opmental patterns, including both genetic and environmen-
tal sex-determination (GSD and ESD) systems [1, 4, 5].
Such diversity probably arises from the extreme sexual plas-
ticity characteristic of teleost fishes. For example, in fishes
with GSD systems, sex is determined during early develop-
ment stages and individuals remain in the same sex for a
lifetime (defined as gonochorism) [4]. However, this pri-
mary sex differentiation guided by genetic signals can be
interrupted or even reversed by temperature or endocrine-
disrupting chemicals [6—11]. More extreme cases are found
in fishes with ESD systems including sequential hermaph-
roditism in which some adults in a social group undergo
functional sex change in response to environmental stimuli
(e.g., temperature or social cues) [12—16]. Revealing the
mechanisms underlying such sexual plasticity may help us
understand how sex is maintained and gain insights into
the origin and evolution of sex-determination systems.

The genetic bases of sexual dimorphism have been in-
tensively studied for decades in mammals and birds, but
are less well characterized in teleost fishes [1-4, 17, 18].
So far, genetic studies on sex determination in fishes
have examined either sex-specific genetic differences or
sex-biased gene expression [19-23]. The search for sex-
specific genetic markers has not met with much success
because, unlike mammals and birds, fishes have rela-
tively young sex chromosomes that are not usually het-
eromorphic [24-28] with exceptions including some
species of salmonids [29, 30], stickleback fishes [31],
glass knife fishes [32], and half-smooth tongue sole, Cyno-
glossus semilaevis [33]. Even in fishes with heterogenic sex-
determination systems, sex differences are usually limited
to a few loci or certain linkage groups [34-39]. No con-
served sex-specific gene has been found in teleost fishes:
six sex-determining genes have been reported to evolve
separately in different fish lineages [22, 40]. In contrast,
studies examining sex-biased gene expression in fishes
have yielded many more genes, including some that play
conserved roles in vertebrate sex differentiation. However,
for most of these sex-biased genes, their detailed molecular
functions in fishes remain to be clarified [23, 41-46]. Stud-
ies to date have focused mainly on the expression patterns
of a limited number of genes during primary sex differenti-
ation stages in gonochoristic fishes [47-53]. Few studies
have yet examined sex-biased gene expression in herm-
aphroditic fishes, with the exception of genetic studies
in protandrous black porgy, Acanthopagrus schlegelii
[19, 54], and transcriptomic studies in two other
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protandrous species: sharpsnout seabream, Diplodus
puntazzo, and Asian seabass, Lates calcarifer [20, 21].
However, hermaphroditism is phylogenetically wide-
spread in fishes, with protogyny being the most com-
monly observed pattern [15, 55, 56], but a large-scale
analysis of sex-biased gene expression is currently lack-
ing for protogynous fishes.

The bluehead wrasse, Thalassoma bifasciatum, is a dia-
ndric (two male phenotypes) protogynous species belong-
ing to the wrasse family (Labridae) and is abundant on
coral reefs throughout the Caribbean [57, 58]. This highly
social species exhibits two major color phases: females
and smaller sneaker males in initial phase (IP) share the
same color pattern, while the large males display a distinct
terminal phase (TP) phenotype [57-59]. Natural social
groups typically consist of one dominant TP male and nu-
merous females as well as a few IP males. Following the
loss of the dominant TP male from a social group, both
large females and IP males can transform into TP males
through sex or role change, although the latter is rarely re-
ported [55, 59, 60]. In females, functional gonadal sex
change takes about a week while behavioral sex change
can begin within minutes to hours [60, 61]. Importantly,
manipulation of the social environment can induce sex
change in females, which makes the bluehead wrasse a
useful model for investigating sexual plasticity.

Significant progress has been made in understanding
the ecology and the neuroendocrine bases of sex change
in this species, but detailed mechanisms still remain elu-
sive, especially at the molecular level [55, 62]. According
to the Animal Genome Size Database [63], the haploid
DNA contents (C-value) of bluehead wrasse is 0.98 pico-
gram (1 picogram =978 megabase pair). However, its
genome and transcriptome sequences are not available
yet. In this study, we took advantage of RNA sequencing
technology and captured the transcriptomic profiles in
the brain and gonads of TP male, female, and intersex
bluehead wrasses. To identify genes exhibiting sex-
biased expression in the brain (forebrain and midbrain)
and gonads of the bluehead wrasse, we generated a de novo
transcriptome assembly for read mapping and compared
gene expression patterns at the isoform level between con-
trol females and TP males. We also conducted functional
annotation and enrichment analysis on the genes showing
sex-biased expression in the gonad to detect sex-biased
genetic pathways that could contribute to gonadal sex
differences in bluehead wrasses.

Methods

Sample collection

Sex change was induced in large females by the removal
of dominant TP males from established social groups in
the wild [61, 64, 65]. Twenty fishes were captured before
or during the daily spawning period around high tide
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from patch reefs off the coast of Key Largo in late May
2012. All fishes were euthanized with an overdose of MS-
222 (Sigma) within 2 min of capture, and the brain and
gonads were dissected immediately. These experiments
were performed in accordance with guidelines established
by the Institutional Animal Care and Use Committee at
North Carolina State University (NCSU).

One gonadal lobe and the whole brain were preserved in
RNAlater (Life Technologies, Inc.) on ice, followed by stor-
age at —20 °C for less than 1 week and transfer to —80 °C
until RNA extraction. The other gonadal lobe was fixed in
4 % paraformaldehyde/1X PBS overnight at 4 °C, followed
by storage in 1X PBS before being fixed in paraffin for
histological sectioning and HE (hematoxylin and eosin)
staining (Histology Laboratory, College of Veterinary Medi-
cine, NCSU) to determine the gonadal status [66]. Before
RNA extraction, the hindbrain (corpus cerebelli, pons, and
medulla) was removed from each brain. Only the forebrain/
midbrain was used for RNA sequencing, because the fore-
brain and midbrain contain regions belonging to the social
behavior network and mesolimbic reward system, two
neural circuits that are involved in the regulation of social
decision-making [67], and thus may be key integrators and
drivers of socially induced sex change.

RNA extraction

The tissues were homogenized using TissueLyser II (QIA-
GEN®) (Center for Neuroendocrinology, Department of
Anatomy, University of Otago). Forebrain/midbrain and
gonadal total RNA were extracted with TRI reagent (Invi-
trogen) using chloroform (forebrain/midbrain) or bromo-
chloropropane (gonads) as the phase separation reagent.
Samples were then DNase-treated (TURBO DNA-free Kit,
Ambion) and total RNA-cleaned (NucleoSpin RNA XS col-
umns, Macherey-Nagel). RNA integrity was assessed on an
Agilent 2100 Bioanalyzer. Sex-changing gonads consistently
showed RNA profiles with a strong peak of low molecular
weight RNA, which possibly corresponds to massive 5S
RNA expression in atretic ovaries and masks the 18S and
28S rRNA peaks used for calculating RNA integrity num-
bers (RIN). Such patterns were also observed in ovaries and
intersex gonads of thicklip gray mullets, Chelon labrosus
[68], and ovaries of protandrous sharpsnout seabream,
Diplodus puntazzo [20]. Therefore, RIN values could not
serve as useful measures of RNA integrity in these sex-
changing gonads of bluehead wrasses. For brain RNA,
samples with RIN values above 6.0 were used for RNA-seq.
Total RNA concentration was measured by Qubit 2.0
Fluorometer (Qubit RNA HS Assay Kit, Life Technologies),
and samples were diluted to 10 ng/pL.

RNA sequencing
Total RNA from 12 forebrain/midbrain and 12 gonadal
samples (3 control females, 3 TP males, and 6 intersex fish),
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500 ng per sample, were sent to the Otago Genomics and
Bioinformatics Facility at the University of Otago under
contract to New Zealand Genomics Limited for library con-
struction and RNA sequencing. Twenty-four multiplexed
libraries were prepared with the Illumina TruSeq Stranded
mRNA Sample Prep Kit and 100-bp paired-end reads were
generated using 8 flow cell lanes on the HiSeq 2000 plat-
form. The insert size was designed to produce a small over-
lap between paired reads.

Read pre-processing

Read quality was first assessed with FastQC (v0.10.1) [69].
Quality filtering was performed using Trimmomatic (v0.25)
[70]: low quality reads were trimmed if average Phred
quality scores were less than 20 within a 3-bp sliding win-
dow and discarded if the length was below 40 bp after trim-
ming (Trimmomatic parameters: SLIDINGWINDOW:3:20
MINILEN:40). Read pairs were processed with FLASH
(v1.2.4) [71]. Overlapping read pairs were joined and used
for assembly along with the non-merged read pairs.

De novo transcriptome assembly

Filtered short reads with high-quality scores were assem-
bled de novo with Trinity [72] (r2014-03-23, default kmer
25, minimum contig length of 200 bp), an assembler de-
veloped for efficient and robust de novo reconstruction of
transcriptomes from RNA-seq data [20, 73, 74]. Since our
libraries were made using the dUTP method [75], we
specified the library type by setting the “strand-specific
library type (—SS_lib_type)” as “RE.” We also used the
“—jaccard_clip” option to reduce chimeric fusion of tran-
scripts [76].

Quality checking

Assembled contigs were first searched against CEGMA
(Core Eukaryotic Genes Mapping Approach, v2.5) KOGs
(the eukaryotic orthologous groups) [77]. We then ran
“TransDecoder” (v1.0) [76] to check the chimeric rate in
our assembly (if two large open reading frames were found
in one contig, it would be reported as chimeric). Full-
length transcript analysis was carried out using the Trinity
function  “analyze_blastPlus_topHit_coverage.pl”  with
BLAST+ (BLASTN, E-value cut-off 10°°) against 17 blue-
head wrasse expressed sequence tags (ESTs) and 19,712
Nile tilapia protein sequences (Ensembl release 75) [76, 78,
79]. Finally, we manually checked the sequences of all the
candidate genes based on read mapping and visualization
in Integrative Genomics Viewer (IGV, v2.3.40) [80].

Annotation

The assembly was searched against the UniProt (Swiss-
Prot and TrEMBL) protein database [81] with BLAST+
(BLASTX, E-value cut-off 10710, keeping the top hit) [78]
for taxonomic distribution and bacterial contamination
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detection. Information on taxa was obtained using an in-
house Perl script, and the numbers of each taxon were
manually checked.

We then conducted BLASTX searches of the assem-
bled contigs against the Ensembl (release 75) Nile tilapia
(Oreochromis niloticus), zebrafish (Danio rerio), and me-
daka (Oryzias latipes) protein databases (E-value cut-off
10719, keeping the top hit) [78, 79].

Contigs with no hit in the protein databases were
searched against the Ensembl (release 77) zebrafish non-
coding RNA (ncRNA) database (BLASTN, E-value cut-off
107>, keeping the top hit) and mapped to the tilapia gen-
ome downloaded from Ensembl (release 79, BLASTN, E-
value cut-off 1071°) [78, 79]. Finally, putative open reading
frames (ORFs) were searched in both annotated and unan-
notated contigs using OrfPredictor (v2.3) [82].

Read mapping and differential expression analysis

The de novo transcriptome assembly served as a refer-
ence for read mapping. Raw reads were aligned to the
assembly with Bowtie (v0.12.9) [83] and transcript abun-
dance estimation was calculated with RNA-seq by ex-
pectation maximization (RSEM, v1.2.12) [84] using the
align_and_estimate_abundance.pl script from the Trinity
package [76]. RSEM expected counts for each contig
(representing the isoform) were used for downstream
differential expression analysis in R (v3.1.0) [85] using
the DESeq package (v1.20.0) [86].

Comparisons between TP males and females were con-
ducted separately for the brain and gonadal samples (3
samples for 2 conditions each) using the DESeq function
nbinomTest [86]. Principal component analysis (PCA) [87]
and the heatmap.2 function in the gplots package [88] were
used to visualize global similarities and differences among
either the brain or gonadal samples. Contigs with very low
expression in either gonad or brain (average expected
counts of mapped reads fewer than 1 per sample) were
excluded prior to differential expression analysis to im-
prove the statistical power [89]. All samples (including
intersex samples) were used for estimating dispersions.
p value adjustment was performed using the false dis-
covery rate controlling procedure [90]. Contigs with an
adjusted p value less than 0.05 and a fold change larger
than 2 were reported as significantly differentially expressed
between sexes in the gonad, while contigs with an adjusted
p value less than 0.05 were reported as significantly differ-
entially expressed between sexes in the brain.

Gene ontology and pathway analysis

Contigs showing significantly sex-biased expression in the
gonad were searched against the Ensembl zebrafish pro-
tein database (BLASTX, E-value cut-off 107*°). Matched
zebrafish protein IDs were converted to unique Ensembl
zebrafish gene IDs via BioMart [91]. These gene IDs were
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imported into the Database for Annotation, Visualization,
and Integrated Discovery (DAVID, v6.7) [92] for functional
annotation and enrichment analysis, using the default
zebrafish database in DAVID (v6.7) as the background.
Gene ontology (GO) [93] and pathway analysis [94] was
carried out only for the gonad because there were not
enough differentially expressed contigs detected in the
brain. GO terms of level one and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways with a fold enrich-
ment above 1.2 and p value below 0.05 are shown in Figs. 4
and 5. GO terms and KEGG pathways with p values below
0.05 after adjustment using the Benjamini and Hochberg
(BH) procedure are indicated by stars.

Results and discussion

De novo transcriptome assembly

The Illumina HiSeq 2000 sequencing produced more than
two billion 100-bp paired-end reads (1,106,170,692 read
pairs). The raw sequence data in FASTQ format have been
submitted to the National Centre for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (SRA) database
and are accessible under accession number SRP06302.
After trimming, 1,586,678,582 (71.7 %) high-quality reads
were retained for the transcriptome assembly.

The de novo assembled transcriptome using Trinity
[72] resulted in 230,626 contigs with a N50 of 1,146 bp
and minimum and maximum contig lengths of 201 and
27,427 bp, respectively. There are 77,632 contigs having
a length of 500 bp or more. Short contigs (<500 bp)
were retained for annotation and mapping because
many neuropeptides have a short protein sequence.

Assembly quality was assessed by three means: the rep-
resentation of core eukaryotic genes, predicted chimeric
rate, and full-length recovery of the bluehead wrasse
expressed sequence tags (ESTs) and Nile tilapia protein se-
quences (Ensembl release 75) [79]. Al CEGMA KOGs
(the eukaryotic orthologous groups) [77] were present in
this assembly (98 % complete, 100 % partial). The pre-
dicted chimeric rate [76] was 3.2 %. All of the bluehead
ESTs were recovered (BLASTN, E-value <107°°): 14 ESTs
with >90 % recovery and 3 ESTs with 70-80 % recovery.
Fifty-eight percent of Nile tilapia protein sequences had a
match in the bluehead wrasse transcriptome assembly with
alignment coverage above 90 % (BLASTX, E-value <10'7).

Transcriptome annotation

The bluehead wrasse transcriptome assembly was searched
against the UniProt (Swiss-Prot and TrEMBL) protein
database [81] (BLASTX, E-value <107*°, keeping the top
hit). In total, 41,799 contigs (18 %) had significant hits to
34,275 unique protein sequences. Of these sequences, 94 %
came from ray-finned bony fishes while only 63 contigs
matched to bacterial sequences (Fig. 1). This indicates neg-
ligible contamination of bacteria, which is consistent with
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expectations that our assembly comprises mainly brain and
gonadal coding RNAs.

Searching against the Ensembl protein databases [79]
(BLASTX, E-value <1071, keeping the top hit), we found
16-17 % of the assembled contigs had a significant
BLASTX match (E-value <107'°, keeping the top hit). Of
26,763 input Nile tilapia protein sequences, 20,182 se-
quences were found in our assembly (Table 1). Similar re-
sults have been reported in two other non-model fish
transcriptomes [20, 95].

Surprisingly, a large portion (82 %) of the contigs had
no significant BLASTX match to any known protein se-
quence. These sequences were searched against the
Ensembl zebrafish ncRNA database [79] (BLASTN, E-
value <107°, 8819 input ncRNA sequences), but only 93
contigs had a match, including processed or antisense
transcripts with no protein product, miRNA, miscRNA,
snoRNA etc. Putative ORFs were searched in both an-
notated and unannotated contigs using OrfPredictor
[82]. The length distribution of the longest ORFs is
shown in Fig. 2. Briefly, over 98 % of the contigs con-
tained ORFs, but most (69 %) were smaller than

Table 1 Annotation of the de novo transcriptome assembly

Species Nile tilapia ~ Zebrafish ~ Medaka  Zebrafish
Ensembl database type  Protein Protein Protein ~ ncRNA
Contigs with hits 38,606 37,149 36,695 168
Unique hits 20,182 20,496 17,994 149
Input sequences 26,763 43,153 24,674 8319
Cut-off E-value 107" 107'° 107'° 107

300 bp. Almost all of the unannotated contigs (>99 %)
had an ORF smaller than 600 bp. These contigs may
represent novel protein-coding transcripts, fragmented
UTRs, pre-mature mRNA sequences with retained in-
trons, or polyadenylated non-coding RNAs of potential
biological importance. At present, however, it is still
challenging to provide complete annotations for a de novo
assembled transcriptome, especially for a non-model
teleost fish for which few genomic resources are available.
Multiple BLAST searches provide a powerful means for
automated annotations but are limited by available
sequences, sequence similarity among homologues, and
alignment sensitivity. Future genome sequencing and
more information on alternatively spliced isoforms and
non-coding RNAs will improve our current annotation. It
will be useful to revisit these data as more gene sequences
become available.

Differential gene expression between female and TP male
All of the contigs were kept for read mapping, and the
RSEM [84] expected value table of contigs (represent-
ing isoforms) was used for expression analysis. This al-
lows detection of isoform-specific expression patterns
and clustering of the contigs based on both annota-
tions and expression patterns.

In total, 889,652,430 raw read pairs (from control
females and TP males) were mapped back to the ref-
erence transcriptome assembly [83]. In this paper, we
focused on the sex-biased gene expression; thus, we
only report the comparison between females and TP
males.



Liu et al. Biology of Sex Differences (2015) 6:26

Page 6 of 20

120,000 —

100,000 —

80,000 —-
30,000

Number of Contigs

20,000 —

10,000 —

no ORF  29-100

|
o N III-I

101-200 201-300 301-600 601-900
Longest ORF Length (bp)

Fig. 2 Length distribution of the longest ORFs in assembled contigs (blue: unannotated contigs, pink: annotated contigs)

¥ Unannotated

¥ Annotated

>901

Global gene expression patterns in the brain and gonad

Comparisons between TP males and females were con-
ducted separately for the brain and gonadal samples (3
samples for 2 conditions each) using the DESeq func-
tion nbinomTest [86]. p value adjustment was per-
formed using Benjamini and Hochberg (BH) procedure
[90]. Principal component analysis (PCA) plots [87]
and heatmaps [88] both showed that sex differences in
gene expression were much more pronounced between
the ovary and testis than those between male and
female brains (Fig. 3b, c). Consistently, a large number of
contigs showed sex-biased expression in the gonad (fold
change >2 and BH adjusted p value <0.05), while only eight
contigs showed sex-biased expression in the brain (BH
adjusted p value <0.05). Similar global expression patterns
were also reported in zebrafish [44, 96] and sharpsnout
seabream [20], which may reflect the functional and
regulatory differences between the brain and gonads.

A large set of genes showed significant sex-biased expression
in the gonad

Expression analysis revealed a large set of transcripts differ-
entially expressed between ovary and testis of the bluehead
wrasse (fold change >2 and BH adjusted p value <0.05).
Contigs showing male-biased expression were twice as
abundant as those showing female-biased expression, al-
though contigs with the highest expression in the gonad
were female-biased (Fig. 3a, c). Of the 13,768 male-biased
contigs, 6769 (49 %) contigs had a significant BLASTX
match in the UniProt protein databases (E-value <10719),
including 6279 hits in the Ensembl zebrafish protein data-
base. Of the 6415 female-biased contigs, 4246 (66 %) had a
significant BLASTX match in the UniProt protein data-
bases (E-value <107%9), including 4074 hits in the Ensembl
zebrafish protein database.

Enriched gene ontology terms and pathways in testis and
ovary

Contigs showing sex-biased expression in the gonad
were mapped to the Ensembl zebrafish protein data-
base and further converted to their equivalent Ensembl
zebrafish gene IDs (4824 male-biased, 3373 female-
biased) via BioMart [91]. These gene IDs (Additional
file 1) were searched against the DAVID (v6.7) [92]
zebrafish database to detect which GO terms [93] and
KEGG pathways [94] were enriched in the testis and
ovary of bluehead wrasses, respectively. As a result,
4080 (male-biased) and 2989 (female-biased) DAVID
IDs were reported, of which 30-50 % were assigned
with GO terms and about 20 % were mapped to KEGG
pathways.

Significantly enriched GO terms (level 1) in the ovary
and testis are shown in Fig. 4. In general, the ovary was
enriched for metabolic process, while the testis was
enriched for signal transduction and receptor activity.
Similarly, the pathway enrichment analysis also found
that ovaries are enriched for RNA and protein metabol-
ism, while testes are enriched for signal transduction
(Fig. 5).

Interestingly, the top pathway enriched in the testis was
“neuroactive ligand-receptor interaction” (Fig. 4), which
includes receptors for many neuropeptides (Fig. 6a, b).
Within this pathway, receptors of norepinephrine, epi-
nephrine, melatonin, oxytocin/isotocin (IT), and vasopres-
sion/vasotocin (AVT) were significantly over-expressed in
the testis (Fig. 6a) while receptors of dopamine, serotonin
(5-HT), and neuropeptide FF were significantly over-
expressed in the ovary (Fig. 6b). Some of these neuropep-
tides have been suggested to play important roles at the
onset of protogynous sex change [55, 56, 62]. Briefly, nor-
epinephrine and vasotocin have a promoting effect on
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Fig. 3 Gene expression patterns in the brain (right) and gonads (left). a Numbers of differentially expressed contigs between TP males (M) and
females (F). b PCA plots of brain and gonadal samples (green: female, blue: TP male). ¢ Heatmaps showing the expression of top 100 contigs in brain
and gonads (ordered by average normalized read counts across the row; red: lower expression, green: higher expression; M: TP male, F: female)

gonadal or behavioral sex change, while dopamine and Another pathway enriched in the testis is related to
serotonin have an inhibitory effect [97-100]. The function  steroid hormone biosynthesis (Fig. 4). Steroid hormones
of isotocin and melatonin in sex-changing fishes are are known to play a critical role in sex differentiation
largely unknown due to limited information. Nevertheless, — across vertebrates [4]. Within this pathway, only three
the interesting point here is that these neuropeptides were  genes (cyp19ala, hsd11b3, hsd17bI1) showed significantly
thought to act on the brain and regulate gonadal sex female-biased expression in the gonad while 11 genes
change indirectly through the hypothalamic-pituitary- showed significantly male-biased expression, including
gonadal (HPG) axis [55, 101, 102]. However, their re-  cyplicl, hsd11b2, hsd17b3, cypllal, and cypl7al (Figs. 7
ceptors are widely expressed in the gonad. Some recent  and 8a). These results are generally consistent with our
studies suggest these neuropeptides can act directly on  current knowledge of sexually dimorphic levels of ster-
the gonad, in addition to their classical actions through  oid hormones in fish.

the HPG axis. For example, vasotocin and melatonin In teleost fishes, 17p-estradiol (E,) and 11-ketotestos-
are reported to regulate oocyte maturation in catfish [103]  terone (11-KT) function as the major estrogen and andro-
and carp [104], whereas vasotocin and catecholamines gen, respectively [4]. Testosterone (T) serum levels can
(dopamine, norepinephrine, and epinephrine) are shown also be high in males and females, but T can be converted
to modulate ovarian steroidogenesis in catfish in a bi- into either E, by aromatase (cyp19ala in the gonad) or
phasic manner [103, 105]. Further studies on expression  11-KT by 11B-hydroxylase (cypl1b or cyplicl in zebra-
and function of these neuropeptides in both the brain and  fish) and 11p-hydroxysteroid dehydrogenase 2 (/sd11b2)
gonads of sex-changing fishes are warranted. [4, 106, 107]. In protogynous species, steroid hormones
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* SR metabolic process 0.8 1.00E+00 1.2 6.10E-14
& cellular component organization 11 2.60E-01 1.2 3.00€E-02
* W cellular component biogenesis 11 2.60E-01 1.6 8.90E-05
* sl localization 1.2 1.10E-04 1.0 7.80E-01
+ weell multicellular organismal process 1.2 1.60E-04 0.9 9.30E-01
* sl developmental process 1.2 9.50E-05 1.0 7.40E-01
* ml establishment of localization 1.2 3.20E-03 0.9 8.80E-01
+ml biological adhesion 1.5 2.00E-03 0.5 1.00E+00
#d locomotion 1.7 1.60E-04 1.0 5.40E-01
*1 pigmentation 2.2 1.40E-03 0.7 9.20E-01
Molecular function
* RN catalytic activity 0.9 1.00E+00 1.2 1.00E-14
* msedl molecular transducer activity 1.2 8.30E-05 0.6 1.00E+00
*mullll transporter activity 1.3 4.00E-05 0.9 8.90E-01
Cellular component
* "I organelle 0.9 1.00E+00 1.2 2.60E-10
*W macromolecular complex 0.9 9.80E-01 1.2 1.20E-03
**] membrane-enclosed lumen 0.5 1.00E+00 2.2 4.60E-11
*5 envelope 0.4 1.00E+00 1.5 3.80E-03
* Ovary-biased wel extracellular region 1.2 1.80E-02 0.5 1.00E+00
AT | synapse 16 3.00E-02 0.9 8.50E-01
900 &00 300 0 Number of genes

Fig. 4 Top GO terms enriched in the ovary (pink) and testis (blue). Enriched GO terms with modified Fisher exact test p value below 0.05 and fold

enrichment above 1.2 are shown here. Stars indicate GO terms with BH adjusted p value below 0.05
A

Pathways Fold enrichment (testis) P-value (testis) Fold enrichment (ovary) P-value (ovary)
* . Neuroactive ligand-receptor interaction 14 5.20E-04 0.5 1.00E+00
s Calcium signaling pathway 12 1.10€-01 0.9 7.40E-01
e Regulation of actin cytoskeleton b 9.50E-02 1.0 6.50E-01
* s Cytokine-cytokine receptor interaction ik 7.30E-04 0.6 9,90E-01
sl Cell adhesion molecules (CAMSs) 1.6 3.70E-03 0.6 9,90E-01
# s Phosphatidylinositol signaling system 2.0 7.60E-05 0.9 8.20E-01
* sl ECM-receptor interaction 2.0 4.10E-04 0.6 9.90E-01
*mmmmii Inositol phosphate metabolism il 1.50E-03 0.9 7.60E-01
st Hedgehog signaling pathway 1.7 2.10E-02 0.6 9.80E-01
medl Steroid hormone biosynthesis 1.9 4.90E-02 0.6 9.60E-01
"I Purine metabolism lal 3.10E-01 15 8.90E-03
"I Tight junction 1.1 4.20€-01 1.5 2.00E-02
WSS Pyrimidine metabolism 0.7 9.50E-01 2.0 5.00E-04
S Adherens junction 1.0 7.00E-01 1.7 5.70E-03
S RNA degradation 05 9.90E-01 2.0 3.00E-03
= Aminoacyl-tRNA biosynthesis NA NA 2.6 8.70E-04
" Lysine degradation 0.9 7.70E-01 1.9 3.40E-02
"I Cysteine and methionine metabolism 1.0 7.00E-01 19 4.70E-02
"= Valine, leucine and isoleucine degradation 03 1.00E+00 1.9 4.70E-02
* Ovary-biased W RNA polymerase NA NA 2.8 2.90E-03
Rlstaitinad "“J Cytosolic DNA-sensing pathway 0.7 9.60E-01 21 4.40E-02
80 &0 40 20 0 Number of genes

Fig. 5 KEGG pathways enriched in the ovary (pink) and testis (blue). Enriched pathways with modified Fisher exact test p value below 0.05 and

fold enrichment above 1.2 are shown here. Stars indicate pathways with BH adjusted p value below 0.05
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| HEURDACTIVE LIGAND-RECEFTOR INTERACTION |

| MEUROACTIVE LIGAND-RECEPTOR INTERACTION

i
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Fig. 6 The neuroactive ligand-receptor interaction pathway was significantly enriched in the testis (@) but not in the ovary (b). Red stars indicate the

DE genes significantly up-regulated (fold change above 2 and BH adjusted p value below 0.05) in the testis (a) or the ovary (b)
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Cholesterol

cypllal

cypl7al cypl7al

lhsdjb hsd3b
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Prognenolone ————— 17a-Hydroxypregnenolone —————Dehydroepiandrosterone ————Androstenediol
hso‘jb

Progesterone ——— 17a-Hydroxyprogesterone ——— Androstenedmne

lcypZIa lcypZIa hsd20b
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Fig. 7 Postulated pathways of steroidogenesis in the gonad (adapted from [118, 178, 179]). Putative catabolic activities are indicated by arrows
with dash lines. Genes showing male- or female-biased expression in bluehead wrasse gonads are colored in blue or red, respectively

hsd17b1

hsde

hsd17b3
e, Testostercne &v Dihydrotestosterone

play a central role in controlling sex change: high plasma
E, levels prevent females from changing into males,
whereas blocking E, production or injecting 11-KT in fe-
males can induce sex change [108]. As expected in our
study, cyp19ala expression was only detected in the ovary,
whereas c¢yplicl and hsdl1b2 expression were
significantly higher in the testis (Fig. 8a, Table 2, and
Additional file 2). The brain aromatase gene cypl9alb
was also detected in the gonad of rainbow trout [109],
but our data showed almost no expression of cyp19al1b
in bluehead wrasse gonads. In addition, the genes that
encode androgen receptors (ar! and ar2) showed no
sex-biased expression, while the estrogen receptor genes
(esrl, esr2a, and esr2b) had higher expression in the testis,
although the male-biased expression of esr2b was not
statistically significant (Fig. 8a, Table 2, and Additional file
2). Such male-biased expression of estrogen receptors has
been shown during late sexual differentiation for Nile
tilapia (70dah) [49] and rainbow trout (60-110dpf) [110].
A recent study on rainbow trout also showed significantly
elevated testicular expression of esrla and esr2a during
the final stage of spermiation, while esr1b and esr2b were
expressed at early stages of testicular development [111].
In the same study, androgen implants up-regulated tes-
ticular esrla, esr2a, and esr2b expression but down-reg-
ulated cypl9ala expression, whereas estrogens reduced
testicular c¢ypI9ala expression but increased the expres-
sion of ¢ypl9alb and esrib. These findings all suggest a
potential role for estrogens and their receptors in teleost
testicular development.

Interestingly, cypllcl and hsd11b2 are also involved
in cortisol (or glucocorticoid, GC) production: Cypllicl
converts 11-deoxycortisol to cortisol while Hsd11b2
converts cortisol to its inactive form cortisone, and
Hsd11b3 (or Hsd11b1-like) could convert cortisone to
cortisol [107, 112]. Cortisol treatment has been re-
ported to cause masculinization of genetic females of
medaka [113, 114], Japanese flounder [2, 115], southern

flounder [116], and pejerrey [117]. In Japanese flounder,
cortisol was suggested to cause female-to-male sex re-
versal by suppressing cypl9ala expression [20, 115]. In
zebrafish [118] and pejerrey [112], cortisol treatment of
larvae elevated hsd11b2 expression, while cortisol also
enhanced in vitro 11-KT synthesis in pejerrey testes. Sexu-
ally dimorphic expression of cyplicl, hsd11b2, hsd11b3,
and nr3cl (nuclear receptor subfamily 3, group C, member
1 or glucocorticoid receptor) found in the gonad of blue-
head wrasse (Fig. 8a, Table 2, and Additional file 2) sug-
gests that local cortisol production could be important for
gonadal sex differences. Moreover, cortisol treatment can
induce protogynous sex change in three-spot wrasse [119],
but a peak in serum cortisol levels appears to be a key
event during gonadal sex change in both protandrous and
protogynous species [120, 121]. The specific role of cortisol
in regulating gonadal sex change remains to be clarified.

Expression patterns of genes involved in sex determination/
differentiation

The processes of sex determination and differentiation can
be viewed as a battle for primacy between a male regula-
tory gene network (e.g., dmrtl, sf-1, amh, sox9) and female
genetic pathways involving fox/2 and Rspol/Wnt/B-catenin
signaling [122, 123]. Despite the diverse regulatory mecha-
nisms, expression patterns of these genes are generally
consistent across taxa [1, 40, 122, 124]. In our study, male-
pathway genes all showed significantly higher expression in
the testis (e.g., dmrtl, sf-1, amh, amhr2, sox9alb, sox8, and
gsdf). In contrast, a few genes involved in the female-
pathway (e.g., rspol, wnt4b) showed unexpected expression
patterns (Fig. 8a, Table 2, and Additional file 2).

First, two paralogues of forkhead box L2 genes (re-
ferred to as foxI2 and foxl3) were detected in the gonad
of the bluehead wrasse. Fox/2 and fox/3 probably origi-
nated from an ancient genome duplication event; they
are present ubiquitously in fish lineages but foxI3 was
repeatedly lost in the tetrapods [125]. FoxI2 is critical for
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Fig. 8 Expression patterns of candidate genes in the gonad (a) and brain (b). a Expression patterns of 56 sex-related genes in the gonad of
bluehead wrasses. Genes with BH adjusted p value below 0.05 are shown in solid circles (blue: male-biased, red: female-biased). b Expression
patterns of 16 genes of interest in TP male and female forebrain/midbrain of bluehead wrasses. Genes (hsd17b3, ugt8, slc6a20) with BH adjusted
p value below 0.05 are shown in solid circles. Genes (it, cyp19alb, esrl, esr2b, and hsd11b2) with pre-adjusted p values below 0.05 prior to BH
correction are shown in open circles with a cross. Genes (avt, hsd1103, cyplicl, gnrhl, gnrh2, gnrh3, kiss1, and kiss2) with p values above 0.05
before and after BH correction are shown in open circles. Genes showing male- or female-biased expression are colored in blue or red, respectively
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Gene symbol Gene description Contig ID Expression in Expression in other fishes
bluehead wrasse
Steroidogenesis and hormone receptors
cypl9aia® Aromatase a (gonad isoform) c75632_g1_i1 F F [19, 20,47, 110, 137, 180, 181]
cyplicl/b2 Steroid 113-hydroxylase c112162_g1_i1 M M [20, 21, 49, 137]
hsd11b2 11B-Hydroxysteroid dehydrogenase type 2 c117833_g1_i1 M M [21, 47]
hsd11b3 11B-Hydroxysteroid dehydrogenase type c71474_g1_i1 F NSD [47]
3 (or 1 like a)
cypl7al Steroid 17a-hydroxylase 1 €152588_g2_i1 M M [21,47,110]
hsd17b1 17B3-Hydroxysteroid dehydrogenase type 1 €33723_gl_i1 F F [47]
hsd17b3 17B-Hydroxysteroid dehydrogenase type 3 €3610_g1_i1 M NSD [47]
cyplial Cholesterol side-chain cleaving enzyme c152363_g1_il M M [47]
star-like Steroidogenic acute regulatory protein c156452_g1_i1 M M [47]
esr] Estrogen receptor alpha c73327_g1_i1 M M [21,47,110]
esr2a Estrogen receptor beta 1 c70616_g1_il M F [47]
esr2b Estrogen receptor beta 2 c110359_g1_i1 M but NSD M [47, 182]
fshr Follicle-stimulating hormone receptor c152458_g1_i1 M M [183] or NSD [182]
Ihr? Luteinizing hormone receptor c74538_g1_il M NSD [182]
nr3cl Glucocorticoid receptor c4332_g1_i1 M
nric2 Mineralocorticoid receptor c1060_g1_i1 F
Key sex-related transcription factors
dmrt1 Doublesex- and mab-3-related €154918_g1_i1_split_1 M M [21, 49, 137, 184-188]
transcription factor 1
dmrt2(a) Doublesex- and mab-3-related c155062_g1_i1 M
transcription factor 2(a)
dmrtiai® Doublesex- and mab-3-related €90860_g1_i1 M
transcription factor like Al
foxI2 Forkhead box L2 €29733_g1_i1 F F [19, 46, 49, 110, 125, 127, 133] or
NSD [21, 135]
foxI3 Forkhead box L3 c158785_g1_il M M [125]
sf-1 Steroidogenic factor-1 c152032_g1_i1 M M [20, 49, 110]
amh Anti-Mllerian hormone or Mullerian-inhibiting ~ ¢115827_g1_i1 M M [20, 21, 49, 189]
substance
amhr2 Anti-Mdllerian hormone receptor 2 €197093_g1_i1 M M [34, 189]
gsdf Gonadal soma derived factor c69648_g1_i1-a M M [48, 190]
sox2 SRY-related HMG box 2 €32495_g1_i1 F
sox3° SRY-related HMG box 3 €72647_g1_i1 F F [191] or M [186, 192]
sox8 SRY-related HMG box 8 c75695_g1_i1 M M [193]
sox9a SRY-related HMG box 9a c4248_g1_i1 M M [49, 110, 185, 191, 194] or F [137, 195]
sox9b? SRY-related HMG box 9b €193758_g2_i1 M M [19€] or F [137, 185, 194]
wt-1a° Wilms tumor protein 1a c32767_g1_il M M [20, 211 or F [137]
wt-1b Wilms tumor protein 1b €29263_g1_il M but NSD M [20] or F [137]
dax1/nrob1 Dosage-sensitive sex reversal, adrenal €209037_g1_i1 F M [49] or F [137, 197]
hypoplasia critical region, on
chromosome X, gene 1
gdf9 Growth and differentiation factor 9 c152091_g1_i1 F F [110]
fgf20b Fibroblast growth factor 20-like c193577_g1_i1 F F [47]
figla Factor in the germline alpha c204647_g1_i1 F F [137,184]
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Rspo1/Wnt4/B-catenin pathway

wnt4a

wnt4b

rspol

ctnnbl

fstl3
fstl4®_ci
fstl4®_c2
fstl5

Wingless-type MMTV integration site
family, member 4a

Wingless-type MMTV integration site
family, member 4b

R-spondin-1 (precursor)

Catenin (cadherin-associated protein),
beta 1

Follistatin-like 3
Follistatin-like 4_contig1
Follistatin-like 4_contig2

Follistatin-like 5

Retinoid acid signaling pathway

aldhia2

cyp26al

cyp26b1

raraa
rarab
rarb

strab

Aldehyde dehydrogenase 1 family,
member A2

Cytochrome P450, family 26, subfamily a,
polypeptide 1

Cytochrome P450, family 26, subfamily b,

polypeptide 1

Retinoid acid receptor alpha a
Retinoid acid receptor alpha b
Retinoid acid receptor beta

Stimulated by retinoic acid gene 6

Epigenetic regulatory factors

piwi-likel

dnmtl
dnmt3aa
dnmt3ab®_cl
dnmt3ab®_c2
dnmt3b
dnmt3
dnmt4
hdac2?
hdac7

hdac8
hdac10
hdac11®_c1
hdac11?_c2
Ep300a°

Ep300b°
KAT2b

KAT7®

P-element induced wimpy testis
(piwi) like 1

DNA methyltransferase 1

DNA methyltransferase 3aa

DNA methyltransferase 3ab_contig 1
DNA methyltransferase 3ab_contig 2
DNA methyltransferase 3b

DNA methyltransferase 3

DNA methyltransferase 4

Histone deacetylase 2

Histone deacetylase 7

Histone deacetylase 8

Histone deacetylase 10

Histone deacetylase 11_contig 1
Histone deacetylase 11_contig 2

Histone acetyltransferase—E1A binding
protein 300a

Histone acetyltransferase—E1A binding
protein 300b

Histone acetyltransferase—K(lysine)
acetyltransferase 2b

Histone acetyltransferase—K(lysine)
acetyltransferase 7

c167432_g1_i1

€203717_g1_i1

€155259_g1_il
c70814_g1_il

85803_g1_il
€6910_g1_il
€76818_g1_il
c110224_g1_i1

158408_g1_i1

€29815_g1_i1

c117560_g1_i1

€199432_g1_i1
¢153705_g1_i1
€209577_g1_il
¢153800_g1_i1

c1516_g1_il

€30017_g1_il
€755_g1_i1
193863_g1_i1
c157308_g1_i1
c71358_g1_il
194062_g1_i1
c161106_g1_i1
€75925_g1_il
€193969_g1_i1
€71086_g1_il
€37022_g1_il
c152723_g1_i1
c115912_g1_i1
€193959_g1_i1

c112702_g1_i1

152736_g1_i1

€72324_g1_i1

F but NSD

<

< T < L

m M m m

<

I e T B B - B

F 19,1371 or M [141]

NSD [141] or M [137]

F [142] or M [137]
F [20, 21, 137]

M [145]

F [21, 145]

M [21] or NSD [145]

F but NSD [21]

M [21]

M male-biased, F female-biased, NSD not significantly different
“Indicates genes that have more than one contigs: only the longest contig of each gene is shown in this table
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maintenance of female differentiation [126, 127] and can
up-regulate cypl9ala expression together with Sf-1
[128]. Foxl3 was proposed to play a role in testicular de-
velopment, but its exact function remains elusive. In our
study, foxI2 was expressed at higher levels in the ovary
while foxl3 expression was higher in the testis of blue-
head wrasses (Fig. 8a, Table 2, and Additional file 2).
Such sexually dimorphic expression was also found in
European sea bass, and the gonadal expression of fox/2
and fox/3 varied significantly during the reproductive
cycles [125].

In recent years, Dmrtl (doublesex and mab-3 related
transcription factor 1) has received much attention due to
its conserved role in vertebrate testicular differentiation and
maintenance [127, 129-132]. Dmrt1 expression was signifi-
cantly higher in the testis than in the ovary of the bluehead
wrasse (Fig. 8a, Table 2, and Additional file 2). Dmrtl and
FoxI2 have been proposed to have antagonistic effects on
¢cyp19ala expression to control gonadal sex fate [124, 127].
This hypothesis has been supported by studies in tilapia
where knockout of cypl9ala or foxl2 expression caused
gonadal sex reversal in females while dmrtl and cypl1b2
(11B-hydroxylase) were co-expressed in follicular cells sur-
rounding the degenerating oocytes [127]. Moreover, fox/2
expression decreased while dmrtl expression increased
during female-to-male sex change in honeycomb grouper
[133]. However, such shifts in fox/2 and dmrtl expression
did not occur until the late transitioning stage, which was
downstream of declining E, levels [134]. Fox/2 showed no
strong sexually dimorphic expression in the gonad of prot-
ogynous three-spotted wrasses, and its expression even
increased during aromatase-inhibitor-induced sex change
[135]. Thus, the roles of fox/2 and dmrtl may be species-
specific in sex-changing fishes. Further manipulative studies
will be especially useful for elucidating the precise functions
of these key genes in sex-changing fishes.

Most genes involved in the ovary-specific Rspol/Wnt/
[B-catenin signaling pathway showed sexually dimorphic
expression in the gonad of bluehead wrasses (Fig. 8a,
Table 2, and Additional file 2). However, some of these
genes displayed an expression pattern that was opposite to
our expectations based on studies from mammalian
models [17, 136]. For example, ctnnbl (B-catenin) was
highly expressed in both the ovary and testis of bluehead
wrasse, but its expression was significantly female-biased.
In contrast, rspol (R-spondin-1) and wnt4b (wingless-type
MMTYV integration site family, member 4b) were expressed
at much lower levels in the bluehead wrasse gonads, but
they both showed significantly male-biased expression.
Similar sexually dimorphic expression patterns of
ctnnbl, rspol, and wnt4b were also reported in east
cichlid fishes [137]. Fst (follistatin) is downstream to
Wnt4 signaling [17, 136, 138]. We detected a few fst-
like genes in the bluehead wrasse gonad: fst/3 and fst/5

Page 14 of 20

both showed male-biased expression, while two long
isoforms of fsti4 showed either female- or male-biased
expression. It has been well-established in mammals
that Rspol, p-catenin, Wnt4, and Fst are key players
in early ovarian differentiation [17, 136, 139], but in-
formation is limited regarding their roles in teleost
fishes. Research to date, including our current study,
reveals complicated expression patterns of these genes
in fishes [18, 20, 53, 140—143]. Collectively, these data
suggest ctnnbl likely plays a conserved role in both es-
tablishing and maintaining female sex differentiation
across vertebrate taxa, while other genes involved in Rspol/
Wnt/B-catenin signaling pathway may participate in both
ovarian and testicular development in fishes. More manipu-
lative studies are needed to better characterize the roles of
these genes in teleost fishes and to test whether the male-
biased expression of rspol and wnt4b is involved in prot-
ogynous sex change.

The RA (retinoid acid) signaling pathway is important
in ovarian differentiation because RA controls the sex-
specific timing of meiosis initiation [144—146]. RA level is
regulated by Aldhla (retinal dehydrogenase) and Cyp26
enzymes: Aldhla2 increases RA level and initiates meiosis,
while Cyp26al and Cyp26bl decrease RA level and pre-
vent germ cells from entering into meiosis [145]. Our
study revealed higher expression of aldhla2 and cyp26bl
but lower expression of c¢yp26al and genes encoding RA
receptors (raraa, rarab, and rarb) in the testis of bluehead
wrasses (Fig. 8a, Table 2, and Additional file 2). These pat-
terns are consistent with findings in Nile tilapia [145] and
mice [147]. In addition, Cyp26bl prevents stra8 (stimu-
lated by retinoic acid gene 8) expression in mouse testes
[147, 148]. Stra8 is lost in teleost fishes [149], but we
found stra6, the receptor for retinol-binding protein 4
[150], in bluehead wrasse gonads. Its expression is much
lower in the testis than in the ovary, which is consistent
with high expression of cyp26bI in the testis (Fig. 8a,
Table 2, and Additional file 2). Interestingly, studies in
mice suggest that dmrtl expression is essential to main-
tain male-sex fate because it can protect the testis from
transdifferentiation into ovary by RA signaling [131, 132].
Another study in mice also supports the hypothesis that
Sox9 and Sf-1 up-regulate cyp26b1 to maintain the male
fate of germ cells in testes, while FoxI2 acts to antagonize
cyp26bl1 expression in ovaries [151]. Taken together, the
RA signaling pathway may play a key role in regulating
gonadal sex change in hermaphroditic fishes and warrants
further investigation.

Lastly, accumulating evidence suggests that epigenetic
modifications also participate in the regulation of sex differ-
entiation and sex change [152—157]. Transcripts of mRNA
encoding DNA methyltransferases (Dnmt) and histone dea-
cetylases (Hdac) or acetyltransferases (Hat) were detected
in the bluehead wrasse, and most showed sex-biased
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expression in the gonad (Table 2, and Additional file 2).
However, because the epigenetic mechanisms underlying
sex differentiation are still poorly understood, we cannot
infer any detailed functions of these genes from their ex-
pression patterns. Future studies are needed to reveal their
molecular functions in sex differentiation and sex change.

Few sex-biased genes detected in the forebrain/midbrain
The brain represents a key site where environment stimuli
and internal signals are integrated to regulate vertebrate
physiology and behavior. Sex differences in the brain have
been a major and growing focus in neuroscience [2, 3]. In
mammals, sex differences in the brain are likely established
by both organizational effects of sex steroid hormones and
cellular autonomous regulation based on sex chromosomes
[2]. Teleost brains, however, appear to show less sex bias in
brain structure or gene expression [20, 45, 96]. Thus, the
sex differences observed in teleost brains may be due pri-
marily to the activational influences of steroid hormones
[158], which may also explain the brain sexual lability of
teleost fishes.

In our study, expression analysis using the DESeq
package revealed seven up-regulated contigs and one
down-regulated contig in the TP male bluehead wrasse
forebrain/midbrain (Additional file 3). Only four of these
contigs had a significant BLASTX match in the UniProt
protein databases (E-value <107'°): 17B-hydroxysteriod
dehydrogenase (hsd17b3), UDP glycosyltransferase 8
(ugt8), solute carrier family 6 (proline IMINO trans-
porter) member 20 (slc6a20; also BLASTs to zebrafish
slc6a19b), and a novel gene with unknown function. Lar-
ger numbers of sex-biased genes have been reported in
the brains of other fishes (e.g., zebrafish [96], seabream
[20], and black-faced blenny [159]). We conducted dif-
ferential expression analysis at the isoform (represented
by contigs) level with the most conservative software
(DESeq) and stringent cut-offs (BH adjusted p value
below 0.05) in order to reduce false positives [160]. We
also included six intersex samples from the same experi-
mental group in dispersion estimation and read count
normalization (see “Methods” section). Such stringent
analyses are likely to detect fewer but more reliable sex-
biased contigs.

17B-hydroxysteroid dehydrogenase (Hsd17b3), the en-
zyme converting androstenedione to testosterone, was sig-
nificantly up-regulated at the transcriptional level in the
forebrain/midbrain of TP males (Fig. 8b and Additional
file 3). Analyses in zebrafish have also shown male-biased
expression of hsd17b3 at the whole-brain level [96], sug-
gesting conserved sex differences in local testosterone pro-
duction in the brain. In teleosts, testosterone in the brain
can be converted to E, by the brain isoform of aromatase
(cyp19alb) or to 11-KT by Cypllb and Hsd11b2 [161].
Although not significantly different after BH correction,
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cypl9alb showed a 1.9-fold up-regulation in female
brains, while /1sd11b2 was 1.7-fold higher in TP male brains
(Fig. 8b and Additional file 3), suggesting a potentially
higher E, synthesis in female brains and 11-KT synthesis in
TP male brains. Also, not significant after BH correction
but likely biologically relevant, estrogen receptor 1 (esrI)
and esr2b were up-regulated in TP male brains compared
to female brains (Fig. 8b and Additional file 3). These pat-
terns suggest that local neurosteroid production and signal-
ing likely contribute to sex differences in the brain [161,
162] and are consistent with the previously documented in-
fluences of estrogen on behavioral sex change in bluehead
wrasses [163].

The significance of the sexually dimorphic patterns of
expression for other genes uncovered in the brain of the
bluehead wrasse is unclear. Ugt8 was significantly up-
regulated in the forebrain/midbrain of TP males, while
slc6a20 showed an opposite pattern (Fig. 8b and Additional
file 3). Wong et al. [96] also found ugt8 to be up-regulated
at the whole-brain level in male zebrafish. In mammals,
UGTS8 synthesizes galactocerebrosides, a major component
of the myelin sheath surrounding nerves [164, 165].
Knocking out ugt8 in mice reduces myelin thickness and
nerve conduction, resulting in tremor and motor weakness
[166, 167]. SLC6A20 transports proline and other imino
acids and N-methylated amino acids across cell mem-
branes [168]. Proline has been implicated in neuromodula-
tion [169] and has been shown to modulate glutaminergic
neurotransmission in mammals [170, 171]. There is cur-
rently no information on distribution or function of UGT8
and SLC6A20 in teleost brains. Sex differences in ugt8 and
slc6a20 expression within the forebrain/midbrain of blue-
head wrasses may translate into differences in neurotrans-
mission and behavior, but these possibilities require more
research to address.

We did not find significant differences in the expres-
sion of a number of key neuropeptide genes (Fig. 8b
and Additional file 3), including arginine vasotocin
(avt), isotocin (i), gonadotropin-releasing hormone
(gnrh), and kisspeptin (kiss), that are known to be in-
volved in socio-sexual behavior and/or reproduction in
teleost fishes [172—-175] and implicated in the regulation of
socially induced sex change (reviewed in [55, 62]). Avt and
it mRNAs are highly expressed in both TP male and female
brains, but only it showed male-biased expression in our
dataset, although this sex difference in it expression was
not statistically significant after BH correction (Fig. 8b and
Additional file 3). Avt mRNA expression was shown to be
male-biased in the magnocellular preoptic area of bluehead
wrasses [176] and to increase with behavioral sex change
[64], but such differences may be masked due to the lower
neuroanatomical resolution of whole-forebrain/midbrain
sampling. The role of isotocin in sex change is less
studied. However, it was shown that the number of
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isotocin-immunoreactive neurons in the preoptic area of
bluebanded gobies (Lythrypnus dalli), a bi-directional sex-
changing species, was higher in females than in males
[177]. This sex-biased pattern appears to be opposite to
our data for bluehead wrasses, although future studies are
needed to determine if TP males have significantly higher
expression than females and if isotocin plays a major role
in regulating sex change.

Conclusions

The genetic basis of sexual dimorphism in teleost fishes
and the molecular mechanisms underlying the protogynous
and protandrous sex change common to teleosts remain to
be fully elucidated. In this study, we took advantage of
high-throughput sequencing technology to generate the
first high-quality transcriptome for a protogynous fish, the
bluehead wrasse. This resource will make future compara-
tive and experimental analyses of protogynous sex change
possible. We also identified a large number of genes that
exhibit sexually dimorphic expression in the gonad and
several sex-biased genes in the forebrain/midbrain of blue-
head wrasses. These genes include most known vertebrate
sex-related genes as well as numerous novel genes that cur-
rently lack annotation but may well have important bio-
logical roles in sex differentiation and/or sex change. In
addition, we find that most candidate genes implicated or
known to be involved in sex determination and differenti-
ation in other vertebrate systems showed conserved expres-
sion patterns in the bluehead wrasse with a few exceptions.
This suggests that some subtle variability in the stand-
ard sex-determination regulatory network, although
having evolved from a conserved toolkit, could be re-
sponsible for the sexual plasticity in these fishes. Over-
all, this study provides not only key data on the
molecular basis of sexual dimorphism in the brain and
gonad of bluehead wrasse, but also valuable resources
for investigating the molecular pathways that underpin
this extraordinary example of sexual plasticity in response
to environmental influences. Further examination of the
gene expression dynamics across the process of protogyn-
ous sex change will uncover the genetic cascade that pro-
gressively re-engineers a female into a male.
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