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Abstract 

Background While sex‑based differences in various health scenarios have been thoroughly acknowledged in the lit‑
erature, we lack sufficient tools and methods that allow for an in‑depth analysis of sex as a variable in biomedical 
research. To fill this knowledge gap, we created MetaFun as an easy‑to‑use web‑based tool to meta‑analyze multiple 
transcriptomic datasets with a sex‑based perspective to gain major statistical power and biological soundness.

Description MetaFun is a complete suite that allows the analysis of transcriptomics data and the exploration 
of the results at all levels, performing single‑dataset exploratory analysis, differential gene expression, gene set func‑
tional enrichment, and finally, combining results in a functional meta‑analysis. Which biological processes, molecular 
functions or cellular components are altered in a common pattern in different transcriptomic studies when com‑
paring male and female patients? This and other biological questions of interest can be answered with the use 
of MetaFun. This tool is available at https:// bioin fo. cipf. es/ metaf un while additional help can be found at https:// gitlab. 
com/ ubb‑ cipf/ metaf unweb/‑/ wikis/ Summa ry.

Conclusions Overall, Metafun is the first open‑access web‑based tool to identify consensus biological functions 
across multiple transcriptomic datasets, helping to elucidate sex differences in numerous diseases. Its use will facilitate 
the generation of novel biological knowledge that can be used in the research and application of Personalized Medi‑
cine considering the sex of patients.
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Background
Sex-based differences in different health scenarios have 
been thoroughly acknowledged in the literature [1, 2]; 
however, this variable remains incompletely analyzed in 
many cases. Studies often neglect sex as a variable when 
considering the experimental design of studies, leading 
to experiments with samples of just one sex in extreme 
cases. As a result, the underlying mechanisms behind 
sex-based differences in many diseases and disorders 
remain incompletely established.

Fortunately, the scientific community has worked to 
significantly improve this situation in recent times, and 
researchers have begun to include the sex perspective 
in their research; however, a vast amount of generated 
data currently stored in public databases [such as Gene 
Expression Omnibus (GEO) [3] or NCI’s Genomic Data 
Commons (GDC) [4]] remains unanalyzed from this per-
spective. The information in these databases represents a 
powerful resource that must be considered.

When exploiting these resources with a particular 
objective, multiple studies dealing with similar scientific 
questions can provide different and often contradic-
tory results. No one study is likely to provide a definitive 
answer; therefore, integrating all datasets into a single 
analysis may provide the means to understand the results. 
Designed for this purpose, meta-analysis is a statistical 
methodology that considers the relative importance of 
multiple studies upon combining them into a single inte-
grated analysis and extracts results based on the entirety 
of the evidence/samples [5–7]. Unfortunately, applying 
advanced statistical techniques such as meta-analysis 
often remains out of reach for researchers aiming to ana-
lyze their data in a straightforward manner.

We designed the “MetaFun” tool to simplify the ana-
lytical process and facilitate the application of functional 
meta-analysis to researchers working with multiple tran-
scriptomic datasets. Meta-analysis approaches can ana-
lyze datasets from perspectives such as sex and combine 
datasets to gain significant statistical power and sound-
ness. MetaFun is a complete suite that allows the analy-
sis of transcriptomics data and the exploration of the 
results at all levels, performing single-dataset exploratory 
analysis, differential gene expression, gene set functional 
enrichment, and finally, combining results in a functional 
meta-analysis.

There are currently other suitable tools that allow 
meta-analysis techniques to be applied to omics data, 
such as MetaGenyo (https:// metag enyo. genyo. es/) for 
the Meta-Analysis of Genetic Association Studies, or 
ImaGEO (https:// imageo. genyo. es/) for the Integrative 
Meta-Analysis of GEO Data. Compared to these tools, 
we present Metafun as an powerful alternative due to a 
double potential: on the one hand, and to our knowledge, 

it is the only web tool capable of integrating biological 
functions (while tools usually focus on the meta-analysis 
of genes or variants). Another important aspect is that 
Metafun is currently the only tool that can evaluate the 
different functional profiles, considering sex information. 
Both features provide a high-performance profiling tool 
for integrative user analyses.

Construction and content
The MetaFun tool is available at https:// bioin fo. cipf. es/ 
metaf un while additional help can be found at https:// 
gitlab. com/ ubb- cipf/ metaf unweb/-/ wikis/ Summa ry and 
https:// gitlab. com/ ubb- cipf/ metaf unweb/-/ wikis/ Study- 
Case. The minimum requisites the user must meet is a 
modern web browser as well as an internet connection.

Input data and experimental design
MetaFun takes a set of at least two CSV expression files 
and two TSV experimental design files as inputs. CSV 
expression files must include normalized transcrip-
tomics data from comparable studies with assimila-
ble experimental groups. Columns must contain the 
study samples, while rows must contain analyzed genes 
as their Entrez Gene ID. The first row contains sample 
names. TSV experimental files define the class to which 
each sample of the study belongs by including at least 
two columns: sample names and the class to which they 
belong. Column names in the CSV expression files must 
match row names in the corresponding TSV experi-
mental file. Accepted reference organisms are (for the 
moment) humans (Homo sapiens), mice (Mus musculus), 
and rats (Rattus norvegicus). Analyses can be made with 
respect to a comparison that must apply to all datasets. 
Options include the classical comparison—Case vs. Con-
trol (Fig.  1A)—or a sex-perspective comparison—(Male 
case vs. Male control) vs. (Female case vs. Female con-
trol) (Fig.  1B)—in which the effect under study is com-
pared between sexes. This classical comparison: Case 
vs. Control, can be used to compare any two groups. It 
is also possible to assess the effect of a specific variable 
that stratifies the case and control groups by evaluating 
the results in 2 jobs. For example, it would be possible to 
know the effect of age when comparing “older patients 
vs. older controls” vs. “young patients vs. young controls”. 
The results obtained could be compared, identifying bio-
logical functions common to both comparisons as well as 
specific ones.

Single dataset analyses
After the selection of the studies and experimental 
design, MetaFun analyzes each dataset separately with an 
individual analysis consisting of:

https://metagenyo.genyo.es/
https://imageo.genyo.es/
https://bioinfo.cipf.es/metafun
https://bioinfo.cipf.es/metafun
https://gitlab.com/ubb-cipf/metafunweb/-/wikis/Summary
https://gitlab.com/ubb-cipf/metafunweb/-/wikis/Summary
https://gitlab.com/ubb-cipf/metafunweb/-/wikis/Study-Case
https://gitlab.com/ubb-cipf/metafunweb/-/wikis/Study-Case
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• an exploratory analysis including boxplots, PCA, and 
cluster plots using the plotly library [8]

• a differential gene expression analysis using the 
limma package [9]

• a gene set enrichment analysis (GSA) [10] based on 
gene ontology (GO) [11] from the mdgsa package 
[12].

Figures and tables from these analyses can be explored 
and downloaded from the Results area once the job has 
been completed. Links to NCBI [13] and QuickGO [14] 
databases are present to detail the results.

Functional meta‑analysis
MetaFun combines the gene set functional enrichments 
from all datasets into a meta-analysis with the same 
experimental design using the metafor package [15]. For-
est and funnel plots are generated utilizing the plotly.js 
library [8]. Figures and tables from this meta-analysis are 

interactive and may be explored and downloaded from 
the Results area once the job has been completed.

Implementation
The MetaFun back end was written using Java and R 
and is supported by the non-relational database Mon-
goDB [16], which stores the files, users, and job infor-
mation. The front end was developed using the Angular 
framework [17]. All graphics generated in this web tool 
were implemented with plotly [8] except for the explor-
atory analysis cluster plot, which uses the ggplot2 R 
package [18].

Study cases
As an example, MetaFun includes two sets of pre-
selected study cases, one for each accepted species: 
human and rat. The study cases can be executed directly 
from the web tool, allowing the tool’s functionalities to 
be easily explored. The human study case includes nine 
studies from lung cancer patients [6].

Utility and discussion
Web tool overview
The web tool can be used with registered or anony-
mous users. Registered users will keep their data and 
jobs stored from one session to the other, while data 
and jobs from anonymous users will not be saved after 
leaving the session. The general design of the web tool 
includes an upper right menu with basic tool function-
alities, a left side panel with specific submenus, and 
a central panel from which to interact with the web. 
Users are directed to a form launching a new job after 
logging in, which can be otherwise accessed through 
the New Analysis button in the top right menu. The 
New Analysis form passes through a series of steps, 
asking for information that has to be completed and 
allows for a new meta-analysis. After the launch and 
execution, the job will be listed in the jobs area, which 
can be accessed through the My jobs button located in 
the top right menu. All created jobs are listed and can 
be accessed through the left side submenu to visualize 
results. Users can access their personal area through 
the top right panel using a button carrying their user-
name. Each user’s personal area includes a browser for 
folders and information regarding all launched jobs. 
The user’s personal area submenu supports a series 
of actions related to personal settings and deleting 
options. The top right panel also includes an exit icon 
button that logs users out and a question mark icon 
that opens documentation pertinent to the web tool 
(accessible through https:// gitlab. com/ ubb- cipf/ metaf 
unweb/-/ wikis/ Summa ry).

Fig. 1 MetaFun pipeline. First, datasets and experimental designs 
are uploaded as CSV and TSV files. Available comparisons include A 
a classical comparison—Case vs. Control—and B a sex‑perspective 
comparison—(Female case vs. Female control) vs. (Male case vs. Male 
control). Single experiment analyses include 1) exploratory analysis, 
2) differential gene expression, and 3) functional analysis performed 
on each dataset. Finally, the results are integrated into a functional 
meta‑analysis. The MetaFun tool allows users to explore all results 
generated during the process

https://gitlab.com/ubb-cipf/metafunweb/-/wikis/Summary
https://gitlab.com/ubb-cipf/metafunweb/-/wikis/Summary
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Input data
All datasets in the same meta-analysis should be com-
parable, including similar experimental designs and 
individuals with similar conditions. At least two data-
sets must be included in a meta-analysis. Input data 
consists of one expression matrix and one experimen-
tal design file for each dataset in the meta-analysis. 
Furthermore, we suggest that for each experimental 
group there should be a minimum of 3 samples in each 
experimental group. Although the statistical power of 
functional meta-analysis is greater than that of func-
tional analysis of individual studies, it is advisable to 
take these considerations into account, especially when 
you have sex-based subgroups, where sample sizes are 
usually smaller.

The expression matrix must have been normalized, 
with samples in columns and Entrez ID genes in rows. 
The experimental design file must indicate the original 
group to which each sample belongs, with samples in 
rows and groupings in columns. More than one grouping 
per file is accepted, placing each grouping in a different 
column (for instance, the first column could be sex, the 
second column experimental conditions, and the third 
column disease grade). However, only one grouping at a 
time will be used in a meta-analysis.

Data from different technologies (RNA-Seq, microar-
ray...) can be used as long as the input data format meets 
the requirements described in Metafun.

Launching a meta‑analysis
The New Analysis button in the top right menu directs 
users to a form that launches a new meta-analysis. The 
first tab of the form—labeled Files—includes a browser 
for user files and allows users to upload and manage 
the datasets to analyze. The Options tab allows users to 
specify the Effect Model to random or fixed, to select the 
reference organism among Homo sapiens, and Rattus 
norvegicus, to define the GO ontologies to analyze (Bio-
logical Process, Molecular Function, and Cellular Com-
ponent), and whether to propagate the annotation. A 
brief description accompanies each option to help users 
in their decisions. The Studies tab is used to select the 
studies to meta-analyze and the experimental design. 
Depending on the case, selections are made by dragging 
files from the right panel entitled My Files to the columns 
Expression or Experimental Design. Matched studies and 
experimental design must be placed in the same row, 
verifying their compatibility by checking sample names 
in the expression and experimental design files. Users 
can specify the comparison to perform in the Compari-
son tab. Two different options are currently available: the 
classical Case vs. Control, which compares the effect of 
a variable, and a sex-based comparison—(Case Female 

vs. Control Female) vs. (Case Male vs. Control Male) —
which compares the effect of a variable in females with 
respect to the effect in males. In the second case, signifi-
cant results refer to differential effects between males and 
females and may not coincide with results from the first 
comparison. After selecting the comparison, users must 
indicate which study samples are included in each canon-
ical compared group (Case, Control, Case Female, etc.) by 
assigning one of the classes in the experimental design of 
each study to these canonical groups. Finally, the Launch 
tab contains a summary of the defined meta-analysis, 
which may be launched through the Launch job button 
after the name assignment.

Analysis summary
After the execution of the job and its selection in the left 
side panel of the My Jobs panel, the Analysis summary tab 
will show a summary of the main results, which include:

• selected analysis options—name, comparison, effect 
model, functional profile, and reference organism

• a table and an interactive barplot describing the 
number of samples per dataset and per group

• a table describing the number of differentially 
expressed genes in each dataset—per column, the 
studies, total number of analyzed genes, total num-
ber of significantly affected genes, number of signifi-
cantly upregulated genes, and number of significantly 
downregulated genes

• a table including the same columns describing the 
number of significant functional profile items in each 
dataset—either enriched functions

• a table including the same columns describing the 
number of significant functional terms in each ontol-
ogy—BP for Biological Process, MF for Molecular 
Functional, and CC for Cellular Component—of the 
meta-analysis

Exploratory analysis
The Exploratory analysis tab contains the figures from 
the unsupervised exploratory analysis performed on 
each dataset in the meta-analysis. This analysis includes 
a boxplot representation of the expression of the samples, 
a clustering of the samples, and a principal components 
analysis (PCA) plot representing the first two compo-
nents of the PCA. All samples are colored by the experi-
mental design selected in the meta-analysis.

Differential expression
The differential expression analysis is performed with 
the limma library [9], applying lmFit, contrast.fit, and 
eBayes functions while considering whether samples are 
paired or unpaired. Results will be displayed as a table in 
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the Differential expression tab of the job. The table shows 
the Entrez ID, Gene Name, the logarithm 2 of the fold-
change (logFC), test statistic, raw p-value, and Bonfer-
roni-Holm [19] adjusted p-value of each analyzed feature. 
The raw p-value initially orders the table, but buttons on 
column names allow users to order the table differently. 
Links from the Entrez ID column direct to the NCBI 
gene database of the specific gene. Different tools allow 
users to search, download, and filter the table by a maxi-
mum p-value.

Gene set analysis
The functional analysis consists of a GSA [10] based on 
the BP, MF, and CC ontologies from GO [11] defined by 
users. The pipeline, performed with the mdgsa library 
[12], splits the ontologies, propagates the annotation (if 
indicated), filters too generic (more than 500 annotated 
genes) or too specific (less than ten annotated genes) 
annotations, transforms the p-value into an index, and 
performs the corresponding comparisons. Results will 
be displayed as a table in the GSA tab of the job. Three 
subtabs on the top right of the table separately show the 
results for the three different ontologies. For each ontol-
ogy, the table shows the GO ID, GO term, the logarithm 
of the odds-ratio (LOR), raw p-value, Bonferroni-Holm 
adjusted p-value, and the number of genes included in 
each analyzed feature. The raw p-value initially orders the 
table, and buttons on column names allow users to order 
the table differently. Links from the GO ID column direct 
to the QuickGO [14] entry of the specific term. Different 
tools allow users to search, download, and filter the table 
by a maximum p-value.

Functional meta-analysis integrates the results of the 
functional analysis and is performed using the rma func-
tion of the metafor package [15]. Specifically in Metafun, 
the rma function is applied to each biological function, 
performing a meta-analysis by combining the level of 
overrepresentation (LOR) of that function with the level 
of overrepresentation (LOR) of that function.

Meta‑analysis
The functional meta-analysis integrates the functional 
analysis results and is performed using the rma func-
tion of the metafor package [15]. This function allows the 
selection of different effect measures for meta-analysis 
(e.g., log risk ratios, log odds ratios, mean differences,...), 
as well as a wide variety of meta-analysis parameters 
and methods. Specifically in Metafun, the rma function 
is applied to each biological function, where a meta-
analysis combines the level of overrepresentation (LOR) 
of that function in different studies. Two methods have 
been implemented to perform meta-analyses: the fixed 
effects models (FE) and the random effects models (DL 

DerSimonian & Laird; HS Schmidt & Hunter; Hedges, 
HE) [15]. The fixed effect model has been designed for 
similar studies (i.e., with the same technology, platform, 
and at similar times), while the random effect model 
allows for more significant variability. The random-
effects model is often the most appropriate strategy when 
multiple datasets from different studies are available. In 
this case, a combined measure of the level of over-rep-
resentation of a function is obtained by considering the 
variability in each of the studies. In this way, those studies 
with greater variability will contribute a lower weight in 
the set, while those studies with less variability and there-
fore more robust, will contribute a greater weight in the 
calculation of the level of overrepresentation of the bio-
logical function evaluated. Results will be displayed as a 
table in the Meta-analysis tab of the job. The table shows 
the GO ID, GO term, LOR, confidence interval of the 
LOR, raw p-value, and Bonferroni-Holm [19] adjusted 
p-value of each analyzed feature. The raw p-value initially 
orders the table, and buttons on column names allow 
users to order the table differently. Links from the GO ID 
column direct to the QuickGO [14] entry of the specific 
term. Different tools allow users to search, download, and 
filter the table by a maximum p-value.

Strengths and limitations
Exploring sex bias can significantly improve biologi-
cal and clinical outcomes in female and male patients in 
numerous human diseases. In the Metafun tool, we have 
implemented a strategy that allows for the evaluation 
and integration of several datasets, with the possibility of 
including sex information.

Most of the limitations associated with the use of 
Metafun are linked to the datasets selected for integra-
tion. It is therefore important that users take into account 
a number of recommendations: (a) if the data come from 
different platforms, technologies... the random-effects 
meta-analysis method will be more appropriate than the 
fixed-effects method; (b) the minimum sample size in 
each of the experimental groups should be3 samples. A 
larger sample size will improve the statistical power of 
our analysis, and a smaller size will make it more difficult 
to detect a possible biological signal; (c) in the same vein, 
if in our study we want to evaluate sex differences in a 
given disease, it is balance in the number of samples of 
male and female subjects to avoid possible biases in the 
results. It is preferable not to include data sets that do not 
present a balance in the samples of both sexes; (d) statis-
tically significant results should be reviewed by means of 
forest plot and funnel plot to ensure their relevance and 
biological coherence in the set of integrated studies.

The application of this functional meta-analysis strat-
egy provides a set of biological functions where we have 
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identified a robust biological signal, across the set of data 
sets evaluated. We strongly encourage users to perform, 
whenever possible, the corresponding experimental 
validation to confirm the biological relevance of these 
results. There are multiple ways to carry out this experi-
mental validation (confirmation of gene expression levels 
where there is a higher activation of the selected func-
tions, functional validations...). All these approaches will 
increase the relevance of the results and improve their 
biological understanding.

Web tools require continuous development and 
improvement. Therefore, we have defined a future work 
plan for the next version of Metafun that will include: (a) 
the possibility of performing functional meta-analysis 
also on KEGG or REACTOME pathways; (b) extending 
the meta-analysis methods on the strategy used by the 
HiPathia tool for the evaluation of differential activation 
profiles; (c) direct selection of data sets from the GEO 
repository; (d) the option to incorporate in the differen-
tial expression analysis those control variables that may 

generate specific variability, such as age, disease stage of 
disease, etc.; (e) extending the stratified analysis scenar-
ios; (f ) extension of the stratified analysis scenarios.

Study case
The following case describes the potential use of 
MetaFun in characterizing sex-based differences in lung 
adenocarcinoma. The results obtained were published in 
[6].

Input data:
Each study requires two files: one with expression data 
and a second with the description of the experimental 
groups to which each sample belongs, indicating the sex 
of the participant.

The files corresponding to this use case can be down-
loaded at the following link—https:// gitlab. com/ ubb- 
cipf/ metaf unpip eline/-/ blob/ master/ Homo% 20Sap iens% 
20(Adeno carci noma). zip

Four simple steps to launch the meta‑analysis job:

https://gitlab.com/ubb-cipf/metafunpipeline/-/blob/master/Homo%20Sapiens%20(Adenocarcinoma).zip
https://gitlab.com/ubb-cipf/metafunpipeline/-/blob/master/Homo%20Sapiens%20(Adenocarcinoma).zip
https://gitlab.com/ubb-cipf/metafunpipeline/-/blob/master/Homo%20Sapiens%20(Adenocarcinoma).zip
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Results:

Below, we display the results generated by MetaFun in 
this use case for each of the sections described above (1. 
Analysis Summary, 2. Exploratory Analysis, 3. Differen-
tial Expression, 4. Gene Set Analysis, 5. Meta-analysis),

1. Analysis summary
A summary of the results at the distinct stages of the bio-
informatics analysis strategy:
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2. Exploratory analysis
PCA, clustering, and boxplots are used to explore the 
expression levels of each of the samples in the selected 
studies:
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3. Differential expression
The identification of genes showing differential expres-
sion by sex in affected patients for each study (Clicking 

on each link to the gene identifiers expands their bio-
logical information):
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4. Gene set analysis (GSA)
Functional characterization of the differential expression 
results identifies those functions more active in males 
and females (Clicking on each link to the identifiers 
expands the information for each significant function):

Meta‑analysis
Demonstration of MetaFun functions and the pathways 
activated in evaluated studies (Clicking on the informa-
tion icon leads to detailed information on these signifi-
cant functions):



Page 12 of 13Malmierca‑Merlo et al. Biology of Sex Differences  (2024) 15:66

Conclusions
Metafun (https:// bioin fo. cipf. es/ metaf un) is a powerful 
and easy-to-use open-access web-based tool that ana-
lyzes and integrates multiple transcriptomic datasets to 
identify consensus biological functions to explain sex 
differences in numerous diseases. Its application will 
improve the incorporation of the sex perspective in bio-
medical studies, generating novel knowledge that can 
be useful in the application of an effective Personalized 
Medicine that includes the relevant information of the 
sex of the patients.
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