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Abstract 

Background Sex differences exist in the prevalence and clinical manifestation of several mental disorders, suggest-
ing that sex-specific brain phenotypes may play key roles. Previous research used machine learning models to clas-
sify sex from imaging data of the whole brain and studied the association of class probabilities with mental health, 
potentially overlooking regional specific characteristics.

Methods We here investigated if a regionally constrained model of brain volumetric imaging data may provide esti-
mates that are more sensitive to mental health than whole brain-based estimates. Given its known role in emotional 
processing and mood disorders, we focused on the limbic system. Using two different cohorts of healthy subjects, 
the Human Connectome Project and the Queensland Twin IMaging, we investigated sex differences and heritabil-
ity of brain volumes of limbic structures compared to non-limbic structures, and subsequently applied regionally 
constrained machine learning models trained solely on limbic or non-limbic features. To investigate the biological 
underpinnings of such models, we assessed the heritability of the obtained sex class probability estimates, and we 
investigated the association with major depression diagnosis in an independent clinical sample. All analyses were 
performed both with and without controlling for estimated total intracranial volume (eTIV).

Results Limbic structures show greater sex differences and are more heritable compared to non-limbic structures 
in both analyses, with and without eTIV control. Consequently, machine learning models performed well at classify-
ing sex based solely on limbic structures and achieved performance as high as those on non-limbic or whole brain 
data, despite the much smaller number of features in the limbic system. The resulting class probabilities were herit-
able, suggesting potentially meaningful underlying biological information. Applied to an independent population 
with major depressive disorder, we found that depression is associated with male–female class probabilities, with larg-
est effects obtained using the limbic model. This association was significant for models not controlling for eTIV 
whereas in those controlling for eTIV the associations did not pass significance correction.

Conclusions Overall, our results highlight the potential utility of regionally constrained models of brain sex to better 
understand the link between sex differences in the brain and mental disorders.
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Highlights 

• We assessed sex differences and heritability of limbic and non-limbic volumes.
• Limbic volumes showed stronger sex differences and higher heritability overall.
• We trained brain sex classification models on limbic or non-limbic volumes.
• Performance was high and the sex class probabilities were heritable for all models.
• In females, major depression diagnosis was associated with higher limbic estimates compared to healthy con-

trols.

Keywords Brain sex classification, Machine learning, Female mental health, Neuroimaging, Limbic system

Plain language summary 

Psychiatric disorders have different prevalence between sexes, with women being twice as likely to develop depres-
sion and anxiety across the lifespan. Previous studies have investigated sex differences in brain structure that might 
contribute to this prevalence but have mostly focused on a single-structure level, potentially overlooking the inter-
play between brain regions. Sex differences in structures responsible for emotional regulation (limbic system), 
affected in many psychiatric disorders, have been previously reported. Here, we apply a machine learning model 
to obtain an estimate of brain sex for each participant based on the volumes of multiple brain regions. Particularly, we 
compared the estimates obtained with a model based solely on limbic structures with those obtained with a non-
limbic model (entire brain except limbic structures) and a whole brain model. To investigate the genetic determinants 
of the models, we assessed the heritability of the estimates between identical twins and fraternal twins. The estimates 
of all our models were heritable, suggesting a genetic component contributing to brain sex. Finally, to investigate 
the association with mental health, we compared brain sex estimates in healthy subjects and in a depressed popula-
tion. We found an association between depression and brain sex in females for the limbic model, but not for the non-
limbic model. No effect was found in males. Overall, our results highlight the potential utility of machine learning 
models of brain sex based on relevant structures to better understand the link between sex differences in the brain 
and mental disorders.

Background
Common mental disorders occur at different prevalence 
rates between sexes [1]. In particular, women are twice as 
likely to develop anxiety and depression across the lifes-
pan compared to men [1–4]. This difference arises after 
puberty [4, 5], suggesting the involvement of sex-specific 
factors in the development of such disorders [6]. To iden-
tify these factors, neuroimaging studies have investigated 
sex differences in brain structure and function [7–11], 
mostly using univariate analyses. However, discordant 
findings have been reported [7, 10, 11]. In a recent meta-
analysis, Ritchie et al. [10] found generally larger volumes 
in males, while other studies reported larger volumes in 
females for different regions [8, 11]. Possible explanations 
might be differences in the normalization and segmenta-
tion processes [7, 12], as well as the effects of total brain 
volume [12]. Sex differences in total brain volume has 
been shown to drive many structural and volumetric dif-
ferences in the brain [12, 13], leading to discordant results 
depending on the correction method applied. In addition, 
variations in structural and functional MRI according to 
the menstrual cycle and hormonal contraceptive use have 
been reported in the literature for many structures, such 

as hippocampus, amygdala, prefrontal cortex, cingulate 
cortex, and insula [14, 15]. Of note, many of the struc-
tures with notable sex differences and hormonal effects 
are part of the limbic system [16–20]. The limbic system 
is strongly involved in emotional processing, learning and 
memory, functions typically altered in mental and neu-
rological disorders [21]. Due to its involvement in such 
functions, the limbic system has consequently been pro-
posed as a key player in mood disorders such as major 
depression [22–25].

Recently, multivariate approaches have been developed 
to study sex differences in the brain. Machine learning 
models that classify for sex based on brain structural or 
functional magnetic resonance images (MRI) yield class 
probabilities that can be used as an imaging-derived 
multivariate phenotype to study sex differences on a 
continuum from female- to male-like brains [26–29]. 
Conceptually similar approaches have already been 
used extensively to predict brain age [30–36], where 
machine learning models deliver a continuous pheno-
type reflecting apparent aging effects. While most brain 
age studies to date built models based on data from the 
whole brain, regionally constrained models may identify 
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region-specific associations with mental health, such as 
frontal brain age alterations in schizophrenia or subcor-
tical alterations in Alzheimer’s disease [34]. In a recent 
study, Sanford and colleagues [36] investigated sex dif-
ferences in local brain age gaps (i.e. difference between 
regionally constrained neuroimaging-predicted age and 
chronological age) in young adults. Compared to males, 
females showed significantly lower local brain age gap in 
the frontal region and insula, while they had significantly 
higher local brain age gap in the posterior regions. How-
ever, on a global scale the authors did not report any dif-
ferences in brain age gaps, suggesting finer-grained (i.e., 
regional specific) models having a higher sensitivity to 
sex differences. Translating this finding into the field of 
sex classification, leveraging regional constrained mod-
els may provide estimates more sensitive to sex-specific 
phenotypes. Whereas Weis and colleagues [29] have clas-
sified sex based on the whole brain connectome and dif-
ferent functional brain networks separately, the potential 
of regionally constrained models to study brain sex based 
on structural MRI has yet to be investigated.

Here, we investigate whether a regionally constrained 
model based on brain volumes of the limbic system can 
correctly classify sex, and whether the obtained regional 
class probabilities are sensitive to mental health. We 
compared limbic brain sex to non-limbic brain sex, aim-
ing to investigate relevant biological differences in brain 
sex determination as well as the possible clinical associa-
tion with major depression. Specifically, the present study 
sought: (i) to compare sex differences at a univariate (i.e., 
single structure) level between limbic and non-limbic 
structures, (ii) to validate regionally constrained machine 
learning models trained either on limbic or non-limbic 
feature sets as compared to a whole brain model, (iii) to 
test for an association between obtained class probabili-
ties and major depressive disorder (MDD) diagnosis. We 
hypothesize that (i) the regionally constrained models, 
much like whole brain models, are able to correctly pre-
dict sex from structural imaging data, (ii) the estimates 
(i.e., class probabilities) contain biologically meaningful 
variation (tested via heritability analysis), and that (iii) 
the limbic estimates have a stronger association with 
depression than estimates from other models.

Methods
Participant selection
As illustrated in Fig.  1, structural MRI data from the 
Human Connectome Project (HCP) [37] was used for 
univariate analysis of brain features, and for training of 
machine learning models in a healthy sample. For the 
HCP, the subject selection criteria (see Supplemen-
tary Figure S1, Additional File 1) aimed to (I) maintain 
an equal female-male ratio (based on biological sex as 

provided by the data), while (II) limiting possible con-
founding effects such as hormonal fluctuation, and 
(III) maximizing the sample size for machine learning. 
To achieve this, after excluding 14 individuals follow-
ing quality control of the imaging data, female subjects 
were first selected according to the hormonal informa-
tion available with the goal to limit the potential effects 
of irregular cycle and hormonal alterations such as pres-
ence of hypo- or hyperthyroidism and Thyroid Stimu-
lating Hormone (TSH) levels out of the normal range 
(0.4–4.0  mU/L, as define by the HCP-YA data diction-
ary), yielding n = 391 females. These females were then 
matched to an equal number of males according to age 
and Euler number. Finally, in order to maximize the sam-
ple size, the remaining males (n = 105) were matched for 
age and Euler number with an equal number of randomly 
selected females from the subjects excluded in the first 
step. This procedure led to a total sample size of N = 992 
subjects (50% females), with an age range 22–38  years 
old (females: mean age = 28.98, sd = 3.63; males: mean 
age = 27.90, sd = 3.60).

The Queensland Twin Imaging (QTIM) study was used 
as an independent healthy validation dataset [38] to rep-
licate univariate analyses and to test the HCP-trained 
machine learning models. After excluding 20 outliers 
based on imaging quality control, only subjects in the age 
range 18–30 years were selected, to ensure a similar age 
range with the HCP. The final QTIM sample comprised 
N = 1017 subjects (61.6% females, age range 18–30 years 
old, females: mean age = 22.49, sd = 2.84; males: mean 
age = 22.29, sd = 2.86).

To test for clinical associations with the derived brain 
sex class probabilities, data from the Strategic Research 
Program for the Promotion of Brain Science (SRPBS) 
[39] was used. Due to data availability and the differ-
ences in prevalence across sexes [1], we focus on MDD. 
After excluding 10 outliers following quality control, 
we selected healthy controls (HC) and individuals with 
MDD, based on the diagnosis variable available in the 
dataset. To reduce scan site confounds, we only included 
HC data for sites in which MDD data was available. 
This yielded a sample of N = 844 subjects (HC: N = 595, 
54.5% female, age range 18–80  years old, females: 
mean age = 41.34, sd = 14.99, males: mean age = 38.24, 
sd = 16.28; MDD: N = 249, 47.8% female, age range 
18–75  years old, females: mean age = 43.39, sd = 12.87, 
males: mean age = 41.77, sd = 11.04).

Image segmentation, quality control and features selection
Raw T1-weighted MRI scans were preprocessed in 
FreeSurfer v7 and automated cortical and subcor-
tical reconstruction were performed. To obtain a 
more precise segmentation of the limbic system, we 
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combined volumes obtained with different segmentation 
approaches. The cerebral cortex was segmented using a 
multimodal parcellation described in Glasser et  al. [40], 
which returns 180 features for each hemisphere. For 
subcortical regions, we combined the classic set of fea-
tures from FreeSurfer with additional segmentations of 
subcortical limbic structures [17], hippocampus [41], 
amygdala [42], and thalamus subfields [43]. For all seg-
mented cortical and subcortical regions, we calculated 
the corresponding volumes  (mm3). We then assigned 
the structures derived from each segmentation process 

to a limbic or non-limbic feature set based on the com-
mon definition of limbic system as found in the literature 
[17–20], carefully avoiding overlap between different seg-
mentation approaches. The final feature set comprises 
493 regions (358 features from Glasser multimodal seg-
mentation [40], 17 subcortical features from FreeSurfer 
classical segmentation, 12 features from the subcortical 
limbic segmentation [17], 38 features from hippocam-
pus segmentation [41], 18 features from the amygdala 
segmentation [42] and 50 features from thalami subfields 
segmentation [43]), of which we assigned 160 regions to 
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Fig. 1 Schematic overview of the study design. Step 1: After combining different segmentations in FreeSurfer, each structure was assigned 
either to the limbic or to the non-limbic feature set. Step 2: Univariate analysis of sex differences and feature heritability were applied to the limbic 
and non-limbic feature set. Step 3: A machine learning model for sex classification was trained on each feature set (regionally constrained models). 
Model performance was assessed via AUC-ROC and the class probabilities for each participant were stored. Step 4: The heritability and the clinical 
association with major depressive disorder (MDD) diagnosis was assessed for the class probabilities obtained for each model
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the limbic (see Supplementary Table 1, Additional File 1) 
and 333 regions to the non-limbic feature set.

To correct for differences in head size that could affect 
the machine learning models’ ability to classify sex, all 
analysis were repeated accounting for the estimated total 
intracranial volume (eTIV). For each raw brain imaging 
feature, we regressed out the eTIV and used the eTIV 
corrected data as features in the respective eTIV-adjusted 
machine learning models. As further control, we com-
pared this eTIV residualisation approach to another 
approach, the power-corrected proportion method 
(PCP) (D. [44, 45], which assumes an exponential rela-
tionship between the raw volume and the eTIV. We cor-
related the features obtained with the two methods (see 
Supplementary figure S2, Additional File 1), and since 
they converged on very similar results, we used the eTIV 
residualisation approach in all eTIV-accounting analyses.

We used Euler numbers, a proxy of image data quality 
[46] for quality control of the imaging data. We averaged 
Euler numbers from the left and right hemisphere and 
excluded subjects with an average Euler number lower 
than three standards deviations from the sample mean.

Sex differences and heritability analyses of single brain 
volumes
We first investigated differences between limbic and 
non-limbic structures using univariate analyses for each 
structure of interest. For each region, we tested for sex 
differences using linear models that accounted for age 
and Euler number. Subsequently, we assessed the differ-
ences in effect size distributions between limbic and non-
limbic structures using a t-test. To account for differences 
in head size, we repeated the same univariate analysis 
introducing the eTIV as additional covariate together 
with age and Euler number. Next, we computed the broad 
sense heritability (see Heritability analysis) of volumes 
for each region and subsequently tested for heritability 
differences between limbic and non-limbic structures 
using a t-test. To look at the association between the two 
measures, we computed a correlation between the sex 
differences and the heritability for limbic and non-limbic 
structures. We tested for significant differences between 
correlation coefficients using a Fisher’s test for the com-
parisons of independent correlations.

Sex classification models and clinical associations
For each set of features (limbic, non-limbic and whole 
brain), two sex classification models were fitted, one 
using the raw volumes, and one using the residuals from 

the same features after regressing out the estimated total 
intracranial volume as follow:

To avoid confounding factors, our training sample was 
balanced for sex and subjects were matched for age and 
image quality. We trained our models on HCP data, using 
gradient tree boosting as implemented in the xgboost 
package in R (version 4.2.2). Sex was coded in the training 
sample as binary variable with 0 assigned to males and 1 
assigned to females. The resulting class probability ranges 
between 0 (male-like) and 1 (female-like). The learning 
rate was set at η = 0.01 and the initial number of rounds 
to 1000, and we performed fivefold cross-validation 
within the training sample. For each iteration the predic-
tion error was assessed and used to determine the optimal 
iteration number, used to train the final models on the full 
set of data. We then applied these models to the test sam-
ples to classify brain sex. The resulting class probabilities 
were extracted and used for further analysis. To evaluate 
each model performance, both the accuracy and the area 
under the receiving operating characteristic curves (AUC) 
were calculated. As further control for the training pro-
cedure, we trained our models in a sex-balanced subsam-
ple of QTIM, matching the participants according to age 
and Euler number (N = 780, 50% females, females: mean 
age = 22.47, sd = 2.89, males: mean age = 22.28, sd = 2.86) 
and evaluated the performances.

To test the statistical significance of the models, we 
performed permutation testing. For each raw and eTIV-
controlled set of features, the classification labels (sex of 
the participants) were randomly permuted 5000 times, 
while maintaining the feature sets unchanged, result-
ing in the randomized association between the feature 
matrix and the labels. For each permutation, fivefold 
cross-validation was applied. The accuracies were stored 
and used to build a null distribution that was then com-
pared against the accuracies of the true models. Both a 
cut-off of 50% (chance level) for the accuracy and AUC 
and significant statistical results in the permutation test-
ing were considered to evaluate the model as successful 
in classifying sex.

For external validation, we applied the HCP-trained 
model to independent data from the QTIM and SBRPS 
samples and computed the class probabilities in these 
unseen datasets. In the SBRPS data, we tested for the asso-
ciation with major depression using a linear model consid-
ering the diagnosis as independent variable, class probability 
obtained with each model as the dependent variable and 
accounting for sex, age, Euler number and site, as follow

lm(Volume ∼ Estimated Total Intracranial Volume)
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To overcome potential issues with a continuum of class 
probabilities originating from two distinct distributions 
(males, females), we repeated the same analysis within 
females and males separately, accounting for age and 
Euler number as covariates as follow:

As further control, we repeated the same analyses (gen-
eral and within each sex separately) on a subset of sub-
jects with an equal number of HC and MDD subjects 
matched by age and sex (HC: N = 249; MDD: N = 249; 
females = 48%). We consider diagnosis as an independent 
variable and sex, age and Euler number as covariates for 
the analysis in the general sample, while accounting only 
for age and Euler number as covariates in the within sex 
analyses, following the models stated above. Effect sizes 
were assessed using Cohen’s d [47].

Heritability analysis
Monozygotic and dizygotic twin couples were selected 
for the HCP and QTIM data. Only couples of twins 
with both twins in the data were selected in both HCP 
and QTIM dataset. Due to the sample, in the HCP all 
included dizygotic couples were of the same sex. In the 
QTIM sample, both same sex and discordant sex cou-
ples of twins were selected. Siblings were excluded from 
the analysis in both datasets. The total sample sizes for 
heritability analysis were N = 378 (MZ = 236, DZ = 142) 
for HCP and N = 674 (MZ = 302, DZ = 372) for QTIM 
data. The heritability analyses were run at a single-struc-
ture level and on the predicted class probabilities from 
the machine learning models. An AE model was used 
for both, returning the variance explained by the addi-
tive genetic component (A) and non-shared environ-
ment component (E). Sex, age and Euler number were 
accounted as covariates. For the single feature analyses, 
we repeated the same analysis on the raw volumes and 
on the residuals after regressing out the covariates and 
the total intracranial volume to control for head size. The 
heritability analyses were carried out with the twinlm 
function of the mets package in R (version 1.3.1).

Results
Limbic structures showed greater sex differences 
and heritability than non‑limbic structures
The degree of sex differences of a given FreeSurfer-
derived feature to its heritability in two independent 
samples (HCP and QTIM) is depicted in Fig.  2. Limbic 

lm
(

Class probabilities ∼ Diagnosis

+sex + age + Euler number
)

lm Class probabilities ∼ Diagnosis

+age + Euler number .

structures showed significantly greater sex differences 
as compared to non-limbic structures in both the HCP 
(t = 4.89, p < 0.001) and QTIM (t = 3.87, p < 0.001) data. 
These results were replicated when accounting for the 
eTIV in both samples (HCP: t = 5.72, p < 0.001; QTIM: 
t = 5.59, p < 0.001), suggesting overall greater sex dif-
ferences independent of head size in the limbic system. 
The limbic volumes were also more heritable than the 
non-limbic volumes, both with and without control-
ling for eTIV, in HCP (Raw features: t = 4.85, p < 0.001; 
eTIV-controlled: t = 4.84, p < 0.001) and QTIM sample 
(raw features: t = 3.36, p < 0.001, eTIV-controlled: t = 3.75, 
p < 0.001).

For both, limbic and non-limbic structures, we 
observed a significant positive association between sex 
difference and heritability, indicating that the most her-
itable features had also greater sex-differences (range 
across the eight regression lines depicted in Fig.  2: 
r = 0.238, p = 0.003 to r = 0.633 p < 2.2e−16) (see Supple-
mentary Table 2, Additional File 2, for the complete list of 
values. Positive t-values for sex differences reflect greater 
volumes in males.). Slopes were not statistically differ-
ent between limbic and non-limbic features, except for 
eTIV-corrected features in the HCP sample, where the 
slope difference between limbic and non-limbic reached 
statistical significance (z = − 2.125, p = 0.034). However, 
caution is warranted interpreting this difference as this 
finding could not be replicated in QTIM.

Regionally constrained models successfully classify sex
We used the different feature sets (limbic, non-limbic, 
whole brain) from the HCP sample to train a machine 
learning model that classified sex from volumetric imag-
ing data. We first assessed model performance within 
HCP using fivefold cross-validation, indicating that all 
three models were able to successfully classify sex (please 
see Fig. 3 for illustration). The limbic model achieved an 
accuracy of 87% and AUC of 0.935, while the non-limbic 
achieved an accuracy of 84.4% and AUC of 0.92. Both 
models performed approximately as well as the whole 
brain model (accuracy = 86.6%, AUC = 0.941). When 
controlling for eTIV, the models were still capable to cor-
rectly classify sex, although with a lower accuracy and 
AUC (limbic (eTIV): accuracy = 70.9%, AUC = 0.778; 
non-limbic (eTIV): accuracy = 74.6%, AUC = 0.819; whole 
brain (eTIV): accuracy = 77.2%, AUC = 0.861). No sig-
nificant difference in the performance between the three 
models was found.

Permutation testing with 5000 permutations per model 
indicated that no permutation-based accuracy was better 
than the accuracy obtained with the true models, con-
firming the validity of our models (see Supplementary 
Figure S3, Additional File 1). Notably, when looking into 
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the feature importance for the raw and eTIV-corrected 
whole brain models, the main contributors to both mod-
els belong to the limbic system (see Supplementary Fig-
ure S4, Additional File 1).

Next, we applied the HCP-trained models to QTIM 
data for external validation, confirming solid perfor-
mance in independent data (with an accuracy of 82.3%, 
77.6% and 79.7% and an AUC of 0.905, 0.885 and 0.920 
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for limbic, non-limbic and whole brain model, respec-
tively). For eTIV accounted models we also observed 
performances similar to those obtained within HCP 
(accuracy: 68.4%, 66.8%, 71.6%, AUC: 0.748, 0.736, 
0.793 AUC for limbic, non-limbic and whole brain 
model, respectively).

When training the data in QTIM, the performances 
were in line with those obtained from the training in 
HCP and the independent testing in QTIM, with accu-
racies of 85.9%, 82.1% and 87.6% and AUC of 0.933, 
0.902 and 0.943 for the limbic, non-limbic and whole 
brain model respectively. When correcting for eTIV, 
the models achieved lower but still relevant perfor-
mances (accuracies: 73.7%, 74.0%, 77.2%, AUC: 0.806, 
0.830, 0.865 for limbic (eTIV), non-limbic (eTIV), and 
whole brain (eTIV)) (see Supplementary Figure S5, 
Additional File 1). These results support the generaliz-
ability of our HCP trained model since there was only 
a minor improvement in performance metrics when 
the model was trained and validated in QTIM com-
pared to the performance we achieved by applying our 
independently trained HCP model to QTIM.

Brain sex class probabilities are heritable
The results of the broad sense heritability estimated 
from twin data of the class probabilities obtained 
from each of the machine learning models is shown 
in Fig.  4. Sex class probabilities were heritable for all 
models, both in the HCP (limbic: 81.4%, non-limbic: 
89.4%, whole brain: 87.4%) and the QTIM data (limbic: 

78.9%, non-limbic: 82.1%, whole brain: 74.7%). When 
accounting for the total intracranial volume, the broad 
sense heritability decreased in both samples yet was 
still substantial (HCP: limbic (eTIV): 61.3%, non-lim-
bic (eTIV): 47.6%, whole brain (eTIV): 51.98%; QTIM: 
limbic (eTIV): 48.5%, non-limbic (eTIV): 56.5%, whole 
brain (eTIV): 57.8%).
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with highest values for those derived from models that do not 
account for eTIV. Similar values are obtained when repeating 
the analyses within each sex (see Supplementary Figure S6, 
Additional File 1)
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Higher class probabilities are associated with major 
depression
To investigate the association with MDD in a clinical 
sample, we applied the models to the SRPBS sample, 
considering healthy controls and depressed patients. 
After verifying the accuracy and the AUC of each model 
in healthy control and MDD patients (see Fig.  5), we 
extracted the class probabilities and associated them with 
the diagnosis. Our results indicated that the class prob-
abilities in the clinical sample were overall higher (i.e. in 
the direction of a female brain phenotype) as compared 
to the healthy controls. These results were significant 
in all models, with strongest effect for the limbic model 
(limbic: t-value = 2.81, p = 0.005, Cohen’s d = 0.21; non-
limbic: t = 2.57, p = 0.011, Cohen’s d = 0.2; whole: t = 2.40 
p = 0.016, Cohen’s d = 0.18). When accounting for eTIV, 
these results were no longer significant (please see Fig. 6 
for details). Interestingly, when analyzing the association 
between class probabilities and depression within each 
sex, no effect was found in males, while only the limbic 
(t = 3.11, p = 0.002, Cohen’s d = 0.34) and whole brain 
(t = 2.27, p = 0.023, Cohen’s d = 0.25) models showed sig-
nificant differences between HC and MDD in females. 
When accounting for eTIV, none of the associations 
within sex were significant. However, similar patterns of 
stronger effects in females compared to males was found 
for the three models (females: limbic (eTIV): t = 1.94, 
p = 0.053, Cohen’s d = 0.21; non-limbic (e-TIV): t = 0.15, 
p = 0.881, Cohen’s d = 0.02; whole brain (eTIV): t = 1.57, 
p = 0.118, Cohen’s d = 0.17; males: limbic (eTIV): t = 0.13, 

p = 0.895, Cohen’s d = 0.01; non-limbic (eTIV): t = 1.20, 
p = 0.231, Cohen’s d = 0.13; whole brain (eTIV): t = 0.27, 
p = 0.787, Cohen’s d = 0.03). When repeating the analyses 
in the age-matched HC-MDD subsample, only the limbic 
model in females showed significant greater class prob-
abilities in MDD (t = 2.14, p = 0.033, Cohen’s d = 0.28), 
while no significant association was found for the general 
sample or males or when correcting for eTIV (see Sup-
plementary Figure S7, Additional File 1).

Discussion
The present study investigated whether regionally 
constrained machine learning models can correctly 
classify sex from T1-based volumetric MRI data, 
and if regional class probabilities are more sensitive 
to a female-prevalent mental disorder compared to 
whole brain models, the current standard in the field. 
Known for its involvement in various emotional and 
cognitive abilities as well as its central role for mental 
conditions, we here focused on the limbic system to 
investigate brain sex as a putative phenotype to study 
female-prevalent mental disorders. Our results based 
on univariate analysis indicate that limbic structures 
show substantially greater sex differences compared 
to non-limbic structures. Limbic structures were also 
more heritable, which may indirectly suggest that their 
sex differences are mediated by genetic components. 
These univariate findings supported the utility of 
the limbic system as a target for regional constrained 
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brain sex prediction. Our multivariate machine learn-
ing models using limbic, non-limbic and whole brain 
features, respectively, were able to classify sex, yielding 

heritable class probabilities that were associated with 
major depression diagnosis, suggesting meaningful 
underlying biological variance.
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Limbic structures showed greater sex differences 
and heritability than non‑limbic structures
In line with previous studies showing associations of lim-
bic structures with sex and hormonal status [7, 9, 14, 15], 
our univariate analyses showed that limbic structures 
were characterized by stronger sex differences compared 
to non-limbic structures. Likewise, we found stronger 
heritability for limbic compared to non-limbic structures, 
which resembles a previous report of high heritabil-
ity in several limbic structures, including hippocampus, 
amygdala, and nucleus accumbens [48], and contributes 
to the global efforts to disentangle genetic contribution 
to brain structure and function [48–53]. The degree to 
which genetic contributions to the anatomy of the lim-
bic system are influenced by sex is an understudied topic 
with mixed results thus far. While some studies find no 
sex differences in brain volumes [48], others report lower 
heritability in females, suggesting as possible explanation 
a greater influence of environmental factors such as the 
hormonal status in females [51, 54]. Supporting the latter 
hypothesis, many limbic structures express receptors for 
sex hormones [15, 55], contributing to plasticity mecha-
nisms and structural changes. Here, we however found 
the same pattern of stronger heritability in limbic struc-
ture compared to non-limbic structures in males and 
females, indicating that the heritability patterns were not 
driven by one sex. Notably though, our results indicate a 
strong positive association between sex differences and 
heritability of brain structure, indicating that the struc-
tures showing greater sex differences are also the most 
genetically determined structures, even after controlling 
for head size.

Regionally constrained models successfully classify sex
The direct comparison and interpretation of sex effects 
on specific brain regions using univariate frameworks 
may be limited by the diversity in terms of protocols 
and parameters used by different studies [7, 15]. Thus, 
multivariate analysis in a machine learning framework 
can provide the advantage of condensing the informa-
tion from a set of brain features into a single score (the 
class probability), which could be used as variable for 
further analysis avoiding difficult comparisons. Here, 
we demonstrated that sex can be classified from region-
ally constrained feature sets without performance loss. 
In particular, our limbic and non-limbic models were 
both able to classify brain sex with accuracies and AUC 
similar to those obtained with the whole brain model. It 
is worth noting that the limbic model achieved descrip-
tively the same level of accuracy and AUC with much less 
features than the other models (limbic: 160 features, non-
limbic: 333, whole brain: 493). It must be noted that the 
cross-validation procedure implemented in HCP did not 

account for the presence of family members in the split-
ting procedure, thus potentially biasing the classification 
performance via twin similarity. However, the external 
validation in two independent samples achieved high 
accuracies for all models, suggesting that the presence 
of twins in the model training did not induce substantial 
bias.

The importance of external validation for machine 
learning approaches to improve generalizability and 
reproducibility has been largely discussed in the litera-
ture [56–59]. In fact, while internal validation by splitting 
the data in training and test sets is an important tool to 
ensure reproducibility in a similar sample, it can also be 
affected by different forms of data leakage [56], inflating 
the performance of the model. In this context, external 
validation is key to ensure generalizability in independ-
ent data and in samples with different characteristics and 
acquired under different conditions [59]. Here, we exter-
nally validated the model in two different sample, prov-
ing the ability of our models to generalize under different 
conditions.

Brain sex class probabilities are heritable
Since deviations in class assignment can reflect both 
methodological error or biological variance we assessed 
the degree to which the class probabilities returned 
by each of the models capture biologically meaningful 
variance, by first assessing their heritability. Although 
previous work has investigated heritability of different 
structural and functional brain measures using univari-
ate analyses [49, 51, 53, 54], heritability studies of mul-
tivariate estimates of brain sex are scarce. A recent study 
obtained heritable sex scores from a classification of 
whole brain data [60], in line with our results. Here, we 
extend these findings to regional constrained estimates of 
brain sex. We found that the class probabilities were her-
itable for all models, including those controlling for total 
intracranial volume, supporting their interpretability by 
pointing at underlying genetic factors.

Higher class probabilities are associated with major 
depression
Building upon the heritability results indicating biologi-
cal meaningful variance, we furthermore investigated 
the clinical association with major depression under the 
hypothesis that class probabilities of limbic features may 
serve as a putative phenotype for the investigation of sex-
prevalent mental health conditions. Based on data-avail-
ability, we focused on MDD, known to be more prevalent 
in females [1]. Previous univariate analyses have shown 
alterations in neuroimaging phenotypes in MDD [22–25, 
61–63], with particular focus on the limbic system. Stud-
ies investigating structural changes in brain MRI have 
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displayed reduction in brain volume of several limbic 
regions in depressed subjects, underling the possible 
involvement of the limbic system in onset and mainte-
nance of depression [22–25, 63]. However, many of these 
studies do not account for possible sex differences in the 
effects, reporting an overall smaller volume of cortical 
and subcortical structures in MDD patients compared to 
HC [22, 24, 25]. Multivariate classification models deliver 
probabilities at the single subject level, facilitating the 
investigation of sex specific effects in disorder associa-
tions. Comparing clinical data both across sex and within 
sex allowed us to quantify the degree to which MDD 
associations with brain imaging data are sex specific. Pre-
vious studies attempted to associate brain sex estimates 
with other common mental disorders and symptoms 
with sex deviant prevalence [64, 65]. However, these 
studies only focused on whole brain estimates. We extend 
this by showing that in all three models (limbic, non-lim-
bic, whole brain) a more female-like brain is associated 
with MDD diagnosis. Interestingly, the association was 
strongest for the limbic model, complementing previous 
univariate findings on the relevance of the limbic system 
and supporting that regionally constrained estimates 
might represent sensitive markers to study brain–mental 
health associations. Moreover, when analyzing the two 
sexes separately, the effect survived only in females and 
only in the limbic and whole brain model, highlighting 
the importance of investigating sex differences in clini-
cal associations with brain sex. Nevertheless, it must be 
noticed that when controlling for eTIV none of the mod-
els were significantly associated with depression diagno-
sis. Thus, from the data at hand we cannot rule out that 
the observed clinical associations were driven by sex dif-
ferences in total brain size.

Methodological considerations and future directions
Potential limitations may stem from the fact that hormo-
nal status, by acting on brain plasticity, might affect brain 
structure. Thus, the class probabilities obtained with our 
model might change according to the phase of the men-
strual cycle, the intake of hormonal contraceptives, and 
the age-related hormonal status of the participants. As 
noted, many limbic structures are particularly sensitive to 
these changes [14, 15, 50]. We attempted to mitigate the 
hormonal effects by matching the subjects in the train-
ing data based on the available menstrual cycle informa-
tion. However, the lack of precise data on the hormonal 
status of the participants hinders the effort to control for 
the variability due to hormonal effects. Women’s health 
factors such as menstrual cycle, hormonal contracep-
tives use, pregnancy, and menopause are still largely 
overlooked in neuroimaging research [66]. Thus, further 
neuroimaging data and research considering hormonal 

levels across the menstrual cycle and different life stages 
is needed to provide more insights on brain sex classifi-
cation models and to move the field forward. Moreo-
ver, while we placed strong emphasis on replicating our 
results in independent data, lending credibility in both 
the univariate analyses (heritability, sex differences) as 
well as in the multivariate analysis (model performance, 
heritability of class probability), data availability limited 
us in the replication of clinical associations. We thus 
deem it important to validate our clinical associations 
in another dedicated study, which would also test our 
results generalizability to different technical and clini-
cal characteristics, such as differences in scan protocols 
or confounds due to the known impact of antidepressant 
treatment on brain plasticity [22, 63]. Finally, although 
the effects in clinical association analyses with MDD 
were in the same direction in all models (see Fig. 6), those 
controlling for eTIV did not reach statistical significance. 
Sex differences in total brain volume have been previ-
ously associated with structural differences in regional 
volume [12, 13, 45, 67]. Here, we corrected our analysis 
by regressing out the eTIV from each feature. For addi-
tional validation, we applied the power-corrected propor-
tion approach and correlated the resulting features with 
features from the eTIV regression. The substantial cor-
relation between both approaches (r > 0.98) corroborates 
that our eTIV correction is robust (see Supplementary 
Figure S2, Additional File 1). However, other methods 
beyond those tested could still yield different results [45, 
67]. Indeed, the discussion on how to account for such 
differences is still ongoing. Recent studies showed how 
applying different correction methods for total intracra-
nial volume based on features transformation might lead 
to different results in both univariate and multivariate 
analyses for sex differences [45, 67]. Other approaches 
acting at a subject selection level (e.g. matching partici-
pants of different sexes based on the total intracranial 
volume to ensure a balanced sample) might be more suc-
cessful in limiting the effect of brain size in multivariate 
analyses [68]. Studies exploiting future developments in 
the area of eTIV correction might therefore add further 
insight into the impact of eTIV differences.

Conclusion
In conclusion, we here show in two independent data sets 
that sex can be classified from T1-based MRI volumes 
using regionally constrained models, by integrating prior 
knowledge into the selection of machine learning model 
features. Our limbic model achieved as high accuracy as 
the whole brain model using only one third of the fea-
tures of the latter and the respective class probabilities 
displayed the strongest associations with major depres-
sion diagnosis. Heritability analysis further supports 
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that these probabilities capture biologically meaningful 
information.

Perspectives and significance
Previous studies have deployed machine learning models 
to classify sex from brain imaging data and derived male–
female class probabilities at the individual level. However, 
the degree to which these probabilities vary across sub-
sets of brain regions remains largely unexplored. Here, 
we study sex differences in limbic vs. non-limbic brain 
features and found strongest association of limbic sex 
probabilities with clinical data. These findings highlight 
the potential utility of regionally constrained models to 
investigate the link between brain sex and mental disor-
ders and call for future investigations into other mental 
disorders with sex differences in prevalence and symp-
tom profiles.
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