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Abstract
Background The significant sex and gender differences that exist in cancer mechanisms, incidence, and survival, 
have yet to impact clinical practice. One barrier to translation is that cancer phenotypes cannot be segregated into 
distinct male versus female categories. Instead, within this convenient but contrived dichotomy, male and female 
cancer phenotypes are highly overlapping and vary between female- and male- skewed extremes. Thus, sex and 
gender-specific treatments are unrealistic, and our translational goal should be adaptation of treatment to the 
variable effects of sex and gender on targetable pathways.

Methods To overcome this obstacle, we profiled the similarities in 8370 transcriptomes of 26 different adult and 4 
different pediatric cancer types. We calculated the posterior probabilities of predicting patient sex and gender based 
on the observed sexes of similar samples in this map of transcriptome similarity.

Results Transcriptomic index (TI) values were derived from posterior probabilities and allowed us to identify poles 
with local enrichments for male or female transcriptomes. TI supported deconvolution of transcriptomes into 
measures of patient-specific activity in sex and gender-biased, targetable pathways. It identified sex and gender-
skewed extremes in mechanistic phenotypes like cell cycle signaling and immunity, and precisely positioned each 
patient’s whole transcriptome on an axis of continuously varying sex and gender phenotypes.

Conclusions Cancer type, patient sex and gender, and TI value provides a novel and patient- specific mechanistic 
identifier that can be used for realistic sex and gender-adaptations of precision cancer treatment planning.

Plain English summary
Some efforts to improve cancer therapy involve the idea of personalizing treatments to who a patient is and how 
their cancer operates. Personalizing treatment can involve straighforward features like a patient’s age, family cancer 
history, personal disease and surgical histories, as well as more complex features like analysis of their specific 
cancer’s mechanisms of growth and spread throughout the body. One glaring omission in common personalization 
schemes is the sex and gender of the patient. While patient sex and gender is known to substantially affect cancer 
rates and response to treatment, we do not yet use this information in treatment planning. There are multiple 
reasons for this but among them is that we tend to think about sex and gender as an either/or categorization. You 
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Background
Significant sex and gender differences in cancer inci-
dence and mortality are recognized to be the norm with 
most shared cancers exhibiting male to female incidence 
ratios ranging from 1.26:1 to 4.86:1 [1]. Recent analysis 
of over 14  million cases from the Cancer Registry, rep-
resenting 99.9% of the cancer population of the United 
States confirmed an overall predominance of male cancer 
cases [2]. An accompanying analysis of survival data from 
3.7  million cases in the Surveillance, Epidemiology, and 
End Results (SEER) database, representing approximately 
28% of the cancer population, confirmed that mortality 
rates are higher for males compared to females [2]. These 
clinically important sex and gender differences are con-
cordant with described sex differences in cell biology 
including response to genotoxic stress [3, 4], DNA repair 
[5, 6], mutational burden and oncogenic mechanisms [7, 
8], metabolism [9, 10], and cell cycle regulation [11–13], 
as well as in systems biology including: immunity [14], 
metabolism [15, 16], tissue repair [17, 18], and longev-
ity [19, 20]. This suggests that therapies for all cancer 
patients may be advanced by a realistic translation of sex 
and gender differences into clinical practice.

While our awareness of sex differences in cellular and 
systems-wide biology continually advances, an obsta-
cle to successful translation of the work to date, is our 
incomplete understanding of how the genetic, epigen-
etic, and hormonal foundations of sexual differentiation 
mechanistically interact with cancer hallmark pathways 
during tumorigenesis, progression, and response to treat-
ment. A second obstacle is the nature of sex and gen-
der differences. Most sex and gender differences are not 
dichotomous or dimorphic. Instead, most sex and gen-
der differences are more akin to height, a complex trait 
that varies continuously between the shortest females 
and the tallest males, and is intermediate for most people 

[21]. Thus, investigating sex and gender effects in cancer 
is complicated by the varying and age-dependent inter-
actions between chromosomal (XX vs. XY) and gonadal 
sex (ovaries vs. testes), imprinting and other epigenetic 
effects during sexual differentiation [22], the epigenetics 
of life-histories [23] and the varying cellular, tissue, and 
systemic mechanisms underlying individual cancer phe-
notypes [1]. A third obstacle are the recognized ambigui-
ties and inequities in current usage of terms like male, 
female, men, and women. In this study, we use female 
and male as aggregate terms to represent the entangled 
nature of sex and gender [24]. We recognize that this 
may perpetuate a false dichotomy, but as our goal is to 
change clinical practice now, we are constrained by the 
current classifications of sex and gender in clinical data. 
Furthermore, It is important to stress that many cancer-
relevant traits such as, growth regulation, metabolism, 
and immunity, aggregate around male and female poles. 
Thus, while not complete or wholly accurate, categorical 
sex contains a lot of information about sex effects on the 
range of human phenotypes in health and disease. They 
provide useful points of reference.

We sought a method by which to identify mechanisms 
underlying cancer phenotypes that varied as a function 
of sex and gender. We expected this would augment the 
traditional binary classifications by integrating them 
with individual patient-based transcriptome data. To 
do this, we calculated a patient-specific Transcriptomic 
Index (TI) value based on a Bayesian Nearest Neighbor 
(BNN) analysis that quantifies local differences within 
the transcriptome-similarity space, and precisely located 
individuals relative to the female (smallest TI values) and 
male (highest TI values) poles. We determined that most 
cancer diagnostic groups exhibit transcriptomic vari-
ance that correlates to sex and gender and that cell cycle 
regulation and immunity/inflammation are the pathways 

are either a male/man or a female/woman. This is not accurate as there are many variables that contribute to who 
an individual is as a male/man or female/woman. This variability is a challenge to incorporating these features into 
personalized treatment planning. Here, we have developed a method to address this challenge. It is our great hope 
that this will enable the use of this critically important element of personalization in cancer treatment planning and 
improve survival rates for all patients.

Highlights
• Sex and gender effects on cancer incidence and survival can be more realistically addressed by treating sex and 
gender as continuous, rather than categorical, variables.
• Bayesian analysis of whole cancer transcriptomes can uniquely place individual patients along a continuum of sex 
and gender effects.
• Locations along this continuum are associated with specific cancer hallmark pathway activation profiles.
• These patient-specific pathway profiles may be used for treatment stratification.
• This approach can enhance the personalization of cancer treatments.

Keywords Sex and gender differences, Cancer, Hallmark pathways, Cell cycle regulation, Inflammation/immunity, 
Bayesian analyses, Personalized medicine
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most frequently associated with the male and female 
poles, respectively. Further, we identified differing mech-
anisms associated with midrange TI values in female and 
male patients. We conclude that even when males and 
females exhibit overlapping phenotypes, the mechanisms 
underlying that phenotype can differ. This is consistent 
with published analyses demonstrating that even when 
genes are equally expressed in males and females, they 
can exhibit different correlations to cancer mechanisms, 
treatment responses, and survival [25, 26]. We expect 
that the TI approach will advance laboratory and clinical 
research into sex and gender effects and provide a para-
digm for using an individual’s entire transcriptome for 
planning their individualized cancer treatment.

Materials and methods
Inferring Transcriptomic Index (TI) using bayesian nearest 
neighbors
We downloaded the TCGA pan-cancer transcriptome 
data (gene expression RNAseq - Batch effects normal-
ized mRNA data) from https://pancanatlas.xenahubs.net, 
the Kids First neuroblastoma data from dbGaP (https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs001436.v1.p1) and the Children’s Brain 
Tumor Network brain tumor data from https://cbtn.org. 
Sample sizes and number of genes are listed in Table 1. 
We excluded non-malignancies, cancer types with highly 
skewed numbers of male or female cases, and those can-
cers with < 45 cases in the datasets. The remaining 26 
adult and 4 pediatric cancers have sample sizes ranging 
from 45 to 572, with male samples comprising 27.2–
84.2% of each cancer type. The total cases examined were 
8370 (4927 Males (58.9%), 3443 Females (41.1%)).

Next, we sought to define the Transcriptomic Index 
(TI) as the Bayesian posterior probability of predict-
ing a patient’s sex from the nearest neighbors based on 
transcriptomic Euclidean distances. An advantage of the 
Bayesian Nearest Neighbor (BNN) algorithm is that it 
can infer “breakpoints” between local groupings of near-
est neighbors and estimate individual TI values for any 
transcriptome along a continuous spectrum of values as a 
Bayesian posterior probability using that transcriptomes’ 
local neighbors [27].

Following the notations from [27] we denote the target 
point for predicting patient sex as xτ , and the available 
training data as x0, x1, · · · , xτ−1, ordered by distance to 
xτ , with x0 being the most distant point from the target. 
Over a partition ρ of the ordered data points, assume 
the data is independent and identically from a Bernoulli 
distribution P (x|ρ) ∼ Ber (θ), i.e., P (xi = 1|i ∈ ρ) = θ  
and P (xi = 0|i ∈ ρ) = 1 − θ , with x = 1 indicating the 
sample being male and x = 0 indicating female. The 
conjugate prior of the Bernoulli distribution is a Beta 
distribution, θ ∼ Beta (α, β). Moreover, to model the 

partition ρ , we use ki  to denote the number of neighbors 
in the same partition before sample i  when moving from 
x0 towards xτ . Starting from the farthest point, we have

 p (k0 = 0) = 1

When observing a new datum and moving closer towards 
the target, we either have a breakpoint and start with a 
new partition with a certain probability pγ , or extend the 
previous partition by 1 at a probability of 1 − pγ , i.e.,

 p (ki = 0|ki−1) = pγ

 p (ki = ki−1 + 1|ki−1) = 1 − pγ

With the above assumptions, we can recursively calculate 
the joint probability p (ki, x0, · · · , xi) starting from x0 as,

 

p (ki = ki−1 + 1, x0, · · · , xi) =
p (ki−1, x0, · · · , xi−1) p (xi|ki, x0, · · · , xi−1) pγ

 

p (ki = 0, x0, · · · , xi)

= p (xi|ki = 0)
∑

ki−1

p (ki−1, x0, · · · , xi−1) (1 − pγ)

In these equations, we can have p (xi|ki, x0, . . . , xi−1) 
and p (xi|ki = 0) directly calculated from the Bernoulli 
distribution. After estimating the joint probabilities, we 
can easily calculate p (ki|x0, · · · , xi) and therefore the 
final Bayesian posterior probability p (xτ |x0, · · · , xτ−1)
by integrating over the distribution of the number of 
neighbors kτ . More details of the algorithm for estimat-
ing the model could be found from [27]. When applying 
the above Bayesian model, we used priors α = 10 and 
β = 10 for the Beta priors, and pγ = 0.05 for the break-
point probability.

The TI value, calculated using BNN posterior prob-
ability, directly measures local sex differences within the 
transcriptome-similarity space. A value close to 1 indi-
cates enrichment with male samples, while a value close 
to 0 indicates enrichment with female samples. In our 
analysis, TI values were calculated separately for each 
cancer type.

Downstream analysis
After estimating TI for each patient, the association 
between TI and gene expression was assessed. Genes 
with expression positively associated with TI values 
were identified as male - skewed genes, while genes with 
expression negatively associated with male TI values 
were identified as female - skewed genes. Linear regres-
sion was used for testing gene associations and variable 
correlations. Enrichment of male and female skewed 

https://pancanatlas.xenahubs.net
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001436.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001436.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001436.v1.p1
https://cbtn.org
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genes were tested in MSigDB hallmark gene sets [28] 
using one-sided Fisher’s exact test. Multiple test correc-
tions were performed using the Benjamini-Hochberg 
FDR Procedure for gene association test and pathway 
analysis. All measures in the analysis were taken from 
distinct samples of the involved subjects.

Variability in male-to-female ratios across cancer types
To account for the variability in male-to-female ratios 
across different cancer types, we initially implemented 
a weighted version of the BNN algorithm for estimating 
TI indexes. We assigned weights inversely proportional 
to the male-to-female ratios for male and female samples 
within each cancer type. This ensured that the Bayesian 
algorithm was provided with balanced overall weights for 
both male and female samples. Furthermore, in the com-
parative analysis across cancer types, instead of directly 
comparing inferred TI values, we aggregated the results 
and conducted comparisons at the level of significant 
genes and pathways associated with alterations in TI 
indexes.

Results
We previously applied the Joint and Individual Vari-
ance Explained (JIVE) algorithm to decompose male and 
female glioblastoma transcriptome data into components 
shared among males and females, and those unique to 
each sex [26]. This approach identified “sex-specific” gene 
expression patterns and sex-based molecular subtypes of 
GBM. While informative, the JIVE approach has limited 
clinical utility because it requires categorical assignment 
of gene expression to “male-specific”, “female-specific”, 
and shared components. “Sex” as a categorical variable 
has important but limited value when investigating the 
spectrum of sex and gender differences or attempting to 
stratify individual patients for sex and gender-informed 
treatments. Thus, we sought a method for generating 
individual patient-specific values along an axis that tra-
versed between female and male cancer transcriptional 
sex and gender “poles”.

We created UMAPs from the transcriptomes of each 
cancer based on similarities in gene expression. The 
head and neck squamous carcinoma (HNSC) UMAP, 
illustrates the process of identifying poles in the data 
(Fig. 1A). We discovered local areas in the UMAP where 
samples were primarily male (blue exes) or female (red 
circles). We quantified the local sex and gender enrich-
ment in the transcriptome-similarity space using the TI 
values as described in the methods section, and identi-
fied the most skewed regions as poles (filled red cir-
cle and filled blue square) to detect skewing in cancer 
transcriptomes.

We derived TI values for all individual cases and 
median TI values in every cancer population separately 

(Supplemental Fig. 1). Then, we combined all 7881 adult 
TI values to create a pan-cancer TI population distribu-
tion (Fig. 1B). As can be seen, the female and male val-
ues are skewed. Further, cases with TI values below 0.25 
are exclusively female while only males have values above 
0.75. These cases represent the female and male popula-
tion poles, respectively. It is also clear from the data that 
a large fraction of the cancer population possesses TI val-
ues between 0.25 and 0.75. We can expect that as female 
cases approach TI values of 0.5, they represent a chang-
ing balance between pole effects that will mechanistically 
differ from those in male cases approaching the same TI 
value.

As expected, median TI values for each cancer type 
positively correlated with their incidence rate ratios (IRR, 
M:F) as calculated from these datasets. As illustrated in 
Fig.  1C, esophageal carcinoma (IRR = 4.22) and thyroid 
carcinoma (IRR = 0.41) exhibit median TI values of (0.65) 
and (0.41), respectively. Similarly, the other cancers with 
IRRs of less than 1 (sarcoma, adrenocortical carcinoma, 
diffuse large B cell lymphoma, thyroid carcinoma) exhibit 
median TI values of less than 0.50 (Supplemental Table 
1). Regression analysis of IRR versus median TI identified 
a significant correlation between the two (Fig. 1D). Thus, 
TI value distributions are concordant with sex and gen-
der differences in individual cancer IRRs. Importantly, TI 
value indicates that many male individuals with IRR < 0.5 
cancers exhibit individual TI values that are shifted 
towards the female pole and that many female individu-
als with IRR > 0.5 cancers exhibit individual TI values that 
are shifted towards the male pole. This does not mean 
that some female cancers are “male-like”, and some male 
cancers are “female-like.” Instead, it highlights the short-
comings of these classifications and ambiguities that can 
arise with their use. The TI value simply describes a phe-
notype like a taller than average female or a shorter than 
average male.

These data indicate that individual transcriptomic vari-
ation across cancer types retains signatures of sex and 
gender, and suggest that sexual differentiation may have 
foundational effects on cancer phenotypes. Thus, we next 
sought to identify the genes and pathways that define the 
high and low TI poles. We did so by looking for consis-
tency in sex and gender-skewed mechanisms across can-
cer types using the 7881 adult and in parallel, the 1069 
pediatric cases. Those genes with the greatest effect on 
low and high TI values were identified by performing 
association analysis between TI and gene expression. 
Genes that were significantly (FDR < 0.05) associated 
with high TI were identified as “male-skewed genes”, 
while those negatively associated with high TI were iden-
tified as “female - skewed” (Supplemental Table 2).

Cancer Hallmark Pathway analysis across cancer types 
indicated that most hallmark pathways [29] exhibit 



Page 5 of 12Yang and Rubin Biology of Sex Differences           (2024) 15:35 

sex-skewing in gene expression and revealed several pat-
terns of male versus female transcriptomic polarization 
(Fig.  2A and B). Seventeen of the 26 cancer types were 
enriched for genes involved in oxidative phosphoryla-
tion and/or cell cycle regulation at the male pole. Twelve 
of the 26 cancers were enriched for genes involved in 
inflammation and immunity at the female pole (Fig.  2A 
and B). Mesothelioma was the only cancer without evi-
dence of transcriptomic polarization. Interestingly, 
sarcoma differed from the predominant polarization pat-
terns such that male cases were enriched for inflamma-
tion/immunity signatures and female cases for cell cycle 
regulation. This emphasizes the need to interpret TI val-
ues within the context of cancer type and patient sex and 
gender.

These data indicate that varying degrees of sex and gen-
der - correlated gene expression exist across cancer types 
and that a predominant shared pattern between multiple 
cancers involves skewed gene expression in cell cycle 
regulation versus inflammation/immunity pathways. This 
validates the TI approach as these pathways are known 

to be strongly sex and gender-biased in action [11–14]. 
The replication of these polarization patterns across 
cancer types provides a measure of cross-validation for 
the approach. Thus, we conclude that TI value can suc-
cessfully localize individual cancer cases along axes that 
traverse between sex and gender poles in targetable 
mechanisms like cell cycle regulation and immunity/
inflammation.

With some exceptions, in utero sexual differentiation 
results in outwardly recognizable male or female new-
borns, who differ in growth rates, immunity, metabo-
lism, and disease risks, even prior to puberty and in 
the absence of circulating sex hormones. Thus, we 
hypothesized that if sexual differentiation patterns gene 
expression in cancer, we would also observe TI value 
sex-skewing in pediatric cancers. We analyzed two 
pediatric transcriptome datasets: the Gabriella Miller 
Kids First Pediatric Research Program (Kids First (KF)), 
which included 209 neuroblastoma patients and the Chil-
dren’s Brain Tumor Network (CBTN), which included 
865 patients comprised of 101 high grade glioma, 105 

Fig. 1 Cancer transcriptomes exhibit skewing by sex and gender. (A) UMAP of 566 HNSC transcriptomes clustered by similarity. Male: Female Incidence 
rate ratio is shown. Male (blue X’s) and female (Red circles) distribute throughout the transcriptional space. Local enrichments for male and female 
transcriptomes were recognized and quantified to define female (filled red circle) and male (filled blue square) poles of gene expression. TI value is color-
coded and confidence in the posterior probability is indicated by symbol size as indicated. (B) Ridge plots of the TI value distributions for Male, Female, 
and All patients from the PANCAN data (7881 total, 4668 M, 3213 F., M: F IRR = 1.45:1), with vertical lines indicating the 5%, 25%, 75% and 95% quantiles, 
respectively. (C) Ridge plots for TI population distributions for Esophageal Carcinoma (ESCA, M/F IRR = 4.22) and Thyroid Carcinoma (THCA, M/F IRR = 0.41) 
illustrate the correlation between IRRs and median TI values for the 26 adult cancers. (D) Regression analysis of IRR vs. Median TI values. Shown is the best 
fit and 95% confidence intervals. R and p values are shown
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medulloblastoma, 79 ependymoma, and 214 low grade 
glioma cases (Table  1). From the KF data, 6330 male 
- skewed genes and 6089 female - skewed genes were 
identified (FDR < 0.05, Supplemental Table 3). From the 
CBTN data, 3063 male - skewed genes and 2062 female 
- skewed genes were identified (FDR < 0.05, Supplemental 
Table 4). There were 1126 shared male - skewed genes, 
and 742 shared female - skewed genes between the two 
datasets (both with p < 2.2e-16, Supplemental Table 5).

Like the adult cancers, these pediatric cancers exhib-
ited biased distributions of TI values (Fig.  3A, Supple-
mental Fig.  2). Neuroblastoma (IRR = 1.11) is strongly 
polarized and again, those cases with high TI values were 

enriched for cell cycle regulation while those associ-
ated with low TI values were enriched for inflammation 
and immunity (Fig.  3B). The CBTN brain tumor data 
includes the diverse tumor types common in pediatric 
neuro-oncology. We focused our analysis on the most 
common and malignant pediatric brain tumors. Epen-
dymoma (IRR = 1.5) exhibited the strongest polarization. 
Again, low TI values were enriched for inflammation and 
immunity and oxidative phosphorylation was strongly 
correlated with high TI values (Fig. 3C). The most com-
mon malignant brain tumor of childhood is medullo-
blastoma (IRR: 1.8:1) [30]. The strongest association in 
medulloblastoma was between low TI value and cell cycle 

Fig. 2 Most Cancers exhibit sex and gender - skewed hallmark pathway activation. (A) Genes with the greatest effect on low (female pole) and high 
(male pole) TI values were identified. Cancer Hallmark Pathway analysis of pole-associated genes revealed a predominant polarization pattern involving 
cell cycle regulation and oxidative phosphorylation at the male pole (blue circles) and multiple inflammatory/immunity pathways at the female pole 
(red circles). Gene counts (count) are symbolized by the size of the circles and False Discovery Rates (FDR) by the saturation of the fill as indicated in the 
legends. (B) Frequency of pathway skewing is listed in rank order of cases involved (in parentheses) and the ratio of involved female (red text) to male 
cases (blue text)
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regulation, reminiscent of what was observed for adult 
sarcomas. In pediatric high-grade glioma (IRR ≈ 1), high 
TI values were strongly correlated with cell cycle regu-
lation, while there were no distinct gene expression pat-
terns associated with low TI value cases. Thus, like adult 
cancers, pediatric cancers exhibit sex and gender-skewed 
gene expression that varies in magnitude and involved 
pathways, with similarities between the pediatric and 
adult cancers in the associations between cell cyle regu-
lation and oxidative phosphorylation with male cases, 
versus immunity and inflammation with female cases. 

Importantly, skewed gene expression and pathway activa-
tion are evident even when the incidence ratios of cancer 
types (e.g., pediatric high-grade glioma) near equivalence. 
Therefore, individuals with any cancer type can be more 
extensively phenotyped for personalized approaches to 
treatment using a TI analysis than without.

Cancer patients with extremes of high and low TI value 
might be approachable with something akin to sex and 
gender-specific treatments. However, TI values for most 
patients lie between the poles. Therefore, we expected 
that their transcriptomes would exhibit both female- and 

Table 1 Case Data
PANCAN Types genes Male Female Total % Male
Thyroid Carcinoma (THCA) 20,531 157 415 572 27.4
Adrenal Cortical Carcinoma (ACC) 20,531 31 48 79 39.2
Pheochromocytoma and Paraganglioma (PCPG) 20,531 84 103 187 44.9
Sarcoma (SARC) 20,531 120 145 265 45.3
Diffuse Large B-Cell Lymphoma (DLBC) 20,531 22 26 48 45.8
Lung Adenocarcinoma (LUAD) 20,531 265 311 576 46.0
Cholangiocarcinoma (CHOL) 20,531 22 23 45 48.9
Thymoma (THYM) 20,531 63 59 122 51.6
Colon Adenocarcinoma (COAD) 17,507 257 235 492 52.2
Rectal Adenocarcinoma (READ) 17,507 90 80 170 52.9
Acute Myeloid Leukemia (LAML) 16,765 93 80 173 53.8
Low Grade Glioma (LGG) 20,531 291 238 529 55.0
Pancreatic Adenocarcinoma (PAAD) 20,531 101 82 183 55.2
Uveal Melanoma (UVM) 20,531 45 35 80 56.3
Kidney Chromophobe (KICH) 20,531 52 39 91 57.1
Glioblastoma 525 (GBM525) 8720 320 205 525 61.0
Skin Cutaneous Melanoma (SKCM) 20,531 293 180 473 61.9
Glioblastoma (GBM) 20,531 107 59 166 64.5
Stomach adenocarcinoma (STAD) 16,765 291 159 450 64.7
Kidney Renal Clear Cell Carcinoma (KIRC) 20,531 398 208 606 65.7
Liver Hepatocellular Carcinoma (LIHC) 20,531 280 143 423 66.2
Bladder Carcinoma (BLCA) 20,531 311 116 427 72.8
Kidney Renal Papillary Cell Carcinoma (KIRP) 20,531 236 87 323 73.1
Head and Neck Squamous Cell Carcinoma (HNSC) 20,531 415 151 566 73.3
Lung squamous cell carcinoma (LUSC) 20,531 408 144 552 73.9
Mesothelioma (MESO) 20,531 71 16 87 81.6
Esophageal Carcinoma (ESCA) 19,076 165 31 196 84.2
Total (PANCAN) 4668 3213 7881 59.2
Pediatric Types genes Male Female Total % Male
Neuroblastoma 22,586 104 105 209 49.8
ATRT 25,076 12 12 24 50.0
Craniopharyngioma 25,076 19 15 34 55.9
DNET 25,076 13 9 22 59.1
Ependymoma 25,076 44 32 76 57.9
Ganglioglioma 25,076 24 17 41 58.5
High grade glioma 25,076 43 56 99 43.4
Low grade glioma 25,076 116 98 214 54.2
Medulloblastoma 25,076 68 37 105 64.8
PNET 25,076 6 11 17 35.3
Others 25,076 128 100 228 56.1
Total Pediatric 577 493 1069 54.0
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male- skewed components. We hypothesized that for 
female cases, translation along the TI axis from < 0.25 
to midrange values would involve decreased female - 
skewed effects and/or increased male - skewed effects. 
We predicted that the opposite would be true for male 
cases with midrange TI value compared to those with 
TI > 0.75. If this proved to be the case, we expected TI 
could serve as a tool for stratification for sex and gen-
der – informed treatments, even for those of differing 
sex and gender with identical TI value. To address this 
hypothesis, we compared the PANCAN transcriptomes 
of all cases with midrange TI value to those with tran-
scriptomes closer to their respective poles. We then per-
formed pathway analysis to determine which pathways 
were altered relative to the poles. Several clear patterns of 
change in different cancer types emerged. Across cancer 
types, most female cases, exhibited a loss of the inflam-
matory/immunity signatures (Fig.  4A). Female cases of 
four cancer types (LIHC, LUAD, COAD, DLBC) exhib-
ited a gain in cell cycle regulatory signature. Male cases 

of seven cancer types (PRAAD, KIRC, LIHC, BLCA, 
COAD, LUAD, LUSC), exhibited a clear increase in the 
inflammation/immunity signature (Fig.  4A). There were 
mixed patterns of gains and losses of the other “pole-
defining” pathways, such as cell cycle regulation and 
oxidative phosphorylation, across cancer types. In con-
trast, female sarcoma cases with midrange TI value cases 
exhibited gains in female - skewed cell cycle regulatory 
and male - skewed inflammation/immunity patterns of 
gene expression. Midrange male sarcoma cases exhibited 
no significant change in these pathways. Finally, several 
cancer type-specific changes in epithelial-to-mesen-
chymal transition (EMT) and key intracellular signaling 
pathways such as MYC, MTORC1, or KRAS, occurred in 
female and male cases with midrange TI values. Together, 
these data emphasize the potential of this approach for 
identifying sex and gender-skewed actions in targetable 
pathways, even for those with overlapping mid-range TI 
value.

Fig. 3 Pediatric neural tumors also exhibit sex and gender - skewed gene expression. (A) Ridge plots for neuroblastoma and the three most common 
malignant brain tumors of childhood (489 total, 259 M, 230 F., M: F IRR = 1.13:1) demonstrating sex -skewed TI population distributions, with vertical lines 
indicating the 5%, 25%, 75% and 95% quantiles, respectively. (B)(C) Cancer Hallmark Pathway analysis of those genes that exerted the greatest effects on 
the male and female poles for each cancer. A predominant polarization pattern is identified with inflammatory/immunity pathways associated with the 
female pole (red circles) and cell cycle regulatory pathways associated with the male pole (blue circles). Gene counts (count) are symbolized by the size 
of the circles and False Discovery Rates (FDR) by the saturation of the fill as indicated in the legends
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We performed the same analysis in the pediatric data-
sets. Like the PANCAN analysis, translation away from 
respective poles to midrange TSI values occurred con-
comitantly with a shift in pole - defining pathway involve-
ment (Fig.  4B). For increased power, we combined all 
malignant CBTN brain tumor cases for this analysis. 
We found that midrange TI value female cases exhibited 
decreased MYC targets (V1 and V2) and oxidative phos-
phorylation. Male CBTN cases with midrange TI value, 
exhibited significant changes in almost all hallmark path-
ways with gains in both the female - skewed inflamma-
tory signature and loss of the male - skewed cell cycle and 
oxidative phosphorylation signatures.

In neuroblastoma, female midrange TI cases exhib-
ited a strong acquisition of a male - skewed cell cycle 
regulatory signature as well as decreased female - skewed 
inflammation/immunity and metabolism signatures 
(Fig.  4B). No skewed pathway signature changes were 
detectable in the male midrange TI cases. Together, these 
results support the hypothesis that midrange TI value can 
be associated with different molecular pathway activation 

profiles in female and male individuals with different can-
cer diagnoses. Thus, even when similar in transcriptomic 
phenotype, particular subsets of female and male can-
cer patients may benefit from sex and gender-informed 
therapies.

Discussion
Sex and gender effects in cancer incidence, treatment, 
and survival are commonplace [2]. Like any significant 
difference in cancer phenotypes, understanding the 
mechanistic basis for sex and gender effects holds prom-
ise for improving outcomes for all. Translating sex and 
gender-science to cancer treatment is complicated by the 
nature of sex and gender differences. Most sex and gen-
der differences are not as dichotomous as a peacock’s tail. 
Instead, individuals are a unique blend of sex and gender 
actions, which change as a function of age. This suggests 
that the optimal translation of sex and gender differences 
in cancer biology will require recognizing that sex and 
gender are continuous and dynamic variables.

Fig. 4 Mid-range TI values exhibit distinct pathway signatures relative to the sex and gender – defined poles. (A) (Left Panel) Heatmap of pathway acti-
vation signatures underlying changes in midrange TI values for female adult cancers relative to their pole. (Right Panel) Heatmap of pathway activation 
signatures underlying changes in midrange TI values for male adult cancers relative their pole. (B) (Left Panel) Heatmap of pathway activation signatures 
underlying changes in midrange TI values for pediatric female cancers relative to their pole. (Right Panel) Heatmap of pathway activation signatures un-
derlying changes in midrange TI values for pediatric male cancers relative their pole. For all panels, changes in male (blue circles) and female (red circles) 
signatures are indicated. Gene counts (count) are symbolized by the size of the circles and False Discovery Rates (FDR) by the saturation of the fill as 
indicated in the legends. Only cancer types and pathways with significant change are shown
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Here, we used a Transcriptomic Index to place an indi-
vidual’s cancer transcriptome along sex and gender axes. 
This revealed a sex-informed view of their cancer biology 
and could be used to make predictions about pathways to 
target in their cancer. It is important to note that detect-
ing the spectrum of sex-biased phenotypes required 
that we first impose the usual sex dichotomy. This was 
productive as many cancer-relevant pathways, such as 
growth regulation, metabolism, and immunity, aggregate 
around this dichotomy, and while not complete or wholly 
accurate, categorical sex contains a lot of information 
about sex effects on the range of human phenotypes in 
health and disease. It was these aggregated features that 
allowed us to visualize the spectrum of male and female 
phenotypes in transcriptomic space.

We observed several different polarization patterns, 
highlighting that sex and gender interact in variable 
ways with differing cancer mechanisms, i.e., cells of ori-
gin, specific oncogenic events, as well as their tissue and 
systems biology. The most common polarizations occur 
around cell cycle regulation and inflammation/immunity 
in both adult and pediatric cancers. This serves as vali-
dation for this approach as both mechanisms are already 
known to exhibit substantial sex differences [11–14]. 
As both pathways are targetable with available thera-
peutics [31, 32], it is interesting to consider how the TI 
approach might inform stratification for treatment. As 

an illustration, clinical experience indicates that females 
exhibit a smaller survival benefit from immune check-
point inhibition (ICI) than males [33–35]. Thus, it would 
be reasonable to hypothesize that the immune signature 
associated with the lowest TI values is one of resistance 
to ICI. If so, then females with low TI values would be 
predicted to be less responsive to ICI than those with 
higher TI values. Concordantly, males have been shown 
to be more responsive to ICI and therefore, high TI val-
ues may be a biomarker for ICI sensitivity and males with 
lower TI values may be more resistant to ICI than those 
with higher TI values (Fig.  5). In this way, sex, cancer 
type, and TI values might more precisely stratify patients 
for ICI, or by analogy, other targetable pathways.

We can no longer focus on questioning whether sex 
and gender differences matter in cancer. Sex and gen-
der differences in incidence, response to standard treat-
ments, and survival, all strongly argue they do. The focus 
should be on how we use the continuously varying nature 
of sex and gender differences for treatment planning, 
patient stratification, and analysis of laboratory and clini-
cal research results. As the TI analysis enriches patient-
specific phenotyping, we expect that its use can enhance 
personalized approaches to treatment by realistically 
accounting for sex and gender effects in cancer. Impor-
tantly, substantial sex and gender differences exist in 
aging [36] and multiple conditions such as cardiovascular, 

Fig. 5 Example application of TI in patient treatment stratification. Pictured are the TI distributions for female (top panel) and male (bottom panel) lung 
adenocarcinoma (LUAD) patients. Females exhibited a strong immunity/inflammation signature and in clinical trials, are resistant to immune checkpoint 
inhibition (ICI). In contrast, male LUAD patients do not exhibit an inflammation/immunity signature and are responsive to ICI. If male and female patients 
were stratified for immune checkpoint inhibition treatment, the most likely males to respond to treatment would be those with the highest TI, those near-
est the male pole. Female patients most likely to respond to treatment would also be those with the highest TI values, those furthest from the female pole
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rheumatological, psychiatric, and other diseases with 
substantial impact on the human condition [37]. The TI 
approach is readily adaptable to these conditions as well.

It is also important to note that the nature and mag-
nitude of sex differences vary across the lifespan from 
pre- to post-, X inactivation, gonad formation and secre-
tion of sex hormones, pubescence, and menopause. In 
addition, post-puberty, cancer rates rise as an exponen-
tial function of age. Thus, cancer TI value distributions 
and their underlying programs of gene expression will 
likely change as a function of age and future, deeper phe-
notyping efforts will need to incorporate age and a more 
informed understanding of how genetic ancestry, culture, 
and other social determinants of health impact on cancer 
phenotypes.

There are limitations to this study that can be addressed 
in future work. Validation of results for each cancer-type 
could be obtained through additional analyses of datasets 
such as the Chinese Cancer Genome Atlas. Importantly, 
retrospective analyses of relations between TI values and 
targeted treatment responses could provide important 
justification to test the TI approach in prospective clini-
cal trials.

Finally, we need to address the ambiguities and inequi-
ties that arise with terms like male, female, men, women, 
alone or when combined with terms like -specific, -dif-
ferences, -biased, -effect, etc. While we have used these 
terms, it is in part because we have imposed the com-
mon sex dichotomy in defining our poles. Available clini-
cal data makes this practical, but it is not required. Any 
important variable such as carbohydrate- versus fatty 
acid- centered metabolism exhibits variation across the 
population. While this variation is visualizable along the 
sex and gender axis, this is a correlation and does not 
identify causation. We showed sex differences in can-
cer cell metabolism is correlated with sex differences 
in response to agents that target metabolism [9]. This 
is clinically important information but does not mean 
there is a male versus a female metabolism. As we gain 
a greater understanding of why elements of metabo-
lism and other traits aggregate around male and female 
poles, we will be able to move away from analyses that 
rely on categorical sex as a hierarchical organizing/caus-
ative force for complex phenotypes. Instead, we can focus 
on where between poles of carbohydrate and fatty acid 
weighted metabolisms, an indivudal lies.

Perspectives and significance
We must work to understand the basis for the significant 
sex and gender differences that exist in cancer mecha-
nisms, incidence, and survival. This understanding will 
be necessary to incorporate sex and gender differences 
into personalized cancer treatments. As sex and gender 
is not a dichotomous variable, sex and gender-specific 

treatments are unrealistic. The TI approach described 
here represents a substantial advance in analyzing sex 
and gender effects in disease, one that more realistically 
treats sex and gender as a continuous, rather than, cat-
egorical variable. Deployment of this stratification tool 
could have a substantial impact on the personalization of 
cancer treatments.

Conclusions
More realistic approaches to using sex and gender dif-
ferences in personalized cancer treatments are possible 
when treating sex and gender as a continuous variable.
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