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Abstract 

Background  Lung adenocarcinoma (LUAD) has been observed to have significant sex differences in incidence, prog‑
nosis, and response to therapy. However, the molecular mechanisms responsible for these disparities have not been 
investigated extensively.

Methods  Sample-specific gene regulatory network methods were used to analyze RNA sequencing data from non-
cancerous human lung samples from The Genotype Tissue Expression Project (GTEx) and lung adenocarcinoma 
primary tumor samples from The Cancer Genome Atlas (TCGA); results were validated on independent data.

Results  We found that genes associated with key biological pathways including cell proliferation, immune response 
and drug metabolism are differentially regulated between males and females in both healthy lung tissue and tumor, 
and that these regulatory differences are further perturbed by tobacco smoking. We also discovered significant 
sex bias in transcription factor targeting patterns of clinically actionable oncogenes and tumor suppressor genes, 
including AKT2 and KRAS. Using differentially regulated genes between healthy and tumor samples in conjunction 
with a drug repurposing tool, we identified several small-molecule drugs that might have sex-biased efficacy as can‑
cer therapeutics and further validated this observation using an independent cell line database.

Conclusions  These findings underscore the importance of including sex as a biological variable and considering 
gene regulatory processes in developing strategies for disease prevention and management.

Highlights 

•	 Genes associated with  cell proliferation, immune response, and  drug metabolism are differentially targeted 
by transcription factors between males and females in healthy lung tissue and lung adenocarcinoma samples.

•	 Gene regulatory differences between males and females are also affected by an individual’s history of smoking.
•	 Significant sex bias exists in  transcription factor targeting patterns of  several clinically actionable oncogenes 

and tumor suppressor genes including AKT2 and KRAS.
•	 Analyzing sex-biased gene regulatory networks in lung adenocarcinoma identified small-molecule cancer thera‑

peutics with potential sex-specific efficacy, underscoring the importance of considering sex-specific gene regula‑
tion in precision medicine.
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Plain English Summary 

Lung adenocarcinoma (LUAD) is a disease that affects males and females differently. Biological sex not only influ‑
ences chances of developing the disease, but also how the disease progresses and how effective various therapies 
may be. We analyzed sex-specific gene regulatory networks consisting of transcription factors and the genes they 
regulate in both healthy lung tissue and in LUAD and identified sex-biased differences. We found that genes associ‑
ated with cell proliferation, immune response, and drug metabolism are differentially targeted by transcription factors 
between males and females. We also found that several genes that are drug targets in LUAD, are also regulated 
differently between males and females. Importantly, these differences are also influenced by an individual’s smok‑
ing history. Extending our analysis using a drug repurposing tool, we found candidate drugs with evidence that they 
might work better for one sex or the other. These results demonstrate that considering the differences in gene regula‑
tion between males and females will be essential if we are to develop precision medicine strategies for preventing 
and treating LUAD.

Graphical Abstract

Introduction
Lung adenocarcinoma (LUAD) exhibits significant sex 
differences in incidence, prognosis, and response to 
therapy. LUAD has been observed to be more preva-
lent in females than males [1–3], with the sex differ-
ence being more pronounced among nonsmokers 
(individuals who have never smoked in their lifetime) 

[4]. However, males with LUAD on average have more 
severe disease and poorer survival outcomes compared 
to females with the disease [5]. Treatment responses 
and toxicity are also influenced by sex [5]; while females 
usually respond better to chemotherapy than do males 
[6], immune checkpoint inhibitors have been found to 
be more effective in males [7] with lung cancer.
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Increased LUAD susceptibility in females may partially 
be attributed to the effect of estrogens on lung carcinogen 
metabolism. For example, polymorphisms in cytochrome 
P450 1A1 (CYP1A1) and glutathione  S-transferase 
M1 (GSTM1)  may contribute to the increased risk of 
females for lung cancer. Females with the CYP1A1 
mutant/GSTM1 null genotypes face an elevated risk, 
regardless of their smoking history, potentially influ-
enced by estrogen exposure [8]. Hormonal influences 
could contribute not only to lung cancer incidence, but 
also its development and survival outcomes [9]. Prior 
research has detected the existence of estrogen receptors 
in malignant lung tissues in both sexes [10]. However, the 
effects of sex steroid hormones may not account for all 
differences in how males and females respond to environ-
mental carcinogens, including smoking [4]. Among other 
factors, higher DNA adduct levels and more frequent 
mutations in the proto-oncogene KRAS in females have 
also been cited as a possible contributor governing higher 
lung cancer risk in females [11]. Genetic and metabolic 
factors have also been cited as potential mediators for the 
better prognostic outcomes in females [12, 13] compared 
to males with lung cancer. While previous studies have 
focused on molecular alterations and gene expression 
alone [14, 15], an integrative analysis of multi-omics data 
from a systems perspective can offer valuable insights 
into sex-specific regulatory mechanisms linked to both 
lung cancer incidence and clinical outcome.

Despite documented sex differences in LUAD risk and 
subsequent disease outcome, most methods used in the 
development and selection of cancer therapeutics do 
not consider biological sex differences, in part because 
their molecular drivers are poorly understood, and partly 
because clinical trials are not designed to address sex-
specific effects. Understanding the regulatory processes 
that differentiate between the sexes in both healthy lung 
tissue and in LUAD will not only help to elucidate disease 
mechanisms but also identify more effective therapeutic 
approaches for both sexes.

We inferred gene regulatory networks using PANDA 
[16] and LIONESS [17], methods that in combination 
integrate genome-wide transcription factor binding site 
maps, transcription factor protein–protein interaction 
data, and gene expression profiles to produce sample-
specific regulatory network models Fig. 1 and which have 
successfully uncovered sex-specific regulatory drivers of 
health and disease in previous studies [18–22]. We com-
pared these sample-specific regulatory networks between 
males and females to identify genes and biological path-
ways targeted by transcription factors in a sex-biased 
manner in both healthy lung tissue and in LUAD sam-
ples. We further explored how this sex bias is influenced 

by smoking behavior, a significant risk factor for lung 
cancer.

As a primary measure of regulatory network dif-
ferences, we used differential gene targeting, which 
identifies significant changes in the network model tran-
scription factor repertoire controlling each gene. Among 
healthy samples, genes associated with cell adhesion and 
cell proliferation were highly targeted among female non-
smokers, while in tumor samples these genes showed 
higher targeting in males, irrespective of smoking his-
tory. Genes associated with immune pathways exhibited 
higher targeting in tumor samples from females than in 
those from males, suggesting the potential for sex-based 
differential response to cancer immunotherapy. Pathways 
with known relevance in chemotherapy response such 
as drug metabolism cytochrome P450 (CYP450) showed 
higher targeting in females, compared to males. Further-
more, an elevated targeting of drug metabolism CYP450 
was also associated with favorable survival outcomes in 
response to chemotherapy among females but not males. 
We also uncovered significant sex bias in transcription 
factor targeting of oncogenes and tumor suppressor 
genes, including AKT2 and KRAS that suggests lung can-
cer drugs targeting these genes might exhibit differences 
between the sexes in both efficacy and toxicity. Using 
an in-silico drug repurposing tool, we identified several 
small-molecule drugs that might have sex-biased efficacy 
as cancer therapeutics and further validated this hypoth-
esis using an independent cell line database.

Results
Understanding sex difference in incidence risk of LUAD 
through differential gene regulation in healthy lung tissue
To understand why females have a higher risk of devel-
oping LUAD compared to males, especially among non-
smokers, we compared male and female gene regulatory 
networks inferred from GTEx for healthy lung samples 
(Fig. 2). We identified several key pathways that are tar-
geted by transcription factors in a sex-biased manner 
in healthy lung that shed light on potential mechanisms 
driving sex difference in disease risk.

Among nonsmokers from GTEx, biological pathways 
responsible for cell proliferation, cell adhesion, and cell 
migration were observed to be highly targeted in females 
compared to males (FDR < 0.05). Such pathways include 
the hedgehog signaling pathway, WNT signaling path-
way, notch signaling pathway, ERBB signaling pathway, 
non-small cell lung cancer, focal adhesion and adherens 
junction (Fig.  2). We validated our findings in healthy 
lung samples from an independent dataset (LGRC) (Fig-
ure D.1), where all these pathways except the hedge-
hog signaling pathway and the pathway associated with 
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Fig. 1  Schematic overview of the study. Top box, overview of the approach used to construct individual specific gene regulatory networks 
with PANDA and LIONESS by integrating information on protein–protein interaction between transcription factors (TFs), TF-gene motif binding, 
and gene expression data of GTEx healthy lung tissues and TCGA lung adenocarcinoma (LUAD) primary tumor samples from Recount3. Bottom box, 
overview of the differential targeting analysis and independent datasets for validation
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Fig. 2  Sex difference in GTEx healthy lung samples within nonsmokers and smokers. Normalized enrichment scores (NES) from gene set 
enrichment analysis (GSEA) using KEGG pathways are shown for all pathways that have significant (adjusted p-value < 0.05) sex difference 
among either nonsmokers or smokers. Pathways with higher targeting in male are marked blue and pathways with higher targeting in female are 
marked red. Green boxes highlight pathways associated with cell proliferation and brown boxes highlight pathways associated with environmental 
carcinogen metabolism



Page 6 of 19Saha et al. Biology of Sex Differences           (2024) 15:62 

non-small cell lung cancer showed higher targeting 
among females than males, consistent with the evidence 
from GTEx.

In contrast, within GTEx smokers, all pathways asso-
ciated with cell proliferation and cell adhesion men-
tioned above were more highly targeted in males than 
females. In the LGRC dataset only two pathways were 
validated: non-small cell lung cancer and hedgehog sign-
aling pathway (Figure D.1). The CYP450 drug metabo-
lism pathway, which is associated with environmental 
carcinogen metabolism [11] also had higher targeting in 
female among nonsmokers and in male among smok-
ers, within both GTEx (Fig.  2) and LGRC (Figure D.1) 
control samples. Further, our analysis in healthy human 
lung indicates that pathways related to cell proliferation 
and environmental carcinogen metabolism are differen-
tially regulated between males and females, which might 
contribute to the difference in risk of developing LUAD 
between the sexes.

Understanding sex difference in LUAD prognosis 
through differential gene regulation
To understand why males have poorer prognosis than 
females with LUAD, we compared the gene regulatory 
networks of primary tumors from males and females 
from the TCGA and identified key pathways with sex-
biased targeting by transcription factors. Specifically, we 
found that pathways involved in cell adhesion, cell pro-
liferation, and cell migration, such as WNT signaling 
pathway, pathways in cancer, tight junction, and adherens 
junction, all have higher targeting in tumors from males 
compared to those from females irrespective of smok-
ing status. It is interesting to note that for nonsmokers 
(Fig. 3), cell proliferation and migration-related pathways 
switched from having higher targeting in healthy females 
to having higher targeting in male tumors. And for smok-
ers (Fig. 4), pathways related to cell proliferation and cell 
migration that were already highly targeted in healthy 
males become even more highly targeted in male tumors, 
compared to females. We replicated this network analysis 
using an independent LUAD dataset (GSE68465) (Figure 
D.2) and validated that among nonsmokers, WNT sign-
aling pathway and tight junction were more highly tar-
geted in male tumors than in those from females. We also 
validated that among smokers, pathways in cancer and 
adherens junction showed higher targeting among male 
tumors, consistent with the results from TCGA. 

For each pathway we can get the leading genes with 
most sex differential targeting, and as an example in 
Figure D.3 we demonstrate the directionality of sex dif-
ferences in targeting of such leading genes in the ribo-
somal pathway, which had a strong sex difference that 
varied by tissue. An interesting point to note is that the 

sex bias in gene regulation of biological pathways might 
vary by the racial background of the population being 
studied. Since individuals in the TCGA data are mostly 
of White and African American descent, our findings 
mentioned in the previous paragraph might not be gen-
eralizable to individuals of other races. To demonstrate 
that we performed a similar analysis on an independent 
dataset (supplementary material, section F and Figure 
D.4) consisting of East Asian individuals and found sig-
nificant disparity in the directionality of sex differences 
in several key pathways involved in cell proliferation 
and immune response.

We then turned our attention to oncogenes and 
tumor suppressor genes cataloged in the COSMIC 
database [23] and found these to also be highly differ-
entially targeted between the sexes in both healthy and 
tumor samples (Fig. 5). Among nonsmokers in healthy 
GTEx lung samples, both oncogenes and tumor sup-
pressor genes showed higher targeting (p-value of Wil-
coxon signed rank test is 2.229e−09 for oncogenes and 
3.614e−05 for tumor suppressor genes) in females com-
pared to males. Whereas among the nonsmokers in the 
TCGA tumor samples, both oncogenes and tumor sup-
pressor genes showed higher targeting in male samples 
(p-value of Wilcoxon signed rank test is 2.334e−09 for 
oncogenes and 5.217e−07 for tumor suppressor genes), 
which may help explain poorer prognosis in males com-
pared to females. For smokers, oncogenes and tumor 
suppressor genes showed higher targeting for males 
than females in both healthy lung samples from GTEx 
(p-value of Wilcoxon signed rank test is 3.546e−08 
for oncogenes and 2.296e−12 for tumor suppressor 
genes), as well as LUAD tumors from TCGA (p-value is 
5.906e−08 for oncogenes and 2.296e−12 for tumor sup-
pressor genes).

To understand whether sex differences in regulation 
of biological pathways might explain poorer survival 
among males with LUAD, we performed survival anal-
ysis on TCGA data using a Cox proportional hazard 
model for each of these pathways. We found a higher 
targeting of the RNA Degradation pathway to be asso-
ciated with poorer survival outcome in males (z-score 
of the coefficient corresponding to pathway score is 
2.030 with p-value 0.042) but did not have any impact 
in females (z-score of the coefficient corresponding to 
pathway score is -0.740 with p-value 0.459). The lead-
ing genes contributing towards a higher targeting of 
RNA degradation among males include CNOT1 [24], 
CNOT2 [25], CNOT3 [26] and DCP1A [27], all of which 
have previously been found to have prognostic signifi-
cance in various cancers, including non-small cell lung 
cancer.



Page 7 of 19Saha et al. Biology of Sex Differences           (2024) 15:62 	

Fig. 3  Sex difference among nonsmokers in GTEx healthy lung and in TCGA LUAD. Normalized enrichment scores (NES) from GSEA using KEGG 
pathways are shown for all pathways that have significant (adjusted p-value < 0.05) sex difference among either TCGA nonsmokers or TCGA smokers. 
Pathways with higher targeting in male are marked blue and pathways with higher targeting in female are marked red. Green boxes highlight 
pathways associated with cell proliferation and purple boxes highlight pathways associated with immune response
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Fig. 4  Sex difference among smokers in GTEx healthy lung and in TCGA LUAD. Normalized enrichment scores (NES) from GSEA using KEGG 
pathways are shown for all pathways that have significant (adjusted p-value < 0.05) sex difference among either TCGA nonsmokers or TCGA smokers. 
Pathways with higher targeting in male are marked blue and pathways with higher targeting in female are marked red. Green boxes highlight 
pathways associated with cell proliferation and purple boxes highlight pathways associated with immune response
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Sex difference in immunotherapy
The TF-targeting of almost all immune pathways is 
higher in tumor samples from females than those from 
males. This female-bias is particularly pronounced 
among TCGA tumor samples from smokers, where we 
observed that immune-related pathways including allo-
graft rejection, intestinal immune response for IGA 
production, systemic lupus erythematosus, and antigen 
processing and presentation, all showed considerably 
higher targeting in females (Fig. 4).

Although among GTEx nonsmokers (Fig.  5) these 
pathways were more highly targeted in males, in TCGA 
nonsmokers we found a shift towards higher targeting in 
females—except for systemic lupus erythematosus which 
remained highly targeted in male tumor samples. Addi-
tionally, other immune pathways such as hematopoietic 
cell lineage and natural killer cell mediated cytotoxic-
ity initially showed higher targeting in GTEx males, but 
switched to higher targeting in TCGA females, irrespec-
tive of smoking status. This female-bias in targeting of 
immune pathways was further validated in tumor sam-
ples from smokers in GSE68465.

To understand whether sex-difference in TF-target-
ing of immune pathways can be partially attributed to 
a sex-difference in immune cell infiltration, we per-
formed immune cell type deconvolution analysis of 
TCGA data. We found that, consistent with a higher 
targeting of immune pathways in females, various 
immune cell proportions including natural killer cells, 
CD4 + naive T cells, myeloid dendritic cells, and B cells 
were more highly targeted in female tumor samples 
than male tumor samples (Fig. 6). The only exceptions 
were CD4 + Th2 helper cells that are present in higher 
proportions among male samples. Differential target-
ing of immune pathways, along with a sex-biased infil-
tration of immune cells, might contribute to varying 
degrees of efficacy of immune checkpoint inhibitors 
shown to exist among males and females with LUAD 
(Table C.1) [28]. However, in healthy GTEx samples, 
we did not find any sex difference in the proportion 
of immune cells that had sex-biased infiltration rate 
in TCGA (Figure D.5) except for natural killer T cells, 
which showed higher proportion in males compared to 
females among nonsmokers.

Fig. 5  Sex difference in targeting of oncogenes (top row) and tumor suppressor genes (bottom row) in GTEx and TCGA nonsmokers (left column) 
and smokers (right column)
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Sex difference in chemotherapy
There is empirical evidence of significant sex differ-
ences in chemotherapy response [29] in LUAD, with 
females having better outcomes than males in most 
cases [6]. To explore this, we used networks only for 
those patients who received chemotherapy and fit a 
Cox proportional hazard model to identify pathways 
with a sex-biased impact on survival.

Within females, greater targeting of two CYP450 
pathways—drug metabolism (p-value 0.016) and 
metabolism of xenobiotics (p-value 0.052)—was associ-
ated with better survival, while in males a differential 
targeting of these pathways did not have any impact 
on survival (p-value for metabolism of xenobiotics by 
CYP450 was 0.110 and p-value for drug metabolism 
CYP450 was 0.157). This same pattern of influence 
on the interaction between drug metabolism CYP450 
targeting, and chemotherapy treatment has been 
reported in colon cancer [20]. Notably, these path-
ways did not have any significant impact on survival 
in treatment-naïve tumor samples, which indicates 
that gene regulatory network analysis has the power 
to predict the potential for individuals to respond to 

clinical interventions, including the use of chemother-
apy agents.

Sex difference in targeted therapy
Cancer therapeutics targeting specific genes have also 
been observed to have a sex-biased impact on both 
dose-efficacy and dose-toxicity [30]. To understand how 
differential regulation of specific drug targets might con-
tribute towards different efficacy of various cancer drugs 
in males and females with LUAD, we chose 28 genes 
commonly targeted by lung cancer drugs [31] for an in-
depth analysis (Fig. 7). Among these genes, three showed 
significant (p-value less than 0.05) sex-bias in transcrip-
tion factor targeting patterns: within nonsmokers AKT2 
showed higher targeting among females; KRAS and 
IGF1R showed higher targeting among males compared 
to females, irrespective of smoking status.

We then used CLUEreg [32], a tool designed to match 
disease states to potentially therapeutic small molecule 
drugs based on differential regulation between tumor 
and healthy samples, to identify potential targeted cancer 
therapeutics that might be more beneficial to individu-
als of one sex over the other, and derived a list of small 

Fig. 6  Sex Difference in immune and stromal cell composition in TCGA LUAD samples. Cell compositions are computed using “xcell”, which derives 
cell composition proportion of 36 immune and stromal, along with three composite scores: immune score, stroma score and microenvironment 
score. The bubbleplot shows only those cells that are significantly (p-value < 0.05) different in proportion in male and female tumor samples
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molecule drug candidates for both males and females 
(Full list of drugs for males and females are available as 
supplementary materials S5 and S6). After cross-ref-
erencing these candidate drugs with the Genomics of 

Drug Sensitivity in Cancer (GDSC) database, we identi-
fied several small molecule drugs that might be beneficial 
for either males or females with LUAD. While several 
conventional cancer therapeutics such as Tanespimycin 
and Cisplatin appeared as potential drug candidates for 
both sexes, we found three drug candidates (Trametinib, 
Scriptaid/Vorinostat and Actinomycin-d/Dactinomy-
cin) that had evidence of potential efficacy exclusively for 
females and one drug candidate (LBH-589/Panobinostat) 
exclusively for males; all four of these drugs are FDA 
approved. All four drugs except Dactinomycin (which 
had a tau value of 0.0632) had a tau value of 0.0006 or 
lower, as calculated by CLUEreg, which suggests that 
these drugs have specific, rather than pleiotropic effects 
as compared to the other drugs in the database.

Using the GDSC dataset, we validated that female 
cell lines had greater sensitivity for Trametinib (p-value 
0.00027 Mann–Whitney test), and male cell lines were 
more sensitive to Panobinostat (p-value 0.01396 Mann–
Whitney test), as predicted by CLUEreg (Fig. 8). We did 
not, however, find supporting evidence for sex differ-
ences in the efficacy of Vorinostat or Dactinomycin. This 
may be due to the relatively small number of cell lines of 
either sex that have been profiled and the innate variabil-
ity among individuals in regulatory potential. Although 
preliminary, the validation of CLUEreg drug predictions 
using an independent cell line drug screening dataset 

Fig. 7  Sex difference in transcription factor targeting of genes 
commonly targeted by drugs in lung cancer in TCGA and validation 
data GSE68465, split by smoking status. The heatmap shows 
t-statistics corresponding to the sex coefficient from a limma analysis 
on the gene targeting score (indegree) (p-value < 0.05 for the sex 
coefficient). Genes with higher targeting in male samples are marked 
in blue and genes with higher targeting in female samples are 
marked in red

Fig. 8  Validation of sex-specific therapeutics predicted by CLUEreg using GDSC drug sensitivity data. Boxplots of half maximal inhibitory 
concentration values (Log IC50) for male and female cell lines treated with Trametinib and Panobinostat, Mann-Whitney test
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confirms the value of using sex-specific changes of regu-
latory networks to identify therapeutics tailored to the 
patient sex.

Discussion
LUAD, like many cancers, is known to differ between 
males and females in disease risk, development, progres-
sion, and response to therapy. While lifestyle differences, 
androgen and estrogen levels, and the genetic effects of 
different allosomes may play some role, the causes of 
these apparent sex differences remain largely unstudied. 
Although there are some differences in gene expression 
between males and females, both in healthy and tumor 
samples, these are largely confined to the sex chromo-
somes [20] and do not shed much light on mechanistic 
differences that might help explain the well-established 
clinical differences.

Despite the lack of differential expression, our hypoth-
esis was the reported differences in LUAD between the 
sexes was reflected in sex-biased patterns of gene regu-
lation. We inferred gene regulatory networks using 
PANDA and LIONESS and compared the networks to 
identify sex-specific regulatory patterns in healthy and 
LUAD samples that might provide mechanistic explana-
tions for sex-specific phenotypic differences. Using dif-
ferential targeting analysis on individual-specific gene 
regulatory networks, we identified sex-bias in transcrip-
tion factor targeting of biological pathways associated 
with cell proliferation, environmental carcinogen metab-
olism and immune response in healthy lungs, as well as 
in LUAD.

We found differences in regulatory processes control-
ling genes involved in cell proliferation and adhesion 
pathways, including many implicated in cancer, such as 
the hedgehog signaling pathway [33], WNT signaling 
pathway [34], notch signaling pathway [35] and ERBB 
signaling pathway [36]. Within healthy samples these 
pathways showed higher targeting in female nonsmok-
ers and male smokers, whereas within tumor samples 
all these pathways were highly targeted in males, irre-
spective of smoking status. These differences in gene 
regulation may explain why females have a greater risk 
of developing LUAD, but the disease trajectory in males 
leads to more rapid progression and poorer outcomes.

Chemotherapy drugs such as carboplatin and pacli-
taxel has been observed to have sex differences in both 
efficacy and toxicity in non-small cell lung cancer, where 
females have a more favorable prognosis than males [6]. 
Our analysis suggests that the differential response to 
chemotherapeutic agents might be associated with dif-
ferential targeting of drug metabolism CYP450 pathways 
in gene regulatory networks. Among patients undergo-
ing chemotherapy, we found that higher targeting of two 

CYP450 pathways, namely drug metabolism and xenobi-
otics metabolism, was associated with improved survival 
in females, while in males, differential targeting of these 
pathways did not have any significant impact on survival. 
A similar influence of drug metabolism CYP450 target-
ing on chemotherapy outcomes was previously reported 
in the context of colon cancer [20].

Not surprisingly, we also found sex-specific differ-
ences in the regulation of immune related processes, as 
well as proportion of infiltration of various immune cells 
within tumor samples. Not only do this shed light on 
cancer prognosis but might also elucidate towards a sex-
biased response to various cancer immunotherapies [28], 
including PD1 and PDL1 inhibitors.

We also identified that several genes as differentially 
targeted between the sexes and for which directed ther-
apies exist, including AKT2, IGF1R, and KRAS. While 
these genes have been extensively studied, there are vir-
tually no published studies on potential sex differences 
in response to drugs targeting these genes. However, it 
has been shown in a murine model that drugs targeting 
IGF1R (Insulin-like Growth Factor-1) improve lifespan 
with a reduction of neoplasm only in females [37], which 
aligns with our findings.

We identified four FDA-approved small-molecule drug 
candidates that might have a sex-biased efficacy: three 
drugs (Trametinib, Vorinostat and Dactinomycin) were 
identified exclusively for females and Panobinostat was 
identified exclusively for males. Using an independent 
database, we validated that female cell lines had indeed 
higher sensitivity for Trametinib, and male cell lines had 
higher sensitivity for Panobinostat. Trametinib targets 
MAP2K1 [38], which showed higher targeting in males 
than females, based on our analysis of regulatory net-
works. Higher targeting of MAP2K1 by transcription fac-
tors may reduce the effectiveness of cancer therapeutics 
targeting MAP2K1 such as trametinib in males compared 
to females. Panobinostat is a histone deacetylase (HDAC) 
inhibitor [39]. HDAC inhibitors cause upregulation of 
the cell cycle gene CDKN1A, leading to cell cycle arrest 
[40, 41]. CDKN1A showed higher targeting by transcrip-
tion factors in females than males. Higher targeting of 
CDKN1A by transcription factors may reduce the effec-
tiveness of HDAC inhibitors such as Panobinostat in 
females compared to males. Although we could not verify 
the validity of the predictions from CLUEreg on human 
trials since clinical trials in general do not report drug 
efficacy by sex, the validation of CLUEreg drug predic-
tions using an independent cell line drug screening data-
set underscores the potential of using gene regulatory 
networks to identify sex-specific cancer therapeutics.

It must be acknowledged that although we adjusted for 
various clinical confounders such as age, race, smoking 
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history, and clinical tumor stage in our differential target-
ing analysis, outcomes might still be influenced by other 
factors including cellular and genetic heterogeneity, or 
unobserved clinical phenotypes and risk factors includ-
ing the effect of hormones, lifestyle habits, environmental 
exposures, and family history. To establish causal conclu-
sions regarding the effect of regulatory sex-differences in 
disease mechanism, further work would be required to 
elucidate the relative contributions, as well as possible 
interactions between these factors and sex-biased gene 
regulatory patterns identified by our analysis. Although 
our analysis suggests a possible impact of cigarette smok-
ing on the sex bias in gene regulatory patterns, the extent 
to which smoking-related effects may confound or inter-
act with sex-specific differences in gene expression also 
needs further exploration that would include accounting 
for the distinctions between former and current smokers, 
duration of smoking cessation for former smokers, and 
the number of pack years smoked.

Another limitation of our work is that the discovery 
datasets from GTEx and TCGA, as well as the valida-
tion datasets considered in our analysis, predominantly 
consist of white and African American individuals. Even 
though our analyses were adjusted for the impact of 
race, the generalizability of our findings to other ethnici-
ties might still be limited due to a lack of representation. 
Indeed, as demonstrated in the supplementary material, 
section F, we found that the results from TCGA differ 
from those we found analyzing an independent cohort 
consisting only of East Asian individuals. In this regard, 
future studies should be expanded to include more 
diverse populations if we are to ensure the validity of 
genomic findings in all individuals.

As we continue to develop methods for inferring gene 
regulatory, we hope to extend the analyses presented 
here by exploring how interactions between transcrip-
tion factor binding, post-translational modifications, 
and differences in protein activity, as well as epigenetic 
changes, might alter disease trajectories in a sex-specific 
manner. Recently, interesting sex differences in protein 
signaling networks were found in LUAD tumor samples 
from the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) [42] and such data provide a complementary 
means of exploring drivers of sex differences to the work 
we are continuing to perform.

Perspectives and significance
Our study highlights the substantial sex differences in 
gene regulatory patterns in healthy lung and lung adeno-
carcinoma, as well as how smoking affects gene regula-
tion in males and females. The regulatory differences 
not only help to explain sex-biases in disease suscepti-
bility and prognosis, but also hold promise for shaping 

sex-specific therapeutic strategies with the potential to 
improve outcomes. This underscores the value of using 
sex-specific alterations in regulatory networks to adapt 
disease treatment based on each patient’s sex as a cor-
nerstone of precision medicine in LUAD as well as other 
diseases.

Method
Discovery dataset
We downloaded uniformly processed RNA-Seq data 
from the Recount3 database [43] for two discovery data-
sets using the R package “recount3” (version 1.4.0) on 
May 26, 2022: (i) healthy lung tissue samples from the 
Genotype Tissue Expression (GTEx) Project [44] (version 
8) and (ii) lung adenocarcinoma (LUAD) samples from 
The Cancer Genome Atlas (TCGA) [45]. Clinical data 
for GTEx samples were accessed from the dbGap website 
(https://​dbgap.​ncbi.​nlm.​nih.​gov/) under study accession 
phs000424.v8.p2. Clinical data for TCGA samples were 
downloaded from Recount3. Throughout our analysis 
the GTEx samples will be referred to as “healthy lung 
samples.”

From 655 healthy lung samples in GTEx, we removed 
77 samples because they were designated as “biologi-
cal outliers” in the GTEx portal (https://​gtexp​ortal.​org/) 
for various reasons (as described in https://​gtexp​ortal.​
org/​home/​faq). The remaining 578 samples (395 males, 
183 females) were used in the analysis. We verified that 
the self-reported gender for GTEx samples aligned with 
the biological sex through a principal component analy-
sis (PCA) of gene expression values of 36 genes on the Y 
chromosome (Figure D.6).

From the TCGA dataset, we removed two recurrent 
tumor samples and 59 samples from normal adjacent tis-
sues, keeping only primary tumor samples. For individu-
als with multiple samples, we retained the sample with 
the highest sequencing depth. Finally, we also removed 
two samples annotated as “female” as these samples clus-
tered with “male” samples using PCA for the Y chromo-
some as above (Figure D.6). We also removed one sample 
with missing gender information. Subsequent analyses 
were performed on the remaining 513 primary lung ade-
nocarcinoma tumor samples (238 males, 275 females).

We extracted TPM normalized gene expression data 
from both GTEx and TCGA using the “getTPM” function 
in the Bioconductor package “recount” (version 1.20.0) 
[46] in R (version 4.1.2). We excluded lowly expressed 
genes by removing those with counts < 1 TPM in at least 
10% of the samples in GTEx and TCGA combined, thus 
removing 36,360 annotated genes, and leaving 27,495 
(including 36 Y genes and 884 X genes) genes for anal-
ysis. To build gene regulatory networks, we kept only 
genes that were present both in this filtered gene set and, 

https://dbgap.ncbi.nlm.nih.gov/
https://gtexportal.org/
https://gtexportal.org/home/faq
https://gtexportal.org/home/faq
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in the TF-target gene regulatory prior used in PANDA 
and LIONESS (see section “Differential targeting analy-
sis using single-sample gene regulatory networks”). The 
remaining 27,189 genes, including genes on the sex chro-
mosomes, were used for network inference and analysis. 
For female samples in both GTEx and TCGA, some genes 
on the Y chromosome have expression values due to mis-
mapping of transcripts; we manually set Y chromosome 
gene expression values to “NA” for biological females in 
both data sets.

Validation dataset
We identified two independent studies from the Gene 
Expression Omnibus (GEO) for use in validating our 
findings: GSE47460 (hereafter referred to as LGRC) 
[47] and GSE68465 [48]. From the LGRC (downloaded 
on Feb 12, 2023) data, we used 108 samples (59 female 
and 49 male) annotated as “control” samples for valida-
tion. Gene expression data came from the Lung Genom-
ics Research Consortium (LGRC) representing a subset 
of tissue samples from the Lung Tissue Research Con-
sortium (LTRC) that showed no chronic lung disease 
by CT or pathology. This study used the Agilent-014850 
Whole Human Genome Microarray 4 × 44K G4112F and 

Agilent-028004 SurePrint G3 Human GE 8 × 60K Micro-
array for gene expression profiling. Data from GSE68465 
(downloaded on Jan 24, 2023) consisted of gene expres-
sion for lung adenocarcinoma primary tumor samples 
from 462 individuals. This study used Affymetrix Human 
Genome U133A Array for gene expression profiling. 
Nineteen samples were removed because of missing gen-
der information. We also removed six samples annotated 
as “female” and five samples annotated as “male” based 
on PCA of expression of 65 Y genes (Figure D.6). The 
remaining 432 samples (218 male and 214 female) were 
used in the final validation analysis.

Normalized expression data and clinical data were 
downloaded using the R package “GEOquery” version 
2.62.2. For genes with multiple probe sets, we kept the 
probe with the highest standard deviation in expres-
sion across samples and the gene set was further filtered 
to remove any genes that did not overlap with those in 
the TF/target gene regulatory network prior. This left 
13,575 genes in GSE47460 (LGRC) and 13,516 genes in 
GSE68465 that were used in subsequent analyses. The 
LGRC data did not show any batch effect and so no 
correction was used. The GSE68465 dataset contained 
LUAD specimens from the following sources: University 

Table 1  Clinical characteristics of the discovery and validation datasets

Clinical characteristics by sex are recorded in supplementary tables E.1–E.4

GTEx (healthy lung) TCGA (LUAD tumor) LGRC (healthy lung) GSE68465 (LUAD tumor)

Sample size 578 513 108 432

Sex

 Female (%) 183 (31.66%) 275 (53.61%) 59 (54.63%) 214 (49.54%)

 Male (%) 395 (68.34%) 238 (46.39%) 49 (45.37%) 218 (50.46%)

Age

 Mean ± std (range) 54 ± 11.84 (21–70) 65 ± 10.05 (33–88) 64 ± 11.35 (32–87) 64 ± 10.09 (33–87)

 Race

 White (%) 493 (85.29%) 388 (75.63%) – 289 (66.90%)

 Black or African American (%) 70 (12.11%) 50 (9.75%) – 12 (2.78%)

 Others (%) 15 (2.60%) 9 (1.75%) – 6 (1.39%)

 Unknown (%) - 66 (12.87%) – 125 (28.93%)

Smoking status

 Smokers (%) 382 (66.09%) 424 (82.65%) 65 (60.19%) 290 67.13%)

 Never-smokers (%) 180 (31.14%) 75 (14.62%) 32 (29.63%) 48 (11.11%)

 NA (%) 16 (2.77%) 14 (2.73%) 12 (10.18%) 94 (21.76%)

Tumor stage

 I (%) – 274 (53.41%) – 148 (33.26%)

 II (%) – 121 (23.59%) – 242 (56.02%)

 III (%) – 84 (16.37%) – 28 (6.48%)

 IV (%) – 26 (5.07%) – 12 (2.78%)

 NA (%) – 8 (1.56%) – 2 (0.46%)

Ischemic time (hours)

 Mean ± std (range) 8.02 ± 6.98 (0.0–24.4) – – –
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of Michigan Cancer Center (100 samples), University of 
Minnesota VA/CALGB (77 samples), Moffitt Cancer 
Center (79 samples), Memorial Sloan-Kettering Cancer 
Center (104 samples), and Toronto/Dana-Farber Cancer 
Institute (82 samples). A principal component analysis on 
the gene expression data demonstrated distinct clusters 
corresponding to these sample source, thus exhibiting a 
strong batch effect; expression data was subsequently 
batch-corrected using the “ComBat” function imple-
mented in the R package “sva” (version 3.42.0).

Table 1 depicts the clinical characteristics of all the dis-
covery and validation datasets and supplementary tables 
E.1–E.4 present clinical characteristics by sex.

Differential targeting analysis using single‑sample gene 
regulatory networks
We used PANDA [16] and LIONESS [17] to construct 
gene regulatory networks (Fig. 1) for each sample in the 
discovery and validation datasets, using Python pack-
age netzooPy [49] version 0.9.10. In addition to the gene 
expression data obtained from the discovery and valida-
tion datasets, two other types of data were integrated 
to construct the networks: TF/target gene regulatory 
prior (derived by mapping TF motifs from the Catalog 
of Inferred Sequence Binding Preferences (CIS-BP) [50] 
to the promoter of their putative target genes) and pro-
tein–protein interaction data (using the interaction 
scores from StringDb v11.5 [51] between all TFs in the 
regulatory prior). Our TF/target gene regulatory prior 
consisted of 997 TFs targeting 61,485 ensemble gene IDs, 
corresponding to 39,618 unique gene symbols (HGNC), 
and the protein–protein interaction data contained the 
measure of interactions between these 997 TFs. We used 
sex-specific binary motif priors (1 representing the pres-
ence of a TF motif and 0 representing the absence of a 
TF motif on the promoter region of the gene) for males 
and females, where the male and female motifs were the 
same for autosomal and X chromosome genes, but motifs 
on the Y chromosome genes were set to 0 in the female 
prior. The procedure for deriving the motif prior and 
the PPI priors are given in the supplementary material. 
Regulatory networks were constructed for each of the 
discovery datasets and validation datasets separately for 
female and male samples. The final networks contained 
only genes overlapping between the TF/target gene motif 
prior and the corresponding gene expression dataset.

For each sample’s gene regulatory network, we com-
puted the targeting score (or, in-degree) for each gene, 
which corresponds to the sum of incoming edge weights 
from all TFs to this gene. Gene targeting scores were 
compared between males and females using a linear 
regression model, while adjusting for relevant covariates: 
sex (Male and Female), race (White, Black or African 

American, Others and Unknown), age, smoking status 
(Ever-smoker and Never-smoker) and ischemic time 
for GTEx; sex (Male and Female), race (White, Black or 
African American, Others and Unknown), age, smok-
ing status (Ever-smoker and Never-smoker) and tumor 
stage (stages I, II, III, IV and “NA”) for TCGA; using the 
R package limma (version 3.50.3) [52] and accounting for 
interaction between sex and smoking history (ever-smok-
ers and never-smokers).

In the LGRC dataset we adjusted for age and smoking 
status and in GSE68465 we adjusted for age, race, tumor 
stage and smoking status, while simultaneously consider-
ing interaction between sex and smoking history (ever-
smokers and never-smokers) for each validation dataset.

Although to model gene regulatory networks, we used 
sex-specific priors to allow for the presence of Y chro-
mosome genes in males but not in females, we did not 
include genes on the Y chromosome in our differential 
targeting analyses while performing a direct compari-
son between the sexes as this was infeasible due to the 
absence of the Y chromosome in females. However, we 
included the XIST gene because several male samples 
showed nonzero expression of XIST, especially among 
the tumor samples from TCGA (Figure D.7).

Pathway Enrichment analysis
A gene set enrichment analysis was performed sepa-
rately for individuals with different smoking histories 
using the ranked t-statistics of the coefficient for sex 
derived from the limma analysis (Fig.  8). We used pre-
ranked Gene Set Enrichment Analysis (GSEA) in the R 
package “fgsea” (version 1.20.0) [53] and gene sets from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database [54] (“c2.cp.kegg.v2022.1.Hs.symbols.
gmt”), downloaded from the Molecular Signatures Data-
base (MSigDB) (http://​www.​broad​insti​tute.​org/​gsea/​
msigdb/​colle​ctions.​jsp). Only gene sets of sizes greater 
than 15 and less than 500 were considered, after filtering 
out genes which are not present in the expression data-
set, which limited our analysis to 176 gene sets. Multiple 
testing corrections were performed using the Benjamini–
Hochberg procedure [55].

Survival analysis
For each biological pathway, the pathway targeting score 
was computed as the mean indegree of all genes in the 
pathway. For survival analysis we used the R package 
“survival” (version 3.2.13) and fit Cox proportional haz-
ard model (“coxph”) for the TCGA data to investigate the 
effect of transcription factor targeting of different KEGG 
pathways on survival outcome, while adjusting for age, 
sex, race, smoking status, tumor stage, and chemother-
apy status (yes, no and “NA”). Supplementary Table E.5 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp
http://www.broadinstitute.org/gsea/msigdb/collections.jsp
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shows distribution of clinical variables among individuals 
who received chemotherapy versus those who did not.

Immune infiltration analysis
We used “xcell” [56] on the TPM-normalized GTEx and 
TCGA gene expression data with R package “immuned-
econv” (version 2.1.0) to infer immune and stromal cell 
composition in tumor samples. For every cell type, to 
quantify whether cell type proportion in tumor are vari-
able by sex, we fit a linear model to predict cell type pro-
portion by sex, while adjusting for age, race, smoking 
status, and clinical tumor stage.

Finding small molecule drugs with CLUEreg
We identified genes that are differentially targeted 
between tumor and healthy samples, using linear mod-
els on gene targeting scores from GTEx and TCGA 
data through R package “limma”. We accounted for the 
interaction between sex and disease status (tumor ver-
sus healthy), while adjusting for clinical covariates that 
were available for both GTEx and TCGA, including sex, 
age, race, and smoking status. Genes were ranked by the 
adjusted p-values (smallest to largest) from the limma 
analysis and all genes significantly differentially targeted 
(at FDR cutoff 0.05) were chosen for males and females 
separately. The selected differentially targeted genes were 
split between “high” and “low” targeted based on whether 
they were more highly targeted in tumor (high) sam-
ples or in healthy (low) samples and subsequently used 
as input to CLUEreg [32] (https://​grand.​netwo​rkmed​
icine.​org/), a web application designed to match disease 
states to potential small molecule therapeutics, based on 
the characteristics of the regulatory networks. CLUEreg 
produced a list of 100 small molecule drug candidates 
most suitable for reversing the gene targeting patterns in 
tumor to resemble the gene targeting patterns in healthy 
samples.

To validate CLUEreg predictions, we used gene expres-
sion and drug response data from cancer cell lines in the 
Genomics of Drug Sensitivity in Cancer (GDSC) [57] 
dataset, removing cell lines from reproductive cancer 
types. We classified cell lines as male (n = 227) or female 
(n = 264) groups considering both expression of the Y 
chromosome genes (gene expression data from GDSC) 
and the reported gender of the individual from whom 
the cell line was derived (Sanger Cell Model Passports, 
https://​cellm​odelp​asspo​rts.​sanger.​ac.​uk/​downl​oads). To 
test whether drug sensitivity varies by sex, we combined 
technical replicates by median of log IC50 and compared 
the log IC50 values reported by GDSC (half maximal 
inhibitory concentration) between male and female cell 
lines using Wilcoxon-Mann–Whitney test.
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