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Turning sex inside-out: Peripheral contributions
to sexual differentiation of the central
nervous system
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Abstract

Sexual differentiation of the nervous system occurs via the interplay of genetics, endocrinology and social
experience through development. Much of the research into mechanisms of sexual differentiation has been driven
by an implicit theoretical framework in which these causal factors act primarily and directly on sexually dimorphic
neural populations within the central nervous system. This review will examine an alternative explanation by
describing what is known about the role of peripheral structures and mechanisms (both neural and non-neural) in
producing sex differences in the central nervous system. The focus of the review will be on experimental evidence
obtained from studies of androgenic masculinization of the spinal nucleus of the bulbocavernosus, but other
systems will also be considered.
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Review
One of the most vexing problems facing those who
study sexual differentiation of the nervous system was
apparent right at the beginning. Phoenix and colleagues
[1] are widely credited with founding this field of study
by demonstrating that sex hormones, when manipulated
prenatally and in adulthood, can reverse sex-typical
copulatory behaviors in guinea pigs. Notably, although
the authors identified the nervous system as the likely
site of sex hormone action, they acknowledged that in
principle the observed effects on behavior could result
from actions on non-neural tissues. We now have over-
whelming evidence that early gonadal hormones do
indeed organize sex differences in the central nervous
system (CNS), and we believe that these sexual dimorph-
isms contribute to sex differences in behavior [2-6].
Nonetheless, we are still forced to make a similarly
qualified statement about our current state of knowledge
of site of androgen action in organizing behavior,
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precisely because there is good evidence for the periph-
ery, including the peripheral nervous system as well
as non-neural tissues (e.g. muscle), contributing to sex
differentiation of the CNS [7]. The goal of providing a
satisfying description of the mechanisms whereby sex
hormones produce any of the known sex differences in
the nervous system has remained elusive despite inten-
sive investigation. Nonetheless, to the extent to which
we have answers to the site of action question, there
appear to be as many or more cases of indirect actions
of steroid hormones on the CNS via peripheral structures.
The spinal nucleus of the bulbocavernosus (SNB)
The SNB is a neuromuscular system that mediates copu-
latory functions associated with the phallus. When the
the SNB system is disabled via target muscle ablation,
intense reflexive erection of the glans penis known as
“cups”, efficient ejaculation, and the efficient deposition
and removal of seminal plugs are impaired [8-11]. These
erectile and ejaculatory functions of the SNB system are
critical for male fertility, perhaps explaining the strong
conservation of the SNB system among mammals [6].
In rats, both SNB motoneurons and their target mus-

cles are larger in males than females due to testosterone
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action both during a perinatal sensitive period [12-14] as
well as throughout adult life [15,16]. Unlike many CNS
dimorphisms, estrogenic metabolites of testosterone play
only a minor role in its organization [17,18], whereas
activation of androgen receptors (ARs) is both necessary
[15,19] and largely sufficient [12,20] for masculinization
of the SNB. Because AR is expressed in many cells,
including SNB motoneurons [21-24] and target muscles
[25,26], it is unclear whether testosterone acts on moto-
neurons, muscles or other cells to masculinize the
system. The SNB is also unusual in that, as a neuromus-
cular system, the targets of SNB neurons are known and
are relatively accessible for study, and experiments in
which the components of this system are dissociated are
feasible. As a result, the rodent SNB is the CNS sexual
dimorphism in which site of action has been addressed
most extensively. It is worth noting that when some of
these conditions have been met in other CNS dimorph-
isms, (for example knowledge of functional connections
between the rodent bed nucleus of the stria terminalis
and anteroventral periventricular nucleus, or the zebra
finch high vocal center and robust nucleus of the archo-
pallium), progress has been made in determining site
of action.
Sex differences in the SNB result from androgenic ac-

tion on many morphological aspects of motoneuron and
muscle (reviewed thoroughly in [6]). Site of androgen
action for at least some of these features has been deter-
mined, although apparently contradictory evidence exists
(Table 1). We will restrict our discussion of site of action
to recent experiments that shed light on the cellular
basis of androgenic organization of SNB motoneuron
number and androgenic activation of SNB soma size and
dendritic extent.
Androgenic action on the SNB system is almost exclu-

sively mediated by ARs. This conclusion comes partly
from the study of rats with the testicular feminization
mutation (Tfm see [51] for review), which is a loss of
function Ar mutation [52]. The Ar gene is located on the
X chromosome, allowing for some interesting experi-
mental preparations. Genetic Tfm male rats (XTfmY)
have a complete loss of Ar function, but produce high
levels of testosterone. These Tfm males have a feminine
SNB system on all measures examined, including moto-
neuron number [15,34], size [15,34], and size of target
muscles [34,53]. Female carriers of the Tfm allele
(XTfmXwt) have also been used to address site of action
in the androgenic masculinization of the SNB system.
Due to X chromosome inactivation, and indirect rescue
of SNB motoneurons, androgenized females possess a
mosaic of SNB motoneurons, approximately half of
which express the X with the Tfm mutation while the
remainder express the X chromosome with a wt Ar
allele. Androgenic effects on SNB motoneurons that are
direct should only occur in those cells expressing wt Ar,
whereas indirect effects should occur in both cells types.
This type of mosaic analysis has been used to provide
evidence of direct activation of SNB soma size and gene
expression via actions on motoneuronal Ar, and also that
masculinization of SNB motoneurons occurs independ-
ently of motoneuronal Ar (Table 1).
Genetic engineering makes more refined manipula-

tions of Ar possible. For example, it is possible to
manipulate a gene of interest in specific tissue types
and/or developmental periods. We and our collaborators
recently engaged in such studies to determine the role of
Ar within myocytes in mediating various known actions
of testosterone. Myocytes have widely been assumed to
be the cell type on which androgens were acting to res-
cue the SNB neuromuscular system for a number of rea-
sons: myocytes are the primary cell type in muscle;
myocytes are the cells with which neurons functionally
interact; retrograde neurotrophic influence of myocyte
on motoneurons has been well characterized in other
systems; and there is evidence of AR expression within
myocytes [25,34].
We therefore attempted to rescue the Tfm SNB with

selective myocyte Ar replacement. To do this, we used a
human skeletal actin-AR (HSA-AR) transgene, which
comprises a promoter from a skeletal myocyte-specific
actin isoform (ACTA1) driving expression of AR, in rats
[34]. The initial research question in this case was to
determine whether AR expression restricted to myocytes
would be sufficient to rescue the SNB of Tfm males.
This experiment provided a strong test of the predic-
tions made by the prevailing model of androgenic rescue
of the SNB at that time, which held that testosterone
acts on ARs within myocytes to masculinize the target
muscles as well as rescuing SNB motoneurons via a
retrograde neurotrophic mechanism. Much to our sur-
prise, we were not able to verify either of these pre-
dictions. Instead, expressing AR in myocytes had no
measurable masculinizing effect on either target muscles
or motoneurons in rats [34]. This puzzling result might
be explained either by myocyte AR not being involved
in the organization of the SNB, or by AR in this cell
type being but one of several necessary conditions. The
former interpretation is somewhat supported by a mouse
model in which Ar has been genetically deleted select-
ively within myocytes [35]. Despite the lack of myocyte
Ar, these mice nonetheless possess a masculine (albeit
hypomorphic) target musculature. Similarly, these mice
have masculine, but reduced SNB motoneuron number
[36]. One important caveat when interpreting the results
of these experiments is that the efficiency of Ar knock-
out in this model is uncertain, both in terms of how
completely Ar was deleted when measured in adulthood
[35], and also whether Ar deletion occurred prior to the



Table 1 Site of action in the spinal nucleus of the bulbocavernosus

Evidence Site of action Reference

Organization of motoneuron number

Androgens can attenuate cell death in cultured motoneurons Motoneuron [27]

Androgen receptor is expressed in muscle but not motoneuron during
critical period

Muscle, not motoneuron [28][26]

Ablation of spinal cord containing SNB does not prevent masculinization
of target muscle

Not motoneuron [29]

Ablation of target muscle prevents masculinization of SNB motoneurons Muscle [30]

Anti-androgen delivered to target muscles prevent masculinization of
SNB motoneurons

Muscle [31]

Administering CNTFa, trkB or trkC antagonists to target muscle more
effective than systemic administration in preventing masculinization of
SNB motoneurons

Muscle [32]

SNB motoneurons of androgenized XTfm/Xwt females survive regardless
of functional Ar within motoneurons

Not motoneuron [33]

Selective genetic muscle AR replacement does not masculinize SNB of
Tfm rats

Not only myocytes [34]

Selective genetic deletion of Ar in myocytes reduces but does not
prevent masculinization of SNB

Not only myocytes [35,36]

Organization of motoneuron size

Neonatal axotomy of SNB motoneurons prevents normal soma size Muscle [37]

Organization of motoneuron dendritic extent

ER agonist/antagonist delivered to target muscles more effective that
systemic delivery in regulating dentritic outgrowth of SNB motoneurons

Muscle [38]

Activation of motoneuron size

Axotomy of SNB motoneurons prevents androgenic maintenance of SNB
motoneuron size

Muscle [39-41]

AR agonists or antagonists delivered unilaterally to target muscles do
not affect ipsilateral motoneurons

Motoneuron [42]

Size of SNB motoneurons of androgenized XTfm/Xwt females depends on
functional Ar within motoneurons

Motoneuron [43]

Selective overexpression of AR in myocytes does not result in increases
in quadriceps motoneuron size

Not myocyte [44]

Activation of motoneuron gene expression

Local injection of target muscle extracts from castrated males increases
CGRP in SNB motoneurons

Muscle [45,46]

Axotomy of SNB motoneurons affects AR Muscle [47][39][48]

CGRP, CDH2 in SNB motoneurons of androgenized XTfm/Xwt females
depends on functional Ar within motoneurons

Motoneuron [49,50]

Activation of dendritic extent

AR agonists or antagonists delivered unilaterally to target muscles do
affect ipsilateral motoneurons

Muscle [42]

Selective overexpression of AR in myocytes results in androgen-
dependent increases in dendritic extent in quadriceps motoneurons

Myocyte [44]
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sensitive period for androgenic masculinization of the
SNB. These results may therefore either be interpreted
as being consistent with a necessary role of myocyte Ar
in the androgenic masculinization of the SNB, or they
may be interpreted as a modulatory role for myocyte Ar
in this process.
On balance, these studies indicate that myocytes indeed

play a role in the androgenic masculinization of the SNB,
but they do not act alone. This conclusion raises the
question of which cells are involved. Skeletal muscle is
composed of a variety of cell types other than myocytes,
including: adipocytes, endothelial cells, fibroblasts, satel-
lite cells and Schwann cells. Perhaps because myocytes
have been such an exclusive focus of research, we have
limited knowledge of these other cell types as candidates.
Among these cells, both Schwann cells [54,55] and satel-
lite cells are androgen regulated [53,56-59]. There is some
evidence for AR expression within satellite cells [60,61],
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but the best available evidence indicates that Schwann
cells do not express AR in situ in nerve [62]. Unfortu-
nately, we currently have no information concerning the
possibility that AR is expressed by these cells within the
target musculature in the critical period, nor have tests of
AR function been made in these cells.
We and our collaborators also studied site of action in

androgenic activation of SNB dendrites using HSA-AR
rats. In this case, a rescue experiment concerning the
SNB was not feasible, as HSA-AR Tfm males do not
develop a masculine SNB [34]. Instead, we decided to
explore an alternative possibility: that by making muscles
artificially sensitive to androgens, we might consequently
impart androgen sensitivity to spinal motoneurons that
normally show little response to androgens. To test this
idea, we studied motoneurons innervating quadriceps
muscles. As expected, castration did not reduce den-
dritic extent of wt male quadriceps motoneurons [44]. In
contrast, the dendritic extent of quadriceps motoneurons
of transgenic HSA-AR males showed an enhanced
response to androgen manipulations: sham-operated or
castrated and androgen-maintained transgenic males had
greater dendritic extent than sham-operated or androgen-
maintained wt males. This effect was eliminated by cas-
tration without androgen maintenance, which equalized
dendritic extent between wt and transgenic males [44].
Soma size was unaffected by androgen manipulations in
either genotype [44]. These results bear out predictions
made from studies performed in the normally androgen
sensitive SNB: that myocytes are the site of action of
testosterone in promoting dendritic extent but that tes-
tosterone acts on motoneurons themselves to promote
increases in soma size.
These results most obviously support a neurotrophic

mechanism whereby the peripheral cells (myocytes)
increase dendritic extent of innervating motoneurons.
Target musculature is suspected to exert retrograde
neurotrophic influence via brain derived neurotrophic
factor (BDNF) on androgenic activation of dendritic
extent [63]. However, another mechanism whereby myo-
cyte AR might affect motoneurons is suggested by our
characterization of HSA-AR rats. We investigated the
possibility that androgens can influence body compos-
ition via myocyte AR [64]. Androgens are known to
increase lean body mass and decrease fat body mass. It
was widely assumed that this regulation occurs in a cell
autonomous manner within myocytes and adipocytes.
Over-expression of AR within myocytes does indeed in-
crease myocyte size, but curiously, it is also sufficient
to decrease adipose tissue [64]. Because these alterations
in body composition were associated with changes in
resting metabolic rate, muscle respiration, and, in mice,
alterations in mitochondrial morphology, these results are
most obviously consistent with an endocrine mechanism
of action [64,65]. It therefore remains possible, but it
seems less likely, that endocrine mechanisms explain the
effect of myocyte AR on spinal motoneurons.

Extrinsic influences on SNB development
Although the main focus of study in the sexual differen-
tiation of the SNB has been on an intrinsic factor
(i.e. androgens), there is reason to believe that ex-
trinsic factors may also contribute to this process.
Interactions with conspecifics, and especially with the dam,
have been investigated as potentially mediating some
aspects of organization of the system. Maternal behavior
directed towards pups is unequal between male and female
pups [66]. The salient difference in maternal behavior is in
anogenital licking, with dams licking male pups more than
female pups. Eliminating this sex difference in licking, via
maternal anosmia, interferes with the ability of adult
males to accurately intromit [67,68]. Concomitant with
this behavioral impairment, reduced masculinization of
the SNB system is also observed, characterized by
reduced motoneuron number [69], soma size, dendritic
extent and target musculature [70]. It is unclear exactly
how this extrinsic factor of maternal licking results in
alterations in the SNB system, but the obvious mechan-
ism would be via tactile sensory stimulation (i.e. a sensori-
neural mechanism).
This idea of a sensorineural mechanism mediating ma-

ternal effects on organization of the SNB is supported by
several lines of evidence. Firstly, some of these effects of
maternal anosmia can be reproduced by artificially rear-
ing pups, and reversed by providing licking-like tactile
stimulation [71]. Low levels of tactile stimulation in arti-
ficially reared pups results in a decrease in soma size,
dendritic length of SNB motoneurons, lower target mus-
culature weight and ex copula penile reflexes in adult-
hood, and higher levels of stimulation reversed these
deficits. Secondly, perineal stimulation of neonatal males
results in neural activity and oxytocin release in the
vicinity of the SNB [72]. Nonetheless, a general endo-
crine mechanism cannot be discounted, as tactile stimula-
tion of pups is associated with several endocrine events,
including alteration in the regulation of glucocorticoids
[73], central sensitivity to estrogens [74], and alterations
in diverse hormonal systems regulating growth and energy
balance [75]. It would be interesting to rule out the most
obvious source of endocrine influence of tactile stimula-
tion of pups by performing experiments in which licking
(or tactile stimulation) was manipulated in pups in which
testosterone levels were controlled by gonadectomy and
dosed testosterone administration.
Extrinsic influences have also been implicated in acti-

vation of the SNB. Several studies have been conducted
to evaluate the role of sexual stimulation on the SNB.
In the first study, gonadally intact adult males were
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either given access to sexual partners, or only to sexual
cues without coital contact, or given no social partners
for 4 weeks [76]. In this case, no alteration in soma size
or dendrites was observed. In another similar study,
males were gonadectomized and maintained on an equal
dose of testosterone and either given continual access to
sexual partners or non-receptive females for 4 weeks, in
which case decreased SNB soma size was observed [77].
However, despite the attempt to equalize testosterone
between groups, this effect may nonetheless have been
due to copulating males having less circulating testoster-
one [78]. It is unclear, then, whether the variations in
sexual behavior one might reasonably expect in free-
living rats would alter soma size or dendritic extent of
SNB motoneurons, and if so, whether this would occur
via a sensorineural or an endocrine mechanism.

Applying insights from the SNB to other systems
One sometimes comes across a spoken or unspoken
objection that the SNB is simply different from other
sexual dimorphisms, and represents an exception to,
rather than an example of, a CNS dimorphism. Certainly
there are salient differences between the SNB and the
few cases of brain dimorphisms about which we have
some mechanistic understanding: the SNB is AR regu-
lated rather than estrogen receptor regulated (although
it is clear at this point that AR does indeed regulate
other CNS dimorphisms [51]), the SNB is in the spinal
cord rather than the brain, the SNB consists of primary
motoneurons, rather than interneurons, and so on.
These differences beg the question of whether we can
generalize insights gained from the SNB to other neural
dimorphisms. This last question has been affirmed con-
vincingly by the SNB’s impressive track record of leading
research into principles of neural differentiation [6]. In
fact, the insights gained from studies of the organization
of the SNB have already been used to propose indirect
action on brain dimorphisms via the periphery [7].

Interactions of other CNS dimorphisms with
peripheral structures
Tactile interactions
In addition to its targeted effects on SNB morphology
and sexual behaviour, maternal licking in general contri-
butes to many other aspects of development, including
reproductive behavior and stress response [66,73]. This
line of research has produced some concrete demonstra-
tions of extrinsic stimuli, presumably acting via tactile
sensation, altering the development of the CNS [79]. For
example, variations in licking by dams results in altera-
tions in CNS regulation of the hypothalamic-pituitary-
adrenal axis via alterations in hippocampal glucocorticoid
receptor expression levels [73]. A more direct link to
sexual differentiation is provided by the finding that
variation in maternal licking contributes to pups’ future
maternal behavior [73], which is highly sexually dimorphic.
This peripheral contribution to sexual differentiation of
behavior is plausibly linked to alterations in the CNS
by the finding that maternal licking can alter estrogen re-
ceptor expression in the medial preoptic area when
offspring of dams exhibiting extreme amounts of mater-
nal licking are compared [74]. Although these alterations
in neural steroid hormone receptor expression ultimately
occur via epigenetic mechanisms [80], as with the SNB,
it is unclear whether tactile influence on CNS is
mediated via sensorineural mechanisms, or endocrine
mechanisms, or both.

Chemosensory interactions
Historically, the argument has been made (e.g. [81]) that
sexually differentiated behavior, such as copulation,
might result primarily from sex differences in the organs
necessary for those behaviors (the genitals in the case of
copulation). In essence, this argument proposes that the
brain is more or less a tabula rasa upon which sexual
differentiation of behavior is a consequence of unequal
sensation and experience produced by sex differences
in peripheral structures. For example, according to this
argument, males are better able to engage in male-
typical insertive sexual behaviors because they possess
intromissive genitals.
More recently, a similar argument was made on em-

pirical grounds [82,83]. In this study, female mice whose
vomeronasal organ (VNO), a peripheral neural structure,
was surgically removed, or female mice with genetic abla-
tion of Trpc2, an ion channel mediating VNO chemosen-
sation, showed increased male typical copulatory behavior
(mounting). The authors concluded that females therefore
possess the neural circuits necessary for male typical
copulation and that the VNO (and specifically the TRPC2
channel) serve to suppress these behavioral responses.
The authors go on to speculate that sex differences in be-
havior may generally arise from sexually differentiated
peripheral structures, with both sexes retaining a sexually
bipotential brain throughout life [83]. In both of these
cases, the assertion that sex differences in behavior result
solely from sex differences in peripheral structures has
been dismissed, primarily based on overwhelming evi-
dence of sex differences in the structure of the CNS (for
example, see [84]), and also extensive evidence that, espe-
cially in the case of copulation, sex-typicality of copula-
tory behavior can be dissociated from sex-typicality of
genitals (e.g. [1,85]). Furthermore, there is reason to think
that the VNO ablation used to study this question [82]
may have had unintended consequences, as others have
not observed similar behavioral effects of this surgery
[84], and observed effects might affect behavior via altera-
tions in testosterone [86].
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Sex differences in behavior and/or neural structure
have been seen as relative, rather than absolute, from the
earliest study [1]. From this perspective, it is unsurprising
to observe “male” copulatory behavior in females. Indeed,
mounting is likely a normative element of the feminine
behavioral repertoire, at least in rats [87]. However, this
relative sex difference in copulatory behavior should not
be taken as evidence that the brain is not differentiated.
Nonetheless, there is good reason to think that the

VNO is important for sexual differention of brain and
behavior. There is evidence that the for sexually di-
morphic VNO [88] and main olfactory epithelium [84]
processing of chemosensory cues. We might imagine
therefore that these peripheral chemosensory structures,
either via neurotrophic and/or sensorineural mechan-
isms might contribute to sexual differentiation of the
extended olfactory system, which includes many of the
classic sexual dimorphisms that are popular subjects of
study, including the medial amygdala posterior division,
bed nucleus of the stria terminalis and the anteroventral
periventricular nucleus. It is interesting that dihydrotes-
tosterone administration to neonatal females results in a
masculine style of bedding preference [89]. Although
there is no clear indication regarding the mechanism of
this behavioral effect, dihydrotestosterone is generally in-
effective in producing CNS dimorphisms. One potential
explanation therefore is that dihydrotestosterone mas-
culinizes bedding preference via actions on peripheral
structures, such as the VNO and/or accessory olfactory
epithelium. Although this hypothesis is certainly specu-
lative at this point, it might help explain some other
recent findings in Ar mutant mice (described below) that
are puzzling according to a traditional view of exclu-
sively local differentiation of the brain.
Gonadotropin releasing hormone neurons are another

set of peripheral cells that interact with, and in fact con-
tribute to, sexually dimorphic CNS structures. These
neurons migrate into the CNS from the primordia of the
VNO [90] beginning at 10.5 days post coitus in mice
[91], prior to gonadal differentiation. We are unaware
of any data that indicates sexual differentiation in this
migratory process, or of influence of these neurons on
other sexually dimorphic cell populations other than
their obligatory role in gonadal hormone production.
Nonetheless, adult gonadotropin releasing hormone neu-
rons are sexually dimorphic [92], as is their regulation
[93], and these migratory neurons remain a potential
source of peripheral influence on the developing CNS.

Effects of ar manipulation on brain dimorphisms
and behavior
Tfm mice [94] exhibit profound deficits in copulatory
and sociosexual behaviors (see [51] for review). Similar
to Tfm mutants, males with global genetic deletion of Ar
exhibit profound deficits in masculine sexual behavior,
even following treatment with estrogens or androgens
[95]. However, as others have argued [51], we must be
somewhat cautious when interpreting results from stud-
ies with Tfm or equivalent mutants, precisely because
they lack the peripheral structures (masculine genitals)
that are essential for some classic measures of behavioral
masculinization (e.g. intromission and ejaculation, although
the associated gross motor patterns may be observed
infrequently in individuals with feminine genitals [85]),
and also because neural ARs regulate brain aromatase,
and loss of Ar function alters androgen production.
More striking is that selective genetic deletion of Ar in

neurons seems to reproduce only a relatively mild ver-
sion of the copulatory deficits observed in loss of func-
tion Ar mutations such as Tfm or global Ar knockout
[96,97]. In these experiments, Ar was inactivated select-
ively in neurons using a Nes promoter. Both studies
report a reduction in the proportion of mutant males
mating with stimulus females and attacking intruder
males relative to wt male controls. In one study an
increase in latency to initiate intromissions, thrusts and
ejaculations was observed even in males that did copu-
late [96]. In the other case, no group differences in
copulatory behaviors were observed in mice which copu-
lated are included [97]. It is unfortunate that data from
females was not presented, making it difficult to assess
the degree of sexual differentiation in mutant males. We
should also bear in mind that this results may underesti-
mate the improtance of neural Ar for sexual differenti-
ation, because of potential problems with the efficiency
of Ar deletion discussed previously.
On balance, these studies suggest that neural deletion

of AR interferes with masculinization of copulatory
behavior, although it does not prevent it entirely in the
manner of global loss of function of Ar. This suggests
that ARs other than those in neurons (and presumably
those outside the CNS) mediate the essential features
of sexual differentiation of mouse copulatory behavior.
If we extend this thinking, we might also suspect that
other sociosexual deficits exhibited by Tfm or Ar knock-
out animals might result from other peripheral deficits
in masculinization of, for example, genitals, chemosensa-
tion, or pheromone production.

Conclusions
The principle of accepting the simplest explanation for
phenomena is undeniably useful in science. In the case
of neural dimorphisms that are caused by androgens,
the simplest explanation is of course that androgens act
directly on the cell populations in question. Perhaps
unfortunately for those who study this problem, when
this assumption was put to the test for the first time,
using the SNB, it proved inconsistent with the data. The
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results of studies in the SNB have identified at least three
potential mechanisms whereby the periphery might
influence the CNS: endocrine, neurotrophic and sensori-
neural. The less intuitive explanation, that differentiation
occurs indirectly, and in some cases via peripheral struc-
tures, therefore becomes a necessary complexity in at
least some cases.
However, it is not worth abandoning the hypothesis

that androgens contribute to CNS sex differences dir-
ectly via actions on neurons. Other studies of the SNB,
including those dealing with site of androgen action in
activating soma size and gene expression, have yielded
results that are consistent with this hypothesis. Further-
more, the site of action in androgenic differentiation of
any brain region is simply unknown and so the question
remains open. Finally, there are findings that suggest
local, neural effects, such as the lack of masculinization
of aggressive behavior in males with selective genetic
deletion of Ar within neurons [97].
In the end, the answer is unlikely to be that either the

periphery or central mechanisms explain sexual differen-
tiation of the CNS. Rather, as has been the case for the
SNB, both peripheral and central mechanisms contribute
to any given sex difference. Multiple mechanisms can
come about because there are multiple sexually differen-
tiated features, each of which may have a different
mechanism of action. For example, SNB motoneuron
number is determined by androgen action on muscle
whereas some gene expression appears to be determined
by androgen action directly on SNB motoneurons (see
Table 1). Alternatively, an individual sexually differen-
tiated feature may have both peripheral and central con-
tributions. For example, there is evidence for androgen
action on both muscle and SNB motoneurons to deter-
mine SNB soma size.
Fortunately, there is promise for distinguishing between

these various possibilities. Methodology in which andro-
genic effects on central and peripheral structures are disso-
ciated using genetic engineering are becoming increasingly
available (e.g. [98]), and we anticipate that genetic
approaches to the site of action question will provide
further examples of the complex relationship between
the CNS and the periphery during sexual differentiation.
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