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Sex differences in human adipose tissues – the
biology of pear shape
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Abstract

Women have more body fat than men, but in contrast to the deleterious metabolic consequences of the central
obesity typical of men, the pear-shaped body fat distribution of many women is associated with lower
cardiometabolic risk. To understand the mechanisms regulating adiposity and adipose tissue distribution in men
and women, significant research attention has focused on comparing adipocyte morphological and metabolic
properties, as well as the capacity of preadipocytes derived from different depots for proliferation and
differentiation. Available evidence points to possible intrinsic, cell autonomous differences in preadipocytes and
adipocytes, as well as modulatory roles for sex steroids, the microenvironment within each adipose tissue, and
developmental factors. Gluteal-femoral adipose tissues of women may simply provide a safe lipid reservoir for
excess energy, or they may directly regulate systemic metabolism via release of metabolic products or adipokines.
We provide a brief overview of the relationship of fat distribution to metabolic health in men and women, and
then focus on mechanisms underlying sex differences in adipose tissue biology.
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Review
Women, compared to men, have higher percent body fat
and deposit it in a different pattern, with relatively more
adipose tissue in the hips and thighs. This ‘female’ fat
distribution, independent of total body fat, confers pro-
tection against metabolic diseases, such as type 2 dia-
betes and atherosclerosis [1]. Although sex differences in
fat distribution and correlations to metabolic health are
well established in the clinical and epidemiological lit-
eratures [1,2], the biological underpinnings of these
associations remain poorly understood. Microarray ana-
lyses show that adipose mass and depot differences in
adipose tissue gene expression in mice are regulated by
sexually dimorphic gene networks. Inflammatory and de-
velopmental genes, some of which are modulated by sex
steroid hormones, are prominent among depot- and sex-
specific genes [3-5]. Furthermore, and especially impor-
tant for understanding the pathogenesis of obesity and
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its metabolic complications, interactions of sex differ-
ences in gene expression with environmental variables
such as diet composition and exercise/activity on fatness
and fat distribution remain largely unexplored. Because
excellent reviews of sex differences in the regulation of
food intake and body weight have been recently published
[6,7], in this review, we focus on physiologic and genetic
determinants of sex differences in fat distribution.
The adipose organ of humans
Cinti convincingly argues that body fat is stored in the
adipose organ which consists of definable fat depots [8].
Subcutaneous white adipose tissue (SAT) depots, just
under the skin, store ~80-90% of total body fat, mainly
in the abdominal (around the waist), subscapular (on the
upper back), gluteal and femoral (thigh) areas. These
subcutaneous adipose tissues have distinct morphological
and metabolic profiles and exhibit sex-specific differences
in size and function that we will review in detail. Intra-
abdominal depots include visceral adipose tissues (VAT,
omental and mesenteric), which are associated with di-
gestive organs. VATs drain their blood into the portal vein
and account for 6-20% of total body fat, with higher values
in males than females [9-12]. Adipose tissues in the
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retroperitoneal compartment (~7% of total [13]) do not
drain into the portal vein and are therefore not considered
‘visceral’.
It has been recently recognized that humans, even in

adulthood, possess islands of brown adipose tissue,
mainly in the supraclavicular/dorsal cervical area [14,15].
Whereas the function of white adipose tissues is to store
excess energy, the function of brown fat is to produce
heat. Indeed brown fat mass and activity are induced by
cold stress [16]. The exact role of this specialized tissue
in the regulation of energy balance in humans remains
to be determined ([16], and reviewed in [17]). Of interest
with regard to sex differences in metabolism, limited
data indicate that women tend to have higher quantities
of brown fat, but the significance of this observation is
not clear, as women do not have higher energy expend-
iture (adjusted for lean mass) [14,15,18]. The regulation
of brown adipose tissue mass and function in determin-
ing susceptibility to obesity in men and women is cur-
rently an active and important area of investigation, but
little is known. This review will focus on sex differences
in human white adipose tissues.

Determinants of sex differences in body fat and fat
distribution
For the same body mass index (BMI), women typically
present with ~10% higher body fat compared to men
[19,20]. Aging increases adiposity in both sexes, but again,
women are characterized by higher percent body fat
throughout the entire life span [21]. Sex x race interac-
tions are also evident: in contrast to Caucasians, African
American women and men appear to have comparable fat
content at higher BMI levels [22].
At comparable levels of total adiposity (estimated either

from BMI or by imaging techniques), women have more
SAT both in the abdominal [22-25] and in the gluteofe-
moral area [26,27]. Moreover, this is due to preferential in-
crease of superficial and not deep SAT in women; it is the
size of the deep compartment that is inversely associated
with fasting insulin levels [28]. At the same time women
are characterized by lower intra-abdominal/visceral fat
mass [23-25]. However, the difference in visceral fat mass
is diminished and not consistently seen in older age
groups [22,29]. Women of Asian origin, either Chinese or
South Asian, have higher VAT content than Caucasian
women (BMI-adjusted), but lower than men of the same
ethnicity [30]. Only black women have VAT comparable to
and at the same time abdominal SAT larger than black
men [24,27].

Fat distribution is modulated by sex steroids
Striking sex differences arise during puberty: the in-
crease in body weight in boys is primarily due to in-
creases in lean mass whereas in girls due to increases in
fat mass; typical android and gynoid fat distributions
also appear for the first time during this time period
[31-33]. Menopause is followed by redistribution of adi-
pose tissue towards a more central/android phenotype
[34,35]. Importantly, it is visceral adiposity that rises in
women during the peri-menopausal transition, presum-
ably due to the fall in estrogen levels [36,37]. As testos-
terone declines with age, visceral adiposity also increases
in men [38,39]. The hyperandrogenism in women with
polycystic ovary syndrome is frequently, but not consis-
tently, associated with increased total and abdominal
adiposity [40-42]. Finally, studies of transgendered men
and women treated with sex steroids show clear shifts in
fat distribution [43]. Very little is understood about the
cellular and molecular mechanisms by which sex ster-
oids modulate the growth and metabolism and hence
the size of specific fat depots in humans (as reviewed
below).

Genetic determinants of total adiposity and distribution
in women and men
Twin studies demonstrate that genetic factors account for
up to 70% of the BMI variance [44], and that this effect is
influenced by sex [45]. A few rare genetic syndromes have
differential effects on total adiposity in males and females
and may provide clues to understanding sex differences in
adiposity [46-49]. A number of polymorphisms in the estro-
gen receptor α gene are associated with total adiposity and
fat distribution and in some cases this relationship is
restricted to females [50-52]. Results of recent genome-
wide association studies (GWAS) have identified genetic
determinants of common polygenic obesity that interact
with environmental variables in complex ways, but so far
explain only a small percentage of the inter-individual vari-
ation in BMI [53].
GWAS and meta-analyses of GWAS have also identi-

fied novel loci associated with central or peripheral fat
distribution, some of which are sex-specific (summarized
in Table 1) [54,55]. For five of these loci (near or in
RSPO3, TBX15, ITPR2, WARS2 and STAB1), differential
mRNA expression is also noted between abdominal and
gluteal tissue [54]. Although the functional correlates of
these SNPs are yet to be identified, there are a number
of intriguing candidates. For example, VEGF plays an
important role in the vascularization of the expanding
adipose tissue in development or obesity [56]; GRB-14
inhibits insulin action [57,58]; TFAP2B affects adipokine
secretion and adipocyte insulin sensitivity [59,60] and
TBX15 differentiation and lipid accumulation [61]. Both
KREMEN1 and RSPO3 interact with the Wnt signaling
pathway, which in turn plays a fundamental role in adi-
pocyte differentiation [62,63].
These loci explain in total only 1.34% of the variance

in waist-to-hip ratio in women, and even less (0.46%) in



Table 1 Single nucleotide polymorphisms (SNPs) associated with fat distribution in genome-wide association studies

SNP Nearby gene Associated
with

Significant in
men

Significant in
women

Significant sex
difference

rs9491696 RSPO3 (R-spondin 3) WHR Yes Yes Yes

rs6905288 VEGFA (vascular endothelial growth factor A) WHR Yes Yes Yes

rs2605100 LYPLAL1 (lysophospholipase-like protein 1) WHR No Yes Yes

rs4846567 WHR No Yes Yes

rs718314 ITPR2 (inositol 1,4,5-triphosphate receptor 2) –
SSPN (sarcospan)

WHR Yes Yes Yes

rs1443512 HOXC13 (homeobox C13) WHR Yes Yes Yes

rs4823006 ZNRF3 (zinc and ring finger 3) – KREMEN1
(kringle containing transmembrane protein 1)

WHR Yes Yes Yes

rs10195252 GRB14 (growth factor receptor-bound protein 14) WHR Borderline Yes Yes

rs6795735 ADAMTS9 (ADAM metallopeptidase with
thrombospondin type 1 motif, 9)

WHR Borderline Yes Yes

rs984222 TBX15 (T-box 15) – WARS2 (tryptophanyl tRNA
synthetase 2, mitochondrial)

WHR Yes Yes No

rs1055144 NFE2L3 [nuclear factor (erythroid-derived 2)-like 3] WHR Yes Yes No

rs1011731 DNM3 (dynamin 3) – PIGC (phosphatidylinositol
glycan anchor biosynthesis, class C)

WHR Yes Yes No

rs1294421 LY86 (lymphocyte antigen 86) WHR Yes Yes No

rs6784615 NISCH (nischarin) – STAB1 (stabilin 1) WHR Yes Yes No

rs6861681 CPEB4 (cytoplasmic polyadenylation element
binding protein 4)

WHR Yes Yes No

rs987237 TFAP2B (transcription factor activating
enhancer-binding protein 2 beta)

WC Yes Yes No

rs7826222 MSRA (methionine sulfoxide reductase A) WC Yes Yes No

WHR waist-to-hip ratio, WC waist circumference.
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men [54]. Undoubtedly, epigenetic regulation of gene ex-
pression by environmental and/or hormonal factors con-
tributes significantly to individual variation and sex
differences in fat distribution. Animal studies show that
exposure to sex steroids early in life alters adipose tissue
distribution and function in adulthood [64,65]. In
humans, sex differences in epigenetic regulation have
been reported in several tissues [66-69] and are feasible
to test in adipose tissue [70]. Recent studies showing
that acute exercise, overfeeding, and type 2 diabetes can
modulate gene expression in skeletal muscle through
epigenetic mechanisms [71-73] open the exciting sce-
nario that lifestyle factors can interact with developmen-
tal programming to regulate adipose tissue mass and
distribution.

Metabolic significance of body fat distribution
Body fat distribution is linked to health in both men and
women
Since the seminal work of Jean Vague, it has become
clear that sex differences in adiposity and fat distribution
are closely associated with whole body metabolism and
long-term health [74,75]. Thus, although BMI is in itself
a strong predictor of total mortality [76], this is far from
a simple, universal relationship. Certain individuals re-
tain metabolic health despite being morbidly obese [77],
while others develop disease at paradoxically normal adi-
posity levels [78]. In both sexes, a peripheral body fat
distribution clearly dissociates fat mass from risk for
metabolic diseases [79,80].

Gluteal-femoral fat distribution is associated with lower
metabolic risk
The clinical significance of body fat distribution is sup-
ported by multiple epidemiological studies that confirm
the detrimental effect of central body and the protective
effect of gluteal-femoral fat on diabetes [81,82], cardio-
vascular risk and eventually morbidity and mortality
[1,76,83-89]. Early clinical studies based on anthropo-
metric measurements also showed very clearly that the
protective peripheral fat distribution phenotype (pear
shape) is mainly seen in women [90]. However, ~40% of
women between the age of 30–79 store fat predomin-
antly in the abdominal area as evident by a waist-to-hip
ratio >0.85 [91]. These so-called upper body obese women
suffer from the same metabolic complications as men [92].
As recently reviewed [93], premenopausal women,

compared to age-matched men, have better lipid profiles:
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higher high density lipoprotein (HDL)-cholesterol levels
and lower low density lipoprotein (LDL)-cholesterol, very
low density lipoprotein (VLDL)-cholesterol and total tri-
glyceride levels. Importantly, this improved lipid profile is
seen both in the fasting state and postprandially [94,95]
and the sex differences cannot be attributed solely to pre-
ferential VAT accumulation in men [96]. Although fasting
insulin concentrations are comparable between BMI-
matched men and women [97], women show improved
insulin sensitivity at the level of liver and skeletal muscle
(reviewed in [98]). This apparent contradiction between
higher total body fat and improved systemic metabolism
in women intuitively leads to questions about sex differ-
ences in the biology and function of different adipose tis-
sue depots.

Mechanisms linking gluteal-femoral fat to metabolic risk
are unclear
The storage capacity of gluteal-femoral adipose tissues
may play a role in determining the level of central adi-
posity. A recent randomized-controlled trial in nonobese
women showed that removal of thigh fat by liposuction
is followed by re-accumulation preferentially in the ab-
dominal area, suggesting that effective peripheral fat stor-
age may protect from the expansion of central fat depots
[99]. This ‘redistribution’ of fat would be expected to have
an impact on metabolic risk over the long term. However,
it is also possible that gluteal-femoral adipose tissue plays
an active role in metabolism. Studies in male mice show
that transplantation of inguinal SAT as compared to epi-
didymal (which has properties of visceral depots) inside
the abdominal cavity leads to less body weight gain and
better glucose tolerance [100,101]. On the other hand,
other laboratories report that transplantation of epididy-
mal fat into the abdominal cavity also improves glucose
tolerance [102,103]. Whether SAT of female mice has
more potent effects has yet to be reported, and we are cur-
rently undertaking these studies.

Sex differences in adipose tissue metabolic function
The major function of adipose tissue is the appropriate and
highly regulated storage and release of energy (Figure 1).
Free fatty acids (FFA), either circulating or derived from
chylomicrons, VLDL-cholesterol and triglycerides (TG) by
the action of lipoprotein lipase (LPL), are taken up by the
adipocytes and stored as intracellular TG, three fatty acids
esterified to a glycerol backbone. Stored TG can be mobi-
lized as required between meals and in the starved state.
Insulin and catecholamines act as the main regulatory sig-
nals of the fed and the fasted state respectively. The inte-
grated regulation of TG storage and mobilization together
with the endocrine function of adipose tissue are
essential for whole body metabolism as reviewed before
[104]. Depot differences in abdominal versus gluteofemoral
fat have been reviewed in detail [1,93] so here we will
emphasize the sex-specific characteristics.

Storage of energy in adipose tissue: subtle differences
between sexes
It would be reasonable to expect that women are more
effective in storing fat subcutaneously and men intra-
abdominally, as that could explain preferential fat de-
position. Indeed early in vitro studies suggested that
subcutaneous adipocytes/adipose tissue from women
show higher LPL activity [105], lipid synthesis [106] and in-
sulin-stimulated glucose uptake [107,108] compared to
men. In vivo studies however show that the answer is more
complex.
Women store a higher percentage of meal-derived FA in

SAT compared to men (38% vs 24%) [109,110], but this is
a direct result of their greater SAT mass. When expressed
as per gram of adipose tissue lipid, i.e. per unit of fat mass,
FA uptake is comparable between sexes in all three SAT
depots (abdominal, gluteal and thigh) [109]. On the other
hand, the uptake of meal-derived fatty acids by VAT in
men exceeds that in women, whether it is calculated as %
of total meal disposal or as absolute values (μmol/min)
[111]. Thus, differences in FFA storage after a meal are
likely to contribute to VAT expansion in men, but less
likely to contribute to SAT expansion in women.
Under certain conditions though, the female tendency to

store fat in the peripheral subcutaneous depots becomes
more apparent. In response to a hypercaloric, high-fat meal,
storage of meal-derived triglyceride-fatty acids per gram of
adipose tissue lipid is increased preferentially in the gluteo-
femoral SAT of women compared to men [112], despite
the fact that the adipocytes are larger, i.e. there are fewer
adipocytes per gram. Additionally, meal fat storage is more
efficient in peripheral vs. abdominal SAT of women with
gluteal-femoral obesity; in upper body obese women or
obese men there are no such regional differences [113].
These findings appear to be driven by depot differences in
LPL activity [111], which is a rate-determining step in the
uptake of circulating triglycerides. Further studies are
needed to assess the mechanisms for these depot- and sex-
specific phenomena, including assessment of regional dif-
ferences in sex steroid action on LPL [114-116] in men and
women of varying fat distribution.
Net fat storage in the adipose tissue after a meal

requires inhibition of lipolysis, achieved by increased cir-
culating insulin levels. This mechanism is less effective
both in men and in upper body obese women [117,118]
compared to women with peripheral fat distribution.
Differences in insulin sensitivity (higher in females) are
reproduced in vitro in isolated adipocytes of pre- [119],
but not post-menopausal women [120] and can also be
causally linked to the detrimental postprandial metabolic
profile seen in men and upper body obese women.
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Figure 1 Simplified overview of adipocyte metabolism. After a meal, triglycerides (TG) packaged into chylomicrons are transported to the
adipocytes. The enzyme lipoprotein lipase (LPL) made in the adipocyte is secreted to the capillary endothelium were it cleaves TG to fatty acids
(FA) which are in turn taken up by the adipocyte and esterified to a backbone of alpha-glycerophosphate (which is mainly derived from glucose).
Insulin stimulates this process, mainly by stimulating glucose uptake. Stored TG can be mobilized after hydrolysis by lipases (adipose tissue
triglyceride lipase - ATGL and hormone sensitive lipase - HSL). The process of lipolysis is stimulated by catecholamines and inhibited by insulin. Gluteo-
femoral adipocytes of women are more efficient in storing FA via the direct pathway and also show higher LPL activity. See text for details.
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Although it was once believed that LPL-mediated up-
take of fatty acids from circulating TG-rich lipoproteins at
the fed state is the major or sole mechanism for FA
provision to the adipose tissue, the importance of direct
uptake of circulating FFA at the postabsorptive state is
now realized [121]. This pathway shows clear sexual di-
morphism: at the whole body level, women deposit double
the percentage of circulating FFA (8.2% versus 4.0%) in
body fat. Furthermore, lean men are less efficient at depos-
iting circulating FFA into femoral as compared to abdo-
minal adipose tissue, while lean women show no depot
difference [121]. In obese subjects direct FFA uptake is
enhanced specifically in the femoral tissue of women
[121]. The peripheral fat depots of women are also more
effective in FFA storage during physical activity (walking)
in comparison to both abdominal SAT of women or to
any SAT depot of men [122]. Higher direct FFA storage
was also noted in the omental adipose tissue of women (a
visceral depot), which is opposite to what would be pre-
dicted from the lower mass of this depot in women.
Therefore, the capacity for direct FFA deposition is likely
not the major determinant of visceral adiposity [123].
To summarize, differences in fat deposition between

sexes are likely to arise partly due to: a) the preferential
postabsorptive direct FFA uptake by SAT in women and
b) the enhanced postprandial meal-derived FFA uptake
by VAT in men (Figure 2).
Release of energy from adipose tissue: female adipose
tissue is more lipolytically active
To achieve normal fatty acid homeostasis, the FFA flux
to or from adipose tissue needs to match whole body en-
ergy requirements. FA release in excess of the needs of
other tissues leads to elevated circulating FFA levels or
flux, which in turn contribute to insulin resistance, ec-
topic lipid accumulation and lipotoxicity. Thus, it comes
as no surprise that total FFA flux correlates closely with
whole body energy requirements (resting energy expend-
iture [124]). Given the higher fat levels in women, one
could hypothesize that release of FFA (lipolysis) would
be suppressed compared to men. On the contrary, lipoly-
sis relative to resting energy expenditure is significantly
higher (by about 40%) in women [124]. This is achieved
without deleterious consequences partly because women
are more dependent on fat oxidation than men in periods
of high energy requirements like exercise, when men tend
to utilize more carbohydrates [125]. Therefore, the
increased lipolysis is a mechanism that matches well the
preferential use of FFA in women.
On the other hand, lipolytic rates in women are higher

than in men even under resting conditions when FA oxi-
dation is comparable between sexes [125]. This is asso-
ciated with ~15% higher levels of circulating FFA levels
[126] but not with any detrimental effects on whole body
metabolism [127,128]. It follows logically that for women
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Figure 2 Key sex differences in adipose tissue. Compared to men, women are characterized by increased amounts of brown adipose tissue
BAT and enlarged peripheral fat depots, whereas intra-abdominal fat depots are preferentially increased in men. Sex differences in the metabolic
and endocrine function of these depots are associated with diminished disease risk in women. FFA free fatty acids.
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to preserve their insulin sensitivity, they have to be more
effective in alternative FFA disposal [124]. Indeed, recent
studies demonstrated that women exhibit higher non-
oxidative FFA disposal (i.e. esterification and storage as
triglycerides) [129] and after an overnight fast, they pre-
ferentially partition FFA towards hepatic oxidation to
ketone bodies, rather than incorporation into VLDL-TG
[130]. FFA can also be shuttled back to adipose tissue
through the direct FFA uptake pathway discussed above.
Sex differences in systemic lipolysis appear to arise at

the level of the upper-body SAT which is, in both sexes,
the main source of circulating FFA [117,131,132]. Nor-
epinephrine-stimulated lipolysis in abdominal SAT in
women exceeds that seen in men both in vivo and
ex vivo [133,134]. Similarly, after exercise, the increase
in circulating glycerol is augmented in women compared
to men [125,135], as well as the glycerol release specific-
ally by the abdominal SAT (no differences were seen be-
tween sexes in the gluteofemoral SAT) [135,136].
Prolonged fasting (up to 72 h) leads to exacerbated stimu-
lation of lipolysis in women compared to men, despite
comparable rises in catecholamine levels [137,138]. The
opposite holds true for VAT, where ex vivo and in vivo
stimulation of lipolysis is higher in men [134,139,140], but
this has more impact on FA flux to the liver via the portal
circulation and little impact on systemic FFA flux. Finally
in men, ex vivo lipolysis is higher in intra-peritoneal
(omental and mesenteric) than retro-peritoneal depots,
while the opposite occurs in women, but the in vivo
physiological significance of these observations is unclear
[139].
To summarize: women, compared to men, show higher

rates of mobilization of adipose tissue TG stores, possibly
because they are more dependent on FFA as an energy
source under conditions of high energy demands like ex-
ercise. At the same time they are more efficient in hand-
ling FFA and thus retain their insulin sensitivity. Depot
differences in lipolysis however cannot explain the periph-
eral deposition of fat in women compared to men
(Figure 2).

Sex differences in the endocrine function of adipose
tissue
Apart from regulating fuel homeostasis, adipose tissue
releases a multitude of secretory products, collectively
called adipokines. The regulation of adipokine release
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and their individual roles have been reviewed extensively
([141,142] among others). The two major adipokines are
leptin, a metabolic regulator and feedback signal of body
fat to regulate appetite, and adiponectin, an insulin-
sensitizing and anti-inflammatory hormone. Multiple
studies have established that women have higher circulat-
ing leptin levels compared to men, even after adjusting for
differences in BMI and body fat content [143,144] and this
finding is replicated in ex vivo adipose tissue cultures
[145]. Interestingly, although sex differences in leptin are
augmented during puberty, they are also apparent in chil-
dren and even in neonates [146-148]. Leptin levels do not
decline with menopause suggesting again that the higher
leptin relative to body fat in women is not simply due
to sex steroids (although postmenopausal women have
slightly lower leptin per kg of fat compared to premeno-
pausal women, they still have higher levels in comparison
to men) [149,150]. Higher circulating adiponectin concen-
trations are also seen in women despite their higher adi-
posity, which is associated in both sexes with lower
adiponectin levels [151-153]. These sex differences in adi-
pokine production are of dual significance. They suggest
inherent differences in adipocyte function between sexes
or differential regulation by hormones, e.g. suppressive
effects of androgens on leptin and adiponectin production
[148,152]. More importantly, they may be also directly
and causally related to the differences in whole body insu-
lin sensitivity and metabolism seen between sexes.

Sex steroids influence depot-specific adipose tissue
metabolism and endocrine function
It is evident from the changes taking place during pu-
berty and menopause, in women with polycystic ovary
syndrome and in transgendered individuals that sex hor-
mones have multiple effects of adipose tissue. The exact
mechanisms involved remain largely obscure. Human adi-
pocytes, as well as preadipocytes, express sex steroid
receptors [154,155]. Both estrogens and androgens blunt
lipolytic responses to catecholamines, an effect that is
modulated at least partly via changes in adrenergic recep-
tors expression [156,157], and also suppress LPL expres-
sion and activity [115,158]. Androgens have also been
shown to increase glucose uptake [159]. Sex steroids have
contradictory effects on leptin secretion - estrogens in-
duce it and androgens inhibit it – in a sex specific manner,
i.e. more so in adipocytes derived from women than from
men [160,161]. It is also possible that sex steroids affect
adipose tissue biology primarily via effects on the central
nervous system, rather than via direct effects on the adi-
pocytes. For example, in animal models, estrogen effects
on steroidogenic factor-1 neurons of the ventromedial
hypothalamic nucleus enhance brown adipose tissue
thermogenesis and specifically limit visceral adipose tissue
accumulation [162].
Sex steroids may regulate adipose tissue growth in a depot
specific manner
Adipose tissue expands through enlargement of existing
adipocytes and recruitment of progenitors. Sex differ-
ences in fat distribution involve both cell size and num-
ber: gluteo-femoral adipocytes of women are larger than
in men, whereas abdominal adipocytes are comparable
between sexes, and visceral adipocytes of women are
smaller [105]. Nevertheless, the expansion of subcutane-
ous depots in obese women compared to men is mainly
due to higher cell numbers [90,105]. More recently and
with more exact imaging techniques, it was again shown
that femoral fat accumulation in women is associated
with increased adipocyte number (hyperplasia) whereas
in men with increased adipocyte size (hypertrophy). Fat
accumulation in the abdominal area is associated with
hypertrophy in both sexes, but women start with more
adipocytes even at the lean state and can therefore ac-
commodate larger fat mass [163].
Although extensive studies document depot differences

in the capacity of different depots of rodents to expand
through hyperplasia [164,165], remarkably little is known
about humans. Limited data suggest that the SAT of
women, and particularly the femoral depot, contains a
higher percentage of early differentiated adipocytes com-
pared to men. Interestingly, in vitro proliferation and dif-
ferentiation of preadipocytes isolated from the same
individuals were comparable between sexes, leading these
authors to suggest that the local microenvironment rather
than inherent cellular differences promotes adipogenesis
in women [166].
In vitro, estrogens stimulate proliferation of human

preadipocytes [167,168], whereas androgens inhibit dif-
ferentiation without affecting proliferation [158,169].
However, whether specific depots are differentially sensi-
tive to sex steroid effects and potential sex-differences in
response to these hormones are yet to be systemically
investigated.

The systems biology of sex differences in adipose tissue
A comprehensive analysis of the gene networks that dif-
fer in ‘visceral’ adipose tissues (unspecified) of male and
female mice clearly shows that gene networks identified
in each sex affect different pathways and have different
associations with metabolic and obesity traits (4). Recent
studies in humans indicate the existence of sex biased
mRNA and miRNA expression in abdominal and gluteal
adipose tissues that will undoubtedly yield new mechan-
istic insights [170,171].

Conclusions
Sex differences in the fat phenotypes are probably deter-
mined by a complex interplay of genetic, epigenetic, and
hormonal factors. Elegant in vivo studies of depot- and sex-
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specific differences in adipose tissue metabolism showed
that the primary suspects (lipid uptake and mobilization)
are not the main mediators and at the same time pointed
to new pathways (direct FFA uptake) for further investiga-
tion. We still do not know if sex differences in the function
of female adipocytes are mainly derived from genetic, cell
autonomous properties related to sex chromosomes or
from critical early imprinting events by sex steroids. The
direct effects of sex hormones on adipocyte function and
the importance of the microenvironment of specific adipose
depots on growth remain poorly understood. Much more
work will be required to integrate all the data arising from
studies of global gene and miRNA expression, as well as of
epigenetic changes, and to understand why females can ac-
cumulate more adipose tissue than men without deleterious
metabolic consequences, and how gluteal-femoral adipose
tissue in particular lessens metabolic risk.
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