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Abstract 

Background  Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiat-
ric conditions.

Methods  In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human 
postmortem brain RNA-Seq datasets using both within-region and pan-regional frameworks.

Results  We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence 
for pathways and cell population differences between chromosomally male and female individuals. These analyses 
also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific 
neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. 
Integration with single-nucleus data suggests this corresponds to sex differences in cellular states rather than cell 
abundance. Integration with case–control gene expression studies suggests a female molecular predisposition 
towards Alzheimer’s disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predis-
position pattern in our analysis.

Conclusion  Overall, these analyses highlight mechanisms by which sex differences may interact with sex-biased 
conditions in the brain. Furthermore, we provide region-specific analyses of sex differences in brain gene expression 
to enable additional studies at the interface of gene expression and diagnostic differences.

Highlights 

•	 Numerous but small autosomal sex differences in expression exist in all brain regions tested.
•	 Autosomal genes with enriched expression in males are enriched in neuronal pathways.
•	 Autosomal genes with enriched expression in females are enriched with immune system functions.
•	 Integration with single-nucleus datasets suggest these differences are more likely related to cell state differences 

than cell number differences.
•	 The female cortex shows an enrichment of genes expressed in Alzheimer’s disease brains.
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Plain English Summary 

We sought to understand why females have higher rates of Alzheimer’s disease, and males have higher rates 
of autism. One idea was that the female brain at baseline may be more similar to an Alzheimer’s brain, so it is easier 
for them to shift into that state (likewise, males may be more similar to autism). To test this, we examined gene expres-
sion differences between brains of biological males and biological females. While all people have the same ~ 25,000 
genes, each gene can be on or off (‘expressed’) to different extents. Overall, we found that there were differences 
in gene expression between males and females in all brain regions tested but more differences in some brain regions 
than others. By looking at the role of these genes we estimate that female immune system processes might be more 
active in the brain. We also found female brain gene expression looked slightly more like people with Alzheimer’s 
compared to people without Alzheimer’s, which may explain why females get Alzheimer’s disease more easily. How-
ever, the male brain gene expression did not look more like autism, suggesting that the reason males have higher 
rates of autism is complex and needs further investigation.

Graphical Abstract

Background
Most human neuropsychiatric conditions show dif-
ferences in diagnostic rates between males and 
females. For example, males make up a higher per-
centage of diagnosed neurodevelopmental conditions 
that begin in early life, such as autism and Attention 

Deficit-Hyperactivity Disorder (ADHD). Conversely, 
females are more likely to suffer later-onset disorders 
such as Major Depressive Disorder and Alzheimer’s 
disease [1, 2]. Even though a major component of risk 
for these neuropsychiatric conditions is heritable, 
genetic risk is complex, with hundreds to thousands of 
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genes and variants implicated [3–13]. Depending on 
sex, manifestations of many disorders differ molecu-
larly [14–16] and in their clinical presentation [17–19]. 
Overall, the multifactorial heritability patterns and het-
erogenous phenotypes of neuropsychiatric conditions 
have been a substantial barrier toward understanding 
the biological processes governing sex variation in risk 
and presentation.

Each of these sex-biased conditions is strongly influ-
enced by large numbers of common, non-coding vari-
ants in the genome [3, 5–9, 11]. Common variants are 
thought to influence risk of psychiatric conditions by 
subtly affecting the expression of nearby genes in the 
brain. These many small changes in gene expression can, 
in aggregate, greatly alter risk of presenting with a given 
condition [20–22], thus giving gene expression an impor-
tant role in pathogenesis and progression.

Sex differences in transcription are modulated by sev-
eral classes of DNA-interacting proteins, some of which 
are encoded on allosomes (X and Y chromosomes). Some 
DNA-interacting proteins are also modulated by sex-dif-
ferential hormonal signals, including androgens, estro-
gens, and progestins. Beyond the direct binding sites of 
allosome-encoded proteins or sex hormone receptors, 
these modulatory factors appear to have prominent roles 
in sex-differential transcriptional regulation via indirect 
and co-regulatory activity, including at-risk variants for 
sex-biased psychiatric conditions [23–27]. Ultimately, 
understanding the full extent of how and where sex gov-
erns transcription will improve the understanding of how 
gene expression affects the odds of developing a particu-
lar neuropsychiatric condition, the condition’s presen-
tation, and how sex might relate to genetic expression 
differences.

Autism is particularly illustrative of the complex inter-
action between sex and genetic risk. Researchers have 
proposed that subtle baseline sex differences in gene 
expression can shift the brain towards a transcriptomic 
signature that might promote the condition in a particu-
lar sex [16, 28]—i.e., perhaps the male brain at baseline 
has a ‘molecular predisposition’ towards autism, and 
thus it takes fewer heritable genetic or environmental 
factors to meet criteria for a diagnosis, as posited by the 
“extreme male brain” theory [29]. If indeed case–con-
trol differences in transcription highlight such a state, a 
prediction of this model is that transcription in the male 
brain at baseline will be more similar to what is seen in 
postmortem autism brains. Indeed, past work found that 
upregulated genes in the neurotypical postmortem male 
(vs. female) cortex are more highly expressed in the post-
mortem cortex of autism patients from both sexes when 
compared to controls [30].

In addition to the effects of common variants on risk, 
rare loss of function mutations—implying a 50% reduc-
tion in expression—also cause disease, particularly for 
syndromic forms of autism and Intellectual Disabil-
ity where hundreds of new causal genes have recently 
been identified [31, 32]. Thus, it would be interesting 
to examine whether any sex biases in gene expression 
overlap with rare variant disorder genes. Previous work 
found that genes implicated in rare variant forms of 
autism at that time did not show any sex bias in expres-
sion [30].

Therefore, to replicate and extend these prior stud-
ies, we further characterized the transcriptomes of 
adult brains using larger datasets and additional brain 
regions, and tested whether sex-differential expres-
sion (sex-DE) of risk genes themselves may underlie sex 
differences in incidence of two prominent sex-biased 
conditions—one male-biased (autism) and one female-
biased (Alzheimer’s disease), both of which were 
selected because they have robust genome-wide asso-
ciation studies (GWAS) and case–control gene expres-
sion data. We examined two of the largest collections 
of postmortem brain RNA sequencing (RNA-seq) data 
available: GTEx version 8 [33] and the CommonMind 
Consortium (CMC) [34]. A key advantage of the GTEx 
dataset is that it surveys multiple brain regions across 
hundreds of male and female individuals, enabling an 
analysis for sex both within and across brain regions. 
The CMC dataset consists of only frontocortical sam-
ples, which we used to benchmark our analysis of GTEx 
cortex and produce a high-confidence meta-analyzed 
set of sex-differentially expressed cortical genes. We 
thus present a resource grounded in a large bulk RNA-
Seq brain dataset, detailing sex-differential expression 
in the human adult brain at both broad and fine scale. 
Using signal-to-noise ratio (SNR) analyses, we identify 
regions with the most robust transcriptome-wide DE 
signatures within the GTEx data. We then identify dif-
ferentially expressed genes (DEGs) in a novel ‘omnibus’ 
brain-wide framework, as well as DEGs for each region 
individually. With our omnibus analysis we identify a 
substantial proportion of the transcriptome as being 
sex-DE, albeit at very small magnitudes. From omnibus 
and regional sex DEGs, we then identify pathways and 
cell types over- or under-represented in each sex. We 
integrate these results with insights from recent human 
single-nucleus RNA-Seq (snRNA-seq) data, which pro-
vide more refined cell type and subtype gene signatures. 
Finally, we examine whether baseline sex DE overlaps 
with rare and common variant disease-associated gene 
sets and DEGs from postmortem human brain studies 
of neuropsychiatric cohorts.
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Methods
Data pre‑processing, filtering, and normalization
For this work, we utilized bulk RNA-sequencing data 
previously conducted by GTEx and the Commonmind 
Consortium Specifically, we used GTEx project v8 release 
gene count data (annotated with Gencode v26). Sample 
and donor attribute files were downloaded from dbGaP( 
phs000424.v9.p2). CMC data was downloaded from the 
CMC Knowledge Portal (https://​doi.​org/​10.​7303/​syn27​
59792) and annotated with GRCh37. Except where noted, 
the GTEx and CMC data were handled identically.

All donors coded either as having an unknown sta-
tus or positive diagnosis for brain-related diseases 
were removed to avoid confounding variables in the 
data. Removed brain-related diseases included amyo-
trophic lateral sclerosis, Alzheimer’s disease, dementia, 
encephalitis at death, Creutzfeld–Jakob disease, multi-
ple sclerosis, Parkinson’s disease, Reye’s syndrome, and 
schizophrenia. We additionally removed donors positive 
or of unknown status for major systemic diseases with 
potential to impact the brain secondarily in line with 
prior analyses [35]. This included sepsis/positive blood 
cultures, lupus, cardiovascular disease, human immu-
nodeficiency virus, active cancer diagnosis, high unex-
plained fever, abnormal white blood cells, influenza, and 
opportunistic infections. Overall this resulted in the sam-
ple numbers and sex distribution described in Table  1. 
For the n = 1688 samples retained from these donors, 
the average RNA integrity number (RIN) was 6.95. The 
R package edgeR was used to filter out low-representa-
tion genes, retaining only those with greater abundance 
than 10 counts per million (CPM) in at least 19 samples: 
a cutoff determined by taking 70% of the smallest group 
size of 27 (female amygdala). Data was then weighted and 
scaled by library size with the trimmed mean of m-values 
(TMM) method. For the CMC dataset, all samples with 
a Schizophrenia or Klinefelter diagnosis were removed 
from the analysis. Overall this resulted in the sample 
numbers and sex distribution described in Table 1.

Surrogate variable (SV) analysis
Given the broad number of epidemiologic variables in 
the GTEx cohort, surrogate variables (SVs) were included 
to account for unknown latent sources of variation in the 
data. Forty nine SVs were identified using the R package 
sva [36]. The full model and null model used for this anal-
ysis are as follows:

For the CMC dataset, we identified SVs representing 
latent sources of variation, all 9 of which were included in 

full =∼ 0+ SEX_REGION

null =∼ 1

the DE model. All SVs used in the analysis along with the 
full design are included in Supplemental Table 8.

QC
To perform quality checks on the data, principal compo-
nent analysis (PCA) plots were generated and the effect 
of SVs were visualized using the R package limma [37, 
38]. Then, SVs were tested for correlation with any sex-
region group in the data. Distributions of PCs generated 
from the counts matrix were plotted before and after SV 
correction to ensure SVs were not erroneously grouping 
samples or creating outliers. Mean–variance trends were 
plotted and inspected visually to ensure genes were fol-
lowing typical trends for a sizable multigroup RNA-Seq 
experiment. Specifically, we wanted to ensure there were 
no outlier genes relative to the mean–variance trend line, 
and that genewise dispersions were in the 0.5 to 1.5 range 
(Supplemental Fig. 1).

Signal to noise ratio
Due to the high degree of variability inherent in obtain-
ing postmortem brain tissue, it was critical to determine 
whether the influence of our biological signal of interest 
(sex) was detectable over technical noise. To evaluate 
this, we compared the total differences between males 
and females to the total variance in the unadjusted data 
as outlined by Lopes-Ramos [39]. This method allowed 
us to calculate a signal-to-noise ratio (SNR). The exact 
equation for SNR calculations are as follows:

Let F denote the number of females and M denote the 
number of males, and let X and Y be the matrices of gene 
expression values in females and males respectively, and 
let X  and Y  be the genewise expression average across all 
female and male samples. In order to determine SNR val-
ues without bias for unbalanced representation of sexes 
in the data, we created both a “true” and a “null” distri-
bution. To generate the “true” distribution we calculated 
the SNR 10,000 times based on randomly drawn samples 
with correct sex labels to generate a “true” distribution, 
Then, to generate the “null” distribution we calculated 
the above value 10,000 more times from randomly drawn 
samples that were split into two arbitrary groups and 
randomly assigned a sex to create a null distribution. For 
each iteration per region, where n = 90% of the smaller 

tSNR(X ,Y ) =
X − Y
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https://doi.org/10.7303/syn2759792
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(in all cases, female) group size, n male samples and n 
female samples were drawn (or for null simulations, 2n 
of the total samples). For a hypothetical brain region 
with 200 male samples and 100 female samples, 90 male 
and 90 female samples would be randomly selected per 
‘true’ iteration and 180 samples selected and randomly 
assigned a sex per null iteration. We compared the distri-
butions with Wilcox tests, and also calculated empirical P 
values as follows:

Differential expression analysis
Linear model designs were created using each sex-region 
(group) and the remaining SVs as fixed effects and donor 
as a random effect. Note that random effects (otherwise 
known as blocking factors) were estimated using a paral-
lel implementation of the limma function duplicateCor-
relation() (see Code and Modules below).

After the model was created, the count matrix was 
transformed to moderated log2(CPM) with a parallelized 
implementation of limma’s VoomWithQualityWeights() 
function. These functions fit the counts matrix to a linear 
model estimating for random factors, and adjust the rela-
tive weight of each sample to the mean variance of the 
sample. In short, this means that samples with high vari-
ance relative to the mean variance of all the samples will 
have less weight when detecting differentially expressed 
(DE) genes. This is a good replacement for trying to 
model the quality of the samples with RIN scores, which 
is generally a poor estimator [40]. The linear “mixed” 
model is then fit to the adjusted data. Our dataset-wide 
modeling strategy allows for regional and omnibus con-
trasts using the same model, yielding regionally compa-
rable results and precluding the need for multiple-testing 
correction for multiple contrasts. The following contrasts 
were used:

P = (SNRnull > SNRtrue)/niterations

MOD =∼ 0+ SEX_REGION + SV 1 · · · + SV 49+ (1|Donor)

Region = Female Region−Male Region

Omnibus =
(

Female Regions −Male Regions
)

/nRegions

Table 1  Donor demographic and sample quality information 
from GTEx and CMC datasets

GTEx (N = 1688)
 Sex

  Male 1230 (72.9%)

  Female 458 (27.1%)

 Brain region

  Amygdala 91 (5.4%)

  Anterior Cingulate Cortex 104 (6.2%)

  Caudate 154 (9.1%)

  Cerebellum 298 (17.7%)

  Cortex 297 (17.6%)

  Hippocampus 134 (7.9%)

  Hypothalamus 126 (7.5%)

  Nucleus Accumbens 160 (9.5%)

  Putamen 135 (8.0%)

  Spinal cord 104 (6.2%)

  Substantia Nigra 85 (5.0%)

 Age (years)

  Mean (standard deviation) 57.0 (10.8)

  Median [min, max] 59.0 [20.0, 70.0]

 Age bracket

  20’s 70 (4.1%)

  30’s 52 (3.1%)

  40’s 164 (9.7%)

  50’s 576 (34.1%)

  60’s 723 (42.8%)

  70’s 103 (6.1%)

 RIN

  Mean (standard deviation) 6.95 (0.855)

  Median [min, max] 6.80 [5.00, 10.0]

CMC (N = 437)
 Sex

  Male 278 (63.6%)

  Female 159 (36.4%)

 Brain region

  Cortex 437 (100%)

 Age (years)

  Mean (standard deviation) 57.8 (21.5)

  Median [min, max] 57.0 [18.0, 108]

 Age bracket

  10’s 12 (2.7%)

  20’s 40 (9.2%)

  30’s 34 (7.8%)

  40’s 76 (17.4%)

  50’s 76 (17.4%)

  60’s 64 (14.6%)

  70’s 50 (11.4%)

  80’s 48 (11.0%)

  90’s 33 (7.6%)

  100’s 4 (0.9%)

Table 1  (continued)

 RIN

  Mean (standard deviation) 7.78 (0.891)

  Median [min, max] 7.90 [4.50, 9.30]
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Therefore, all positive logFC values reported indicate 
greater expression in females relative to males, and all 
negative logFC values indicate greater expression in 
males versus females. The linear model-adjusted data 
are then contrasted to calculate differential expres-
sion. Finally the data are smoothed using an empiri-
cal Bayes method, which squeezes the genewise-wise 
residual variances of the data towards a common value 
and provides a better estimate of the t-statistic than an 
unmoderated version. The DE tables for each region 
and the omnibus contrast are provided in Supplemen-
tal Table 1.

A slight adjustment was made for the CMC dataset 
since there were fewer overall samples and all samples 
were from a single brain region. First, limma’s pre-pack-
aged functions were sufficient for this model. Second, 
without the region variable our only biological factor of 
interest was sex resulting in the following model:

The DE table for the CMC data is available in Supple-
mental Table 2.

Gene set enrichment analysis
In order to test for categories of biological function 
enriched in sex-differentially expressed genes outside of 
sex chromosomes, we performed Gene Set Enrichment 
Analysis (GSEA). All autosomal protein-coding genes 
with detectable brain signal, and their log2FCs, were used 
as input for analysis with the GSEA tool (version 4.2.3) 
[41, 42]. 1000 permutations were used and gene sets were 
restricted to those between 15–500 genes in size. Full list 
of results are available in Supplemental Table 3.

Meta‑analysis
To get a better picture of the sex-differential biology 
we combined the results of the two independent anal-
yses through a meta analysis. To do this we first took 
the intersection of the two datasets’ genes using their 
Ensembl ID’s, then removed all genes that didn’t agree 
on the direction of logFC effect. Once we had our list of 
genes we combined their P-values using the AWFisher 
R package [43], which utilizes adaptively weighted 
log-p values from individual studies to generate a uni-
fied statistic and the associated p-value for the signifi-
cance of the combined result. Once the P values were 
calculated they were subsequently adjusted using the 
Benjamini–Hochberg method, otherwise known as 
FDR correction. Results are available in Supplemental 
Table 4.

MOD =∼ 0+ SEX + SV 1 · · · SV 9

ChIP‑X enrichment analysis (ChEA3)
In order to better understand which transcription fac-
tors (TFs) may be responsible for regional sex DEGs we 
conducted an analysis of TF using the ChEA3 tool [44]. 
We first took all TFs that ranked 50 or lower using the 
mean rank metric. To avoid circular logic we excluded 
the GTEx coexpression heuristic from the ChEA3 tool 
results and recalculated the mean ranks from the other 
four heuristics. For increased rigor, TFs also had to also 
be significantly DE in the tissue of DEGs entered into the 
ChEA3 tool, meaning that the TFs were subset only to 
activators. For a complete list of TFs that met these crite-
ria see Supplemental Table 5.

Single‑nucleus enrichment analysis of genes upregulated 
in cortexfor each sex
The Allen Brain Atlas provides a 47,000 nucleus, single-
nucleus RNA-seq dataset from 6 areas of cortex repre-
senting all major cortical cell types [45]. We utilized this 
dataset to identify cell types/states for which there was 
more sex-biased differential gene expression. For each 
nucleus we calculated a single-cell disease relevance 
score (scDRS) with the scDRS tool from Zhang et al. with 
the following parameters: mean–variance based con-
trol gene selection, 1500 permuted controls per cell, and 
low-count/low-gene-total pre-filtering [46]. Sets of sex-
biased DEGs for input were generated from the top 1000 
autosomal genes upregulated in male OR female cortex, 
for a total of 2 gene score sets. Genes are weighted by a 
Z-score, in this case, the Z-normalized DE significance. 
Subsequently, the scDRS tool’s downstream functions 
were utilized to identify genes most correlated with the 
weighted signatures and quantify enrichment signifi-
cance and heterogeneity defined as variability in enrich-
ment scores within pre-labeled groups, in cell types and 
cortical layers.

Comparison to genes near associated common variants 
from genome‑wide association studies for autism, ADHD, 
and AD
Candidate genes based on proximity to genome-wide 
association study (GWAS) peak and transcriptome-wide 
association (TWAS) analysis were collected for GWAS 
loci associated with ADHD and autism when considered 
jointly [12]. TWAS genes with P < 0.05 were retained for 
list overlap. For AD, previously identified genes/GWAS 
loci were collected from a recent Alzheimer’s GWAS 
[11]. From this study, we combined gene lists identifying 
known Alzheimer’s risk genes and newly discovered risk 
genes.  DEGs from each sex for each GTEx region were 
overlapped with the autism/ADHD and Alzheimer’s gene 
sets described above. A Fisher’s test was used to calculate 
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the enrichment of sex DEGs among putative GWAS tar-
get genes.

To examine whether sex-differentially expressed Alz-
heimer’s genes from GTEX cortex were targets of par-
ticular mature microRNAs (miRNAs), miRDB [46] was 
used to retrieve all miRNAs predicted to regulate mRNA 
level for the overlapping FDR-significant genes upregu-
lated in each sex. These predictions were then subsetted 
to those miRNAs retained for expression in our analysis 
(13 miRNAs total) and used to generate the regulatory 
network (Fig. 4D) via Cytoscape [47].

Overlap of sex DE genes with genes associated with autism 
by rare variant studies, and with genes differentially 
expressed in cases and controls
In order to examine how our results may relate to sex-
biased disease, we compared our results with those 
from prior autism and Alzheimer’s-oriented studies. For 
autism rare variant genes we used SFARI Genes specifi-
cally ‘genescore 1’ genes, which are genes with the high-
est level of evidence supporting their role in autism [31]. 
For autism case–control DEG sets we used two prior 
studies, Gandal supplementary Table 3 [48] and Werling 
supplemental Table  2, specifically Voineagu autism up 
and down regulated DEGs(sheets 5 and 6) [30, 49]. For 
Alzheimer’s case–control gene sets we used the RNA-Seq 
Harmonization Study [50], specifically the cortical region 
contrasts. We then subset the lists from prior studies to 
only contain genes that were included in our analysis, 
and split the lists based on direction of effect (case upreg-
ulated, control upregulated). We then tested these multi-
ple gene sets for enrichment in each of our sex by region 
DEG sets by Fisher test.

CPM match enrichment permutation test
To test whether the overlap between male-biased DEGs 
and rare causal variants in autism were not simply 
explained the generally increased levels of neuronal tran-
scripts in the male samples, we tested whether random 
genes with similar expression in neurons would show 
similar enrichment to SFARI genescore 1 genes, using 
an approach derived from [51], but updated to use sin-
gle cell neuronal data to generate the random gene lists. 
Specifically, we utilized the Allen Brain Atlas cortex post-
mortem single-nucleus RNA data [45] and subsetted it to 
include only neuronal cell types. In short, we generated 
a log(CPM) value for each neuronal gene and created 
individual probability matrices. This was then compared 
to probability matrices for only genes categorized as 
SFARI genescore 1. Permutations were performed 1000 
times and each gene set was tested for enrichment in the 
male cortex DEG set. Finally, we plotted the Odds Ratio 
(OR) of all 1000 permuted gene sets along with the real 

OR from the genuine SFARI genescore 1 genes, and cal-
culated an empirical P value for the true set based on its 
placement in the random distribution.

Code and modules
Functions from multiple sources,as well as custom code 
were used to run this analysis. Code has been deposited 
into Bitbucket at https://​bitbu​cket.​org/​jdlab​team/​gtex_​
peper_​final_​code/​src/​main/.

Results
Processing of RNA sequencing data identifies a sex signal 
in most brain regions
We filtered and normalized bulk RNA-seq data from 
the GTEx project using a limma pipeline with mod-
els accounting for brain region, sex, surrogate variables 
(SVs), and donor effects. The full GTEXv8 release con-
tains 2642 samples from 382 donors, spanning 13 brain 
regions (n per region ranging from 152 to 255 samples). 
The subset of GTEX donors included in our analyses (see 
“Methods”) contributed n = 1688 samples from seven 
regions per donor on average and were mostly aged 50 
to 69 years (see Table 1 for additional demographic and 
sample information). After filtering, we analyzed 14082 
genes, 497 of which were allosomal. PCA clustering 
separates tissues primarily by region (Fig.  1A), indicat-
ing this is the major mediator of gene expression differ-
ences across samples. We show that accounting for latent 
sources of variation in the data using SV adjustment does 
not produce outliers and largely acts to shrink the vari-
ance across samples (Fig. 1A).

Sex‑biased signal is stronger than technical noise 
in the majority of tissue samples
Differential expression analysis allows for identification 
of genes with sex-biased expression; however, a signal to 
noise ratio (SNR) analysis captures pan-transcriptomic 
divergence between groups without using arbitrary sta-
tistical thresholds and can aid data quality assessment 
by quantifying signal and variance in relative terms 
[39]. Moreover, this approach can be used to confirm 
noise-reducing effects of data pre-processing (low count 
removal, batch corrections, etc.) (Fig. 1B). We calculated 
SNR values for each region twice, once with unadjusted 
RNA counts and again with SV-adjusted counts. Random 
subsets of male and female samples were drawn 104 times 
per region for both SV-adjusted counts and unadjusted 
counts (see “Methods”). We observed that adjusting for 
SVs makes the SNR distribution more similar to a normal 
distribution (Fig. 1B). When examining the SV-adjusted 
counts for all regions we saw that regions with larger 
total n (e.g. cerebellum) had the largest SNR, indicating 
either robust sex differences or exceptionally low noise 

https://bitbucket.org/jdlabteam/gtex_peper_final_code/src/main/
https://bitbucket.org/jdlabteam/gtex_peper_final_code/src/main/
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due to statistical power (Fig. 1C). We also speculate that 
the large SNR might also be driven by ease of dissection, 
with the cerebellum and the cortex being relatively larger 
and easy to dissect compared to smaller brain structures 
such as the substantia nigra. The shape of the SNR dis-
tribution is also of importance as distributions approach-
ing normal indicate that SNR values are replicable across 
sample subsets, while long-tailed distributions indicate 
that extreme findings can be driven by certain combina-
tions of samples/donors (Fig. 1B). Unlike subsequent DE 
analysis, our SNR calculations did not account for ran-
dom effects of donor. Substantia nigra showed a SNR of 
less than one, indicating that this region may not have 
sex-differentiated gene expression patterns, or is more 
difficult to dissect reproducibly and is thus noisier. For 
these reasons, we recommend caution in interpreting our 
sex DE findings from the substantia nigra. However, in 
remaining regions, a sex-biased signal greater than tech-
nical noise is evident, with the cortex standing out as a 
region with consistent and substantial sex differences.

Sex differences in gene expression are widespread 
across brain regions
We next identified DE genes (FDR < 0.05) between 
males and females for each brain region, and across 
all regions in a general omnibus model (Fig.  1, Supple-
mental Table  2). Both autosomal and allosomal genes 
were included in illustrations and analyses except where 
noted. There are DEGs (FDR < 0.05) both on allosomes 
and autosomes (Fig.  1D). Many known X inactiva-
tion escape genes were found to be highly expressed in 
females, including XIST. As expected, DE genes shared 
across regions were allosomal: for example, 15% of allo-
somal genes (74, including all 14 chrY genes analyzed) 
were found to be DE in the omnibus model, consistent 
with base expectations of a sex DE analysis. In addition 
to the allosomal genes, we further identify a total of 5,182 

unique autosomal genes DE in at least one of our region-
specific contrasts or omnibus contrast (see Methods: Dif-
ferential expression analysis), albeit at low magnitudes 
(mean absolute linear fold difference of autosomal DE 
genes was 1.158). Consistent with the region-specific 
nature of brain gene expression and regulation [52–54], 
regional totals of DEGs were highly variable, from < 10 
to thousands of autosomal DEGs. When considering 
all regions jointly in the omnibus model, 860 DE genes 
(786 autosomal) were identified, representing 6.1% of 
analyzed genes (5.8% of autosomal genes, Fig. 1E, F). As 
expected, the number of DEGs is driven in part by n, as 
the correlation between sample size and number of DEGs 
is 0.64 (Spearman’s S = 101.68, P-value = 0.02368). The 
single autosomal DE gene found in all regions was the 
long, non-coding RNA (lncRNA) LINC01597, found to 
be upregulated in males. This lncRNA is relatively unan-
notated, but some exons are conserved across closely 
related species (Supplemental Fig.  2). Surprisingly, we 
also found a number of chrX genes with male bias, 
including pseudoautosomal (shared regions of chrX and 
chrY) genes PLCXD1, ZBED1, and ASMTL, consistent 
with recent reports for cortex and hippocampus (but not 
caudate) from an independent dataset [25].

We further demonstrate that there are expression dif-
ferences between regions, when considering raw counts, 
SV-adjusted counts, (Fig. 1A) or log2FC from differential 
expression (Fig.  1G, H). Most pronounced are perhaps 
the difference between the cerebellum and the other 
brain regions, which is consistent with prior studies (e.g., 
[55]). Based on the number of sex-differential genes and 
SNRs, we categorized the cerebellum, cortex, nucleus 
accumbens, putamen and caudate as sex-differential 
regions (SDRs) and plotted the top 100 variable log2FC 
DE genes (significant in at least one region) principle 
components (PC) to illustrate this grouping structure 
(Fig.  1H). To examine which of these 100 most variable 

(See figure on next page.)
Fig. 1  Brain regions show distinct patterns of sex-differential expression. A PCA plot of all samples and genes before and after removing the effects 
of SVs. Accounting for SV’s reduces the variance in the data, and cerebellar samples (green) cluster separately from other regions (colors as in C). B 
SNR from 10,000 iterations, pre- and post-SV adjustment in cortex. SV adjustment reduces the tail of the distribution, makes the distribution more 
normal, and reduces mean SNR. C SV-adjusted SNR values (10,000 iterations). Each distribution is significantly different from its corresponding 
null distribution by Wilcox test. All regions other than substantia nigra have a mean SNR value greater than one, providing evidence that there 
is an expression difference between males and females in multiple brain regions. Cortex has the third highest mean SNR value and has the 
shortest tail, suggesting that its SNR is highly repeatable. D Summary of DE gene count per region, including omnibus. There is an abundance 
of DE autosomal genes in the nucleus accumbens, cortex, cerebellum, putamen, and caudate. Sample number does not fully explain the number 
of DE genes in a given region. E Volcano plot highlighting that allosomal genes follow expected trends. F Volcano plot highlighting the autosomal 
genes, including noteworthy long non-coding RNA LINC01597. G PCA of all LogFCs from all regions and omnibus, shows omnibus truly represents 
the average sex-differential expression across all brain regions. H PCA of top 500 most variable LogFCs that were FDR significant in at least one 
of the “sex-differential” regions. Highlights the fact that cerebellum remains an outlier even when only considering sex differences. I PCA plots 
showing the key genes that separate the SDR in the same PCA space as panel H. Highlights a few notable genes that can be used to distinguish 
regions from a sex-differential lens. J Correlation of LogFCs between CMC, and GTEx analysis demonstrates results are robustly shared for the cortex. 
K Correlation of LogFCs for DE genes between CMC and GTEx shows a high replicability in cortex
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genes was driving the differences we plotted their relative 
contributions to the PCs (Fig.  1I). One gene of interest 
is GCSAML, which was found to be DE (female upregu-
lated) in the cerebellum, and very lowly expressed in all 
other brain regions. GCSAML is known to be involved 
in the proliferation of B lymphocytes, interestingly 
GCSAML is also highly expressed in the testes and pros-
tate of males [56].

Replication and meta‑analysis of cortical findings 
with Commonmind Consortium
To confirm these findings were reproducible, we repli-
cated this study using the control samples from another 
large (n = 278 males, 159 females) postmortem collection 
(albeit limited to cortex), the Commonmind Consortium 
(CMC). We observe significant correlation in sex effects 
across these independent datasets (Fig.  1J), especially 
when considering the union of their DEGs (Fig.  1K). 
Using Fisher’s method to combine the P-values from both 
studies identifies a list of high-confidence cortical sex 
DEG that may be useful for future analyses (Supplemen-
tal Table 4).

Sex DE genes highlight neuronal and immune signatures 
in male and female brain
After establishing the detectable difference between 
males and females, we next investigated which biologi-
cal pathways differ between the sexes. For each region 
we conducted Gene Ontology (GO) analysis of FDR DE 
genes per sex supplemental Figs.  3–7. For cortex and 
omnibus models we followed up this analysis with seman-
tic similarity clustering to reduce redundancy of terms 
and increase presentability (Fig. 2A, full GO analyses in 
supplemental Figs.  3–7). Males showed upregulation of 
neuronal pathways (which reproduced across both data-
sets) while females showed an upregulation in immune, 
vascular, and endothelial cell signatures, consistent with a 
recent report in independent brain data [25].

Furthermore, although many of these ontologies were 
shared across regional and omnibus models (Fig.  2B), 
some appeared to be region-specific. For example, male 
upregulated genes in the nucleus accumbens showed 
mitochondrial signature and lacked the male neuronal 
signature found in other regions (Supplemental Fig. 7C). 
Also, regions with low SNR values or a small num-
ber of DE genes did not reflect the general GO enrich-
ments above. Interestingly, the cerebellum did not share 
the ontology findings of other regions despite hav-
ing the highest regional SNR and a large number of DE 
genes. Indeed, essentially no terms were enriched for 
male upregulated genes, and female DE genes yielded 
terms with only vague resemblance to the immune and 
endothelial signatures found in other regions. Overall, 

these findings provide additional evidence that indi-
cate regional differences in sexually heterogeneous gene 
expression, with the cerebellum in particular being 
unique in its expression profile.

Next, we investigated potential drivers of the DEGs in 
the different regions by examining transcription factors 
(TFs) whose targets were significantly enriched in our 
DEG lists with the ChEA3 tool [44]. To identify potential 
regulators, we subsetted to only transcriptional activators 
that were themselves DE in each region. We found sev-
eral high-confidence TFs, which may play a role in modu-
lating transcription in each region (Fig. 2C, Supplemental 
Table  5). Notably, the female enriched gene, BCL6B, is 
predicted to be involved in inflammatory response, 
which suggests a mechanism for why many inflammatory 
genes are upregulated in females across regions.

Sex‑specific signatures are mainly driven by differences 
in cell type states
Our GO results suggested many of the sex DE genes 
corresponded to particular cell types. We first sought 
to confirm this with cell type focused tools and then to 
interpret these results leveraging recent collections of 
single-nucleus RNA-sequencing (snRNA-seq) data.

To confirm DE enrichment in the cell types suggested 
by ontology analysis, we intersected DE genes to mouse 
brain cell type markers using Cell type-Specific Expres-
sion Analysis (CSEA) [57]. While mouse brain cell type 
markers are not ideal to assess cell identity, conserved 
basic biological pathways and homologous genes shared 
between species can allow us an additional estimate of 
cell identity. CSEA again revealed a neuronal signature 
in males and a glial/immune signature in females (Sup-
plemental Fig. 9). However, these initial analyses utilized 
tools based on a limited number of purified cell type 
RNA rather than true single cell measures [58]. Further-
more, this observation of sex DE gene enrichment in cell 
type-specific genes/ontology terms could be driven by 
either sex differences in cellular abundance or by a sex 
bias in cellular states within each cell type. Thus, to more 
rigorously identify cell types enriched for cortical sex DE 
genes across a larger number of cell types, and to clarify 
whether these enrichments represent abundance or state 
differences, we leveraged the Allen Brain Atlas snRNA-
seq data from the adult human cortex [45] (Fig. 3A) with 
the single cell disease relevance score (scDRS) tool [59]. 
The scDRS tool links individual cells to a gene list by gen-
erating an empirical P via a permutation test, essentially, 
this tool estimates which cell types are most involved 
with a given set of genes. Our aim was to identify 
whether or not there was an overall enrichment of sex 
DEGs per cortical cell type, and whether that enrichment 
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was heterogeneous. If sex DE genes were reflective of a 
particular state (or subpopulation) of a cell type, enrich-
ment heterogeneity would be expected (e.g. the sex 
enriched genes would be found in cells in just a subpart 

of a given type), whereas homogeneous enrichment 
would be expected of a cell type with sex differences in 
cell type proportion (sex-enriched genes would be found 
evenly throughout all cells of a type). One example of a 

Fig. 2  Pathways transcriptionally enriched in the male and female brain. A Male, Female, GTEx Cortex, GTEX Omnibus and CMC Cortex upregulated 
GO terms from FDR significant autosomal genes, shows male-biased and female-biased categories in cortex and omnibus. B GSEA plot of all tissues 
and sexes top 15 mean highest significantly enriched categories’ NES scores from males and females clustered by sample and NES score with white 
indicating non-significant. GSEA results generally mimic GO results, but there is less replication across female regions, and some regional differences. 
C ChEA3 analysis of DE genes highlights TFs (x-axis) which may be relevant activators that drive DE across regions
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distinct transcriptional state/subpopulation is activated 
microglia, which have a different expression profile than 
inactive microglia [60].

To test this, individual cells were scored for weighted 
enrichment in the top 1000 autosomal sex DE genes in 
cortex for each sex (Fig. 3B), followed by enrichment and 
heterogeneity testing for each cell type using the sin-
gle cell enrichment scores [59] (Fig. 3C, D) in the Allen 
Brain Atlas snRNA-seq data from the adult human cor-
tex [45]. In brief, the scDRS algorithm works to test for 
enrichment in a cell type by generating a null distribution 
of randomly selected cells, each ranked with a Z-score 
according to their relative expression of the input set of 
genes; an enriched cell type has more cells that are in 
the upper quantiles of expression Z-scores than would 
be expected from the generated null distribution. Male 
cortex upregulated genes were most strongly enriched 
in several neuronal lineages, but heterogeneously so; 
top Z-scaled male enrichments highlighted intratelence-
phalic neurons (13% of cells, Z > 18, Bonferroni-adjusted 
heterogeneity p < 0.05) and PVALB-expressing neurons 
(39% of cells, Z > 14, Bonferroni-adjusted heterogene-
ity p < 0.05) (Fig. 3B–D). Female upregulated genes from 
cortex were most strongly enriched in 40% of single 
astrocytes and 63% of single oligodendrocyte progenitors 
(Fig. 3B, C; Z scaled enrichment scores > 10 and 8, respec-
tively, both Bonferroni-adjusted P < 0.05), each also with 
significant inter-cell heterogeneity (Bonferroni-adjusted 
P-values < 0.05) (Fig. 3D). These findings strongly suggest 
that it is particular states of most cortical neuron types, 
astrocytes, and oligodendrocyte precursors that drive 
the overall sex-differential gene expression seen in bulk 
RNA-seq. Complete results are in Supplemental Table 6. 
Females upregulated genes also showed enrichment in 
pericytes and endothelial cells, consistent with GO and 
GSEA analyses. To confirm these results were not spuri-
ous, we selected a random set of brain-expressed genes, 
arbitrarily assigned P-values from the real DEG lists and 
repeated both analyses. We found no significant overlap 
with either cell type or heterogeneity measures using this 
procedure.

Lack of molecular predisposition, but increased expression 
of autism risk genes in male brain
We next examined how sex DE patterns relate to neu-
rological disorders with sex biases in diagnosis, with 
two non-exclusive approaches. First, we examined prior 
case–control RNA-seq data to determine if male brains 
exhibit greater similarity to autism cases rather than con-
trols, indicating a male molecular predisposition towards 
an autism-like state [30, 48], while asking if female brains 
lean more towards an Alzheimer’s-like state. Secondly, 
we investigated whether there is any sex bias in the 

expression of Alzheimer’s- or autism-associated genes in 
control individuals.

Comparison of case–control DEGs to Sex DEGs
Female enriched genes were generally higher in autism 
cases than controls, contrary to a molecular predisposi-
tion hypothesis. This was true across two gene sets from 
autism case–control studies (Fig. 4A). Likewise, we found 
that autism downregulated cortex genes relative to con-
trols were found to be enriched in the male upregulated 
cortex DEG set.

In addition to looking at gene overlap in previous bulk 
RNA-seq autism case–control studies, we also examined 
the gene overlap in Alzheimer’s bulk RNA-seq case–con-
trol studies. We chose an analysis [50] that used multiple 
cohorts of Alzheimer’s donors from different institutions 
and analyzed the data using several statistical models. We 
chose the cortical samples for each of these cohorts and 
used three of the analyses: diagnosis only, diagnosis by 
male sex only, and diagnosis by female sex only. Regard-
less of which cortical region examined, or which analy-
sis used, we saw the same, clear pattern emerge. Genes 
upregulated in Alzheimer’s donors significantly over-
lap with genes upregulated in female cortex, and genes 
upregulated in control donors significantly overlap with 
male cortex (Fig. 4B). This provides evidence that females 
have a molecular predisposition for an Alzheimer’s-like 
state.

In addition to overlapping the gene significant lists 
in a categorical manner, we also tested the correlation 
between our neurotypical sex differences and case vs. 
control status using a quantitative approach. Indeed, cor-
relating the log fold-changes in sex differential genes with 
the log-fold changes of case vs. control studies of autism 
and Alzheimer’s were consistent with the categorical 
analyses. Specifically female enriched transcripts defined 
in neurotypical brains were also enriched in both Alz-
heimer’s cases and autism cases relative to their controls 
(Fig.  4F). The correlations of log fold-changes in these 
analyses were quite high (> 0.79) across all case–control 
comparisons, and were similarly high whether or not 
sex chromosomes were included (not shown). Further-
more Y-chromosome genes were not found as case–con-
trol differential genes, suggesting there was not a cryptic 
unaccounted for sex bias in those previously published 
studies that could explain this effect.

Common risk variants
One possible mechanism by which sex differences arise 
in diseases with complex (i.e. polygenic, common vari-
ant mediated) heritability is through variant-mediated 
perturbations to baseline sex-differential gene expression 
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patterns. For example, a set of genes expressed in a 
given tissue and linked to nearby common risk vari-
ants through genome-wide association studies (GWAS) 
could be upregulated or downregulated as consequences 
of risk alleles, altering cell fate or state when collective 
effects surpass some threshold. Sex differences in gene 
expression could either buffer against or predispose 
toward reaching a collective effect threshold in a given 
pathway or cell type. For example, if disease D risk loci 
cumulatively downregulates pathway Z, and pathway Z is 

upregulated in healthy females in the disease tissue, then 
females should be resilient to genetic risk factors acting 
through pathway Z. Indeed, such mechanisms have been 
speculated to account for differences in autoimmune dis-
ease rates between men and women [61, 62]. Therefore, 
by looking at which common polymorphism loci show 
some type of nominally significant contribution to risk, 
we can see if any up or downregulated genes overlap and 
possibly identify mechanisms for risk.

Fig. 3  Integration with single nucleus data suggests sex biases in cell states. A tSNE illustrating subclasses of single nuclei as identified by Hodge 
et al. [45]; B male upregulated genes (blue) and female upregulated genes (red) map to individual nuclei in distinct clusters. C Significance of overall 
enrichment for sex DE genes within each Allen Atlas subclass where white indicates non-significant enrichment after Bonferroni correction. 
D Significance of heterogeneity in sex DE gene enrichment for each Allen Atlas subclass where white represents non-significant enrichment 
after Bonferroni correction
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We first tested whether any of the analyzed regions’ 
sex differential genes were enriched for genes associ-
ated with Alzheimer’s or a joint analysis of ADHD/
autism by prior and recent GWAS studies [11, 12]. No 
significant enrichment of sex DE genes were found 
in autism or Alzheimer’s GWAS loci genes, however, 
GWAS loci each usually contain several genes, only a 

subset of which are related to the condition (Fig.  4C). 
Thus, we conducted a preliminary analysis of the sub-
set of GWAS loci genes that did overlap with sex DEGs, 
to see if any patterns emerged. One interesting overlap 
was with a lncRNA found near the critical Alzheimer’s 
gene APP–AP00023.1—which was significantly upregu-
lated in female GTEX omnibus and cortex. 15 additional 

Fig. 4  Overlap of sex differences in gene expression to postmortem case–control differences and disease gene sets. A Diagram showing 
comparisons made (top). Autism significantly up- and down-regulated genes sets from case–control studies overlapped with GTEx cortex male 
and female DEGs (bottom). B Diagram outlining general comparisons as in A (top). GTEx cortex male and female DEGs overlapped with male, 
female and sex agnostic Alzheimer’s up and downregulated genes sets from cortical samples (bottom). C Diagram as in A, B (top). GWAS 
Alzheimer’s and autism/ADHD risk loci overlapped with male and female DEGs, shows no significant enrichment (bottom). D Male DE microRNAs 
targets found in GWAS Alzheimer’s risk genes sets. E Diagram showing various dataset overlapping performed (right). Autism risk genes from SFARI 
genescore 1 both including and excluding allosomal genes, shows significant male enrichment in the cortex (left). F Scatterplot displaying 
the relationship between the logFCs of case–control data (y-axes, Autism—left and representative Alzheimer’s—right) and our sex DEG analysis 
(x-axes). Regression lines are shown in green and Pearson’s R values are displayed in the top right corner of each graph. If no genes overlap, then 
the odds ratio is 0
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Alzheimer’s risk genes significantly upregulated in 
female cortex were RPS27L, SPPL2A, PRKD3, MINDY2, 
FERMT2, TMEM106B, FAM96A, RAB8B, ABCA1, 
CD2AP, OTULIN, FOXF1, CNN2, GFAP, and GDPD3. 
To further investigate GWAS loci that did overlap with 
our DEGs we conducted a downstream analysis and iden-
tified enrichment for targets of the miRNA, MIR219A2: 
ABCA1, MINDY2, SPPL2A, and CD2AP. MIR219A2 was 
upregulated in male cortex and omnibus at nominal sig-
nificance (FDR 0.063), while the aforementioned targets 
were upregulated in females at corrected significance. 
This relationship is consistent with the repressive role 
of miRNAs, and suggests that MIR219A may confer a 
protective effect against Alzheimer’s by repressing these 
targets (Fig.  4D). One study has provided evidence that 
MIR219A overexpression helps regulate the differentia-
tion of oligodendrocyte precursor cells (OPCs) into oli-
godendrocytes, promotes remyelination, and improves 
cognitive function [63]. Additionally, autism GWAS loci 
genes intersecting male upregulated genes from GTEX 
cortex were enriched for putative target genes of the 
transcription factor and androgen receptor (AR) coregu-
lator [64] ZBTB7A. ZBTB7A fell just short of corrected 
significance for upregulation in male cortex (FDR = 0.06), 
but could hint at a similar mechanism for why this set of 
genes is higher in male brain.

Rare variant‑implicated autism genes
We also tested for enrichment of rare variant-implicated 
autism genes in the regional sex DEGs lists. We utilized 
the SFARIGene database [31], specifically genes with 
high-confidence of playing a role in autism, denoted as 
genescore 1 (nearly all of which cause neurodevelopmen-
tal syndromes with high penetrance of both autism and 
Intellectual Disability). We found there to be a signifi-
cant overlap of these high confidence autism risk genes 
across many of the regional sex DEG sets. Across most 
brain regions the autism risk genes were overlapped with 
genes expressed higher in females (except cortex, which 
showed a male bias). However, this likely reflects the fact 
that many of the risk loci are found on the X chromo-
some (21 of the 211 autism genes were on the X chro-
mosome), which are more often upregulated in females. 
To remedy this bias, we repeated this analysis excluding 
all allosomal genes (Fig. 4E). We observed the male cor-
tex was still enriched for autism risk genes regardless of 
allosomal exclusion (Fig. 4E). It should also be noted that 
when using the SFARIGene database list as it existed at 
the time of the Werling 2016 paper, we replicate the find-
ings of Werling 2016 and find no sex DEG sets to be sig-
nificantly enriched. Finally, for Alzheimer’s, relatively few 
rare loss of function variants have been robustly associ-
ated with the disease, precluding a similar analysis.

To ensure that our significant overlap of male DEGs 
with rare variant-implicated autism genes was not simply 
reflecting the higher male expression of neuronal genes, 
combined with the known bias of autism genes towards 
neuronal expression. To test this, we generated 1000 ran-
dom gene sets of the same number and expression level 
in snRNA-seq neuronal data, as the autism gene list and 
ran enrichment testing in the male cortex DEGs. We 
did find these random neuron-biased lists were slightly 
enriched in male brain DEGs (mean odds ratio of ~ 1.2), 
yet they rarely matched the odds ratio observed in the 
true autism gene list (Supplemental Fig. 10).

Discussion
This study comprehensively examines adult sex dif-
ferences across brain regions and across the brain as 
a whole under a single unified model, providing a valu-
able resource for future reanalyses. Interestingly, with 
the power of all samples available, more than 5% of genes 
included in this analysis showed significantly sex-biased 
expression, albeit often of very low magnitudes in the 
omnibus model. Interpretation of these results are com-
plex and can vary greatly depending on selected log2FC 
thresholds. Thus, care must be taken in selecting sig-
nificance and log2FC thresholds most relevant to a given 
line of inquiry or quantitative approaches leveraging all 
available log2FC values should be taken. In addition to 
the GTEx omnibus model we also present the individual 
analyses for each brain region (Supplemental Table 1).

Looking across regions, LINC01597 is a newly identi-
fied sex DE gene of particular interest, as it shows similar 
male-increased expression patterns across all models to 
that of an allosomal gene despite not having homology to 
any known Y region (Fig. 1F). This extreme sex bias can 
be seen in other large human genetic studies [65, 66]. 
This could be a novel example of a uniquely regulated 
pseudoallosomal gene that may have important function, 
considering its high relative expression in the brain [56] 
and pituitary [33]. The LINC01597 gene is found near 
the centromere of chromosome 20 and shows some con-
servation (Supplemental Fig.  2). Search of LINC01597 
sequence to telomere to telomere (T2T) genome using 
UCSC BLAT search confirmed no homology to Y genes, 
ruling out mismapping of Y-derived reads as driving this 
finding. Considering that some lncRNAs serve as impor-
tant mediators of sex-specific gene expression, such as 
XIST, and have been associated with increased risk of 
depression and cancer [67–69], LINC01597 may merit 
additional investigation.

From pathway/ontologies analyses, our findings indi-
cate a significant upregulation of genes associated with 
the Homotypic Fusion and Protein Sorting (HOPS) com-
plex within the male cortex as well as tau protein kinase 
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activity (Fig.  2A). The HOPS complex is recognized for 
its involvement in autophagosomal activity, a process 
crucial for removing debris from the cell. Dysregulation 
of the HOPS complex can potentially lead to neuronal 
cell death. Notably, if females exhibit a relatively lower 
HOPS complex expression or a reduction in the amount 
of tau-kinase activity, these features may provide partial 
explanations for the higher prevalence of Alzheimer’s 
disease in the female population.

Examination of this data with regards to cell types sug-
gests states of particular cell types may also contribute. 
We observe evidence of sex-differential cell states in 
neurons, with males having an upregulation for certain 
neurotransmitters and synapse formation genes while 
females show evidence for possessing distinctive vascu-
lar, endothelial, and immune signatures. Specifically, our 
findings contribute evidence to a growing body of knowl-
edge that indicates the female brain has increased levels 
of immune activity, either via an increased abundance 
of immune cells (particularly microglia) or via a more 
active state of these cells [70–73]. Our subsequent analy-
ses incorporating snRNA-seq data suggest that females 
do not have an increased abundance of microglia cells; 
rather that these cells are in a different state (Fig.  3C, 
D). Distinct microglia states are strongly implicated in 
Alzheimer’s risk and progression through both human 
genetics and pathology [74, 75]. For example, high-
throughput analysis of microglial morphometrics in mice 
also indicated female microglia are in a more disease-like 
state, and more rapidly shift into this state in progress 
of disease models as well [76]. If microglia in the human 
female brain are also already slightly shifted toward such 
states, this could enhance the risk of developing disease. 
This shift would have implications for diseases and dis-
orders beyond Alzheimer’s disease, including Multiple 
Sclerosis [77].

For the vascular cells (endothelial and pericytes) the 
analysis suggested there may be more such cells in female 
brain (Figs. 2A, B, 3C), but the number of these cells in 
the single cell data is relatively low (< 100) precluding a 
thorough analysis of heterogeneity of states of these cells. 
Nonetheless, it would be interesting to assess whether 
there is more vascularity in the female brain.

There may be an opportunity to consider treatments or 
risk mitigation approaches that are informed by the sex 
of the person, although we are unaware of exactly how 
these sex differences in gene expression are being driven. 
One possibility is miRNA 219A2, which we observed as 
being possibly sex-biased. If so, this could be male-pro-
tective via degradation of Alzheimer’s implicated tran-
scripts, providing one possible explanation of increased 
female risk for Alzheimer’s disease. However, other pos-
sible mechanisms may include specific TFs, like BCL6B, 

SCRT1 highlighted here, or others in the cacophony 
of regulators that are downstream of the allosomes, via 
sex hormones, or a nebulous combination of environ-
mental and sociological factors, or a nuanced and com-
plex mixture of all of the above. Thus, the female gene 
expression bias towards an Alzheimer’s-like state might 
suggest any molecular predisposition is acting through 
multiple convergent molecular pathways. It is interest-
ing that Alzheimer’s GWAS signal was not enriched in 
any particular brain region (Fig.  4), suggesting that the 
well-documented differences in vulnerability (e.g. the 
earlier formation of pathology in hippocampus relative to 
cerebellum), are perhaps not driven by some kind of sex 
expression by gene interaction in these regions.

Notably, elderly individuals may exhibit an augmented 
immune response in brain tissue, and since females tend 
to live longer, it is plausible that the observed immune 
signature may be caused by data skewed toward older 
donors. However, to rule out this possibility, we reran 
the analysis with age as a covariate and the findings 
remained with regard to the immune signature above. 
The minor differences to note between the models were 
that more sex effects were detected with age in the model 
in particular brain regions, notably limbic regions like 
the amygdala, accumbens, nigra, and spinal cord. Thus, 
at least within the age ranges present here, the altered 
immune response seemed to be a bona fide sex difference 
rather than age effect, though age may interact more with 
sex in some specific regions.

Somewhat more difficult to interpret is the evidence 
for neuron transcripts seemingly to be generally upreg-
ulated in males. Our snRNA-seq data analysis seems to 
suggest this sex bias is due to a change in state (Fig. 3). 
One hypothesis could be that neurons in males brains are 
regulated by a slightly different proteasomal and hormo-
nal environment, which causes these neuronal pathways 
to appear differentially expressed, perhaps including the 
HOPS pathway discussed above.

Unlike our Alzheimer’s analysis, our case–control gene 
expression findings did not support a male molecular 
predisposition as driving the sex difference in autism 
prevalence, in contrast to prior work [16]. While the 
sex DE here was well powered, our data sets sampled an 
older population, thus differences in either power or age 
of samples may explain the difference in findings from 
the prior study. Moreover, the female component of our 
dataset is largely postmenopausal in age, and would miss 
gene expression effects of many circulating hormones. 
Future well-powered studies should test whether this 
same sex DE pattern holds in younger brains, especially 
those from ages when autism is diagnosed.

Our male-biased neuronal signature is also in direct 
contrast to a recent study aggregating sex differences 
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across 46 different RNA-Seq and microarray datasets, 
which suggested a female-biased neuronal signature 
[78]. It is hard to directly compare our results as our 
approaches were different in many parameters. Just a few 
examples of differences in approach that could explain 
the differences in findings include (1) whether multi-
ple samples from the same donor were appropriately 
accounted for statistically in the gene expression model 
(2) whether brain disease carriers were excluded, (3) 
whether different regions were analyzed in a single model 
or separately, (4) whether findings were aggregated across 
studies, and if the aggregation algorithm accounted for 
differences in sample size across studies. Perhaps, most 
interestingly [78], contained numerous younger samples 
in some collections and even embryonic samples. This 
would be consistent with the pattern of sex bias changing 
over age as being the best explanation for the differences. 
Indeed, one early microarray study covering 20–60 year 
olds in a more balanced way revealed increasing relative 
immune signature in females with age [79].

It is interesting that outside of the X chromosome, rare 
variant causal genes for autism overlap with male-biased 
sex-differential genes in the cortex. We could interpret 
the overlap as a greater dependence on each of these 
genes by the male cortex, though of course any individ-
ual carrying these mutations is only losing one of these 
genes, not the whole set. Postmortem studies of individu-
als with these rare mutations may be informative in bet-
ter understanding this result.

Perspectives and significance
Overall this work provides a robust analysis of adult 
human RNA expression across multiple brain regions 
as a resource for future use. These findings highlight 
differentially expressed genes across several brain 
regions, with patterns in male- and female-biased genes. 
Although we chose to investigate primarily Alzheimer’s 
and autism, this study identifies individual genes and spe-
cific pathways to consider when trying to better under-
stand sex biases in many diseases. This work can serve 
as a resource for further analysis of sex variation in the 
human brain. We can speculate that Alzheimer’s patho-
genic immune and endothelial signatures may be driven 
by baseline sex biases, and future studies should investi-
gate this phenomenon.

Conclusions
Numerous but small autosomal sex differences in 
expression exist in all brain regions tested, but espe-
cially in the cortex, caudate, putamen, cerebel-
lum and nucleus accumbens. Autosomal genes with 
enriched expression in males are enriched in neuronal, 

autophagy, and tau-protein kinase pathways. Auto-
somal genes with enriched expression in females are 
enriched with immune system, endothelial, and vas-
cular pathways. Integration with snRNA-seq data sets 
suggest these differences are more likely related to 
cell state differences than cell number differences. The 
female cortex shows an enrichment of genes expressed 
in Alzheimer’s disease brains. The male brain does not 
follow an autism molecular predisposition hypothesis, 
rather results align better with an autism female pro-
tective effect hypothesis. This work can be used as a 
resource for specific genes to consider when trying to 
better understand sex biases in health and disease.
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Supplementary Material 1. Supplemental Figure 1: Mean variance trend. 
GTEx genes that passed filtering steps and their mean variance trend; 
shows most genes have a squared standard deviation of .5 to 1.5. Sup-
plemental Figure 2: Conservation of LINC01597. UCSC genome browser 
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of exons. Segmental duplication track shows there are duplications of 
some of this region on other autosomes, but no duplication mapping 
to the Y chromosome. Adapted from UCSC browser [80]. Supplemental 
Figure 3: Gene Ontology plot of Omnibus results. A) Male Omnibus DEG 
autosomal genes significant (FDR < .05) GO enrichment term clusters and 
FDR value. B) Female Omnibus DEG autosomal genes significant (FDR < 
.05) GO enrichment term clusters and FDR value. Supplemental Figure 4: 
Gene Ontology plot of Cortex results. A) Male Cortex DEG autosomal 
genes significant (FDR < .05) GO enrichment term clusters and FDR 
value. B) Female Cortex DEG autosomal genes significant (FDR < .05) GO 
enrichment term clusters and FDR value. Supplemental Figure 5: Gene 
Ontology plot of Putamen results. A) Male Putamen DEG autosomal 
genes significant (FDR < .05) GO enrichment term clusters and FDR value. 
B) Female Putamen DEG autosomal genes significant (FDR < .05) GO 
enrichment term clusters and FDR value. Supplemental Figure 6: Gene 
Ontology plot of Caudate results. A) Male Caudate DEG autosomal genes 
significant (FDR < .05) GO enrichment term clusters and FDR value. B) 
Female Caudate DEG autosomal genes significant (FDR < .05) GO enrich-
ment term clusters and FDR value. Supplemental Figure 7: Gene Ontology 
plot of Cerebellum and Nucleus Accumbens results. A) Male Cerebellum 
DEG autosomal genes significant (FDR < .05) GO enrichment term clusters 
and FDR value. B) Female Cerebellum DEG autosomal genes significant 
(FDR < .05) GO enrichment term clusters and FDR value C) Male Nucleus 
Accumbens DEG autosomal genes significant (FDR < .05) GO enrichment 
term clusters and FDR value. Supplemental Figure 8: Cell type-Specific 
Expression Analysis suggests enriched glial signature in female cortex and 
neuronal signature in male cortex. A) Female omnibus protein coding 
genes using CSEA tool at a FDR .05 threshold, shows weak enrichment of 
OPCs. B) Male omnibus protein coding genes using CSEA tool at a FDR 
.05 threshold, shows enrichment for several classes of neurons. C) Female 
cortex protein coding genes using CSEA tool at a FDR .025 threshold, 
shows enrichment for several classes of brain immune cell types, as well as 
strong enrichment for OPCs. D) Male cortex protein coding genes using 
CSEA tool at a FDR .025 threshold, shows enrichment for layer 5b and 
5a neuron subtypes. Figures generated by CSEA too [57]. Supplemental 
Figure 9: Odds ratio distribution of SFARI CPM matched neuron expressed 
genes. OR distribution of enrichment of random genesets with a similar 
CPM distribution to SFARI genescore 1 genes (vertical line) in postmortem 
cortex neuron data from the Allen Brain Atlas [45]. Shows that enrichment 
of rare variant genes in male cortex is not due to the neuronal biased male 
signature alone. 

https://doi.org/10.1186/s13293-024-00622-2
https://doi.org/10.1186/s13293-024-00622-2


Page 18 of 20Fass et al. Biology of Sex Differences           (2024) 15:47 

Supplementary Material 2. Supplemental Table 1. Table of complete results 
of GTEx DE analysis. For each contrast included in the analysis (both region 
and omnibus) each genes logFC, P-value, and gene related metadata. 

Supplementary Material 3. Supplemental Table 2. Table of complete results 
of CMC DE analysis. For each gene included in the analysis, logFC, P-value, 
average expression and gene related metadata. 

Supplementary Material 4. Supplemental Table 3. Table of complete 
results of GSEA analysis of GTEx data. For each sex, for each region, all the 
enriched gene set categories along with their NES scores, P-values, gene 
set size and other key information. 

Supplementary Material 5. Supplemental Table 4. Complete results 
of meta analysis, combining P-values from GTEx DE analysis and CMC 
DE analysis for Cortex. For each gene included in both CMC and GTEx 
analyses that agree on direction of effect, combined P-value, and gene 
associated meta are available. 

Supplementary Material 6. Supplemental Table 5. Results from ChEA3 
analysis. For each regional DEG set a list of the most enriched activators, 
along with their mean rank, and gene information pulled from the DE 
analysis. 

Supplementary Material 7. Supplemental Table 6. Complete results from 
scDRS analysis. Complete scDRS enrichment results for Allen brain atlas 
cortex single-nucleus data, including male and female enrichments for 
cell sub-class and cortical layers. 

Supplementary Material 8. Supplemental Table 7. List of samples used in 
GTEX analysis. Includes GTEX sample and donor ID, sex and age bracket. 

Supplementary Material 9. Supplemental Table 8. Design matrix with SVA 
adjustment variables. The design matrix used in limma analysis with all 
values used for surrogate variable analysis adjustments.
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