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Abstract 

Background Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption 
of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell 
membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules 
and disease biomarkers.

Methods We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD 
patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabo‑
lism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals 
to highlight lipids with differential abundance and biologically interpreted lipidomics data using  LINEX2, which evalu‑
ates enzymatic dysregulation using an enrichment algorithm.

Results Our results show, for the first time, that AUD females exhibited more significant substrate‑product changes 
in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are poten‑
tially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated cera‑
mide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin 
synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males 
demonstrates enrichment of lipid ontology terms associated with “negative intrinsic curvature” and “positive intrinsic 
curvature”, respectively.

Conclusions Our methodological developments support an improved understanding of lipid metabolism and regu‑
latory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex‑specific clini‑
cal biomarkers in AUD.
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Highlights 

• AUD induced sex‑based differences in lipid profiles related to EVs biogenesis and may underlie inflammatory 
and neurodegenerative responses.

• Females with AUD display significant alterations in lysophosphatidylcholine/phosphatidylcholine lipids and phos‑
pholipase/acyltransferase activity, suggesting associations with cancer progression and neuroinflammation.

• Males with AUD display significant alterations in sphingomyelinase, sphingomyelin phosphodiesterase, 
and sphingomyelin synthase activity, which relates to hepatotoxicity.

• The properties of the lipidome, as determined by the LION algorithm, indicate sex‑based differences in the modi‑
fications of lipids associated with membrane remodeling and lipid‑mediated signaling in EVs from AUD patients.

• The study employs an innovative approach, utilizing bioinformatic analysis of lipidomic data, to identify novel 
lipid targets and uncover sex‑specific clinical biomarkers in AUD.

Keywords Lipidomics, Lipid network, Extracellular vesicles, Alcohol use disorder, Sex‑based differences

Plain Language Summary 

Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol 
considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; 
however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease 
biomarkers. We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD 
patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabo‑
lism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individu‑
als to highlight lipids with differential abundance and biologically interpreted lipidomics data using  LINEX2, which 
evaluates enzymatic dysregulation using an enrichment algorithm. Our results show, for the first time, that AUD 
females exhibited more significant substrate‑product changes in lysophosphatidylcholine/phosphatidylcholine lipids 
and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflamma‑
tion. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, 
sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, 
the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated 
with “negative intrinsic curvature” and “positive intrinsic curvature”, respectively. Our methodological developments 
support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identi‑
fication of novel lipid targets and the discovery of sex‑specific clinical biomarkers in AUD.

Background
Alcohol use disorder (AUD) is a chronic disease char-
acterized by unhealthy alcohol use and several neuro-
biological features, such as positive reinforcement, a 
compulsive search for alcohol, and a negative emotional 
state following abstinence from alcohol use [1]. AUD, 
which comprises a constellation of symptoms (including 
withdrawal, tolerance, and craving), is a significant pub-
lic health issue that has recently suffered a significant and 
alarming increase in prevalence. Alcohol use is estimated 
to cause approximately three million deaths globally each 
year and constitutes a significant factor for morbimortal-
ity [2]. Alcohol-induced adverse consequences to health 
include alcohol-associated liver disease, hepatocellular 
carcinoma, non-liver neoplasms, physical injury, cardiac 
disease, and psychiatric disorders. Alcohol misuse also 
significantly affects workforce productivity and elevates 

direct and indirect economic costs, as many of those 
affected by alcohol misuse are in the most productive 
years of their lives [2].

Importantly, the neurobiology and pathological con-
sequences associated with AUD are strongly influenced 
by biological factors, mainly related to sex. Males have 
higher rates of physical and behavioral problems, whereas 
females have a higher risk of developing psychiatric and 
physical comorbidities [3, 4]. In the brain, evidence also 
supports that intracranial gray matter was smaller in 
alcoholic women than in men, whereas microstructural 
integrity of cortical and callosal white matter was dis-
rupted to similar extents in both sexes [3]. In addition, 
it has been shown in recent years that alcohol affects the 
neuroimmune signaling and synaptic function differently 
in females and males. Females are more vulnerable to the 
neurotoxic effects of alcohol, and show more exacerbated 
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neuroinflammatory changes than their male counterparts 
[5]. These findings highlight the need to elucidate the 
underlying sex-specific pathophysiological processes of 
AUD in order to develop personalized approaches for the 
prevention and treatment.

Extracellular vesicles (EVs) are diverse, nanoscale 
membrane vesicles actively released by most, if not all, 
cells. EVs are increasingly recognized as important medi-
ators of intercellular communication and circulating bio-
markers for disease diagnosis/prognosis [6]. A range of 
studies has demonstrated the role of EVs in physiological 
processes and pathological conditions, such as inflamma-
tion, cancer, and neurodegeneration [7, 8]. While recent 
research has provided examples of the roles of the DNA, 
RNA, and protein content of EVs in biological processes, 
we know relatively little regarding lipids. We recently 
demonstrated that binge-like ethanol drinking induces a 
differential enrichment of lipid species in plasma EVs iso-
lated from human female adolescents compared to males 
[9]; furthermore, we found that these lipid species par-
ticipate in EV formation, release, and uptake, as well as 
inflammatory immune responses.

Lipids represent crucial components of cell membranes 
and participate in a range of cellular functions. Under-
standing how changes to lipids caused by pathological 
conditions, environmental factors, or treatments impact 
cellular processes represents a critical challenge that 
will provide new insights into potential disease mecha-
nisms [10]. Mass spectrometry-based lipidomics com-
bined with dedicated computational tools [11] represents 
a powerful tool for identifying and quantifying lipids 
in cells, tissues, or bodily fluids [12]. Although recent 
reports have focused on analyzing lipid composition and 
abundance, the fact that thousands of lipid species inter-
act via multiple pathways and networks remains a chal-
lenging aspect of this type of analysis. Evaluating and 
understanding changes in lipid networks in response to 
cellular environment alterations associated with disease 
development represents a crucial means of decipher-
ing cell metabolism and related molecular mechanisms 
[13]. In this sense, new bioinformatic tools such as the 
lipid network explorer  (LINEX2), which combines lipid 
classes and lipid metabolic reactions, can comprehen-
sively approach the interpretation of lipidomics data [11]. 
These methodological developments have allowed for a 
better understanding of lipid metabolism and regulatory 
mechanisms, thereby contributing to identifying novel 
lipid targets and discovering clinical biomarkers [14, 15].

Taking into account the novel approach based on bio-
informatic analysis and the critical roles of EV lipids 
as biomarkers, here, we employed a highly sensitive 
lipidomic-based strategy to characterize lipid species 
from EVs isolated from the plasma of AUD females and 

males and evaluate the differential functional roles and 
enzymatic activity networks of EV lipids to improve our 
understanding of how alcohol consumption impacts lipid 
metabolism. We demonstrate sex-based differences in 
EV lipid composition induced by alcohol consumption, 
which impacts species-/class-level abundance and lipid 
metabolic networks. Furthermore, we discovered that the 
identified lipids often had roles in EV biogenesis and/or 
inflammatory/neurodegenerative responses. Importantly, 
we have made all data and results openly available on a 
web-based platform (https:// bioin fo. cipf. es/ sal- chron ics).

Methods
Human subjects
The eleven AUD patients (according to DSM-5 criteria) 
included in this study (six males and five females) were 
referred to the Alcoholism Unit of the University Hospital 
of Salamanca (Spain) [16]. The median age of AUD males 
and females was 47.83 and 40.00  years, respectively. All 
patients in this group actively drank ≥ 90  g of ethanol/
day until entering the study. All patients had normal pro-
thrombin time, hemoglobin concentration, and albumin 
serum levels and tested negative for hepatitis B surface 
antigen and hepatitis C antibodies. Patients did not suffer 
from other chronic/acute conditions that could alter the 
study results and were not polydrug abusers. Advanced 
liver disease was excluded based on clinical, analyti-
cal, and ultrasonographic studies: individuals displaying 
physical stigmata of chronic liver disease (e.g., cutane-
ous signs, hepatosplenomegaly, gynecomastia, testicular 
atrophy, and/or muscle wasting) with liver ultrasono-
graphic findings other than steatosis or with increased 
liver transaminases > 2–3 times the reference limits were 
excluded. Twelve healthy volunteers (six males and six 
females) who reported drinking < 15  g of ethanol/day 
were also analyzed; these volunteers all displayed normal 
liver function and standard hematological/biochemical 
test outcomes (Additional file  1: Table  S1). The median 
age of the healthy female and male patients was 45.50 
and 39.50  years, respectively. Before entering the study, 
all individuals gave their informed consent to participate, 
and the study was approved by the Ethics Committee of 
the University Hospital of Salamanca (Spain).

Heparin-anticoagulated peripheral blood samples were 
obtained from AUD and healthy patients between 9:00 
and 10:00 a.m. under fasting conditions. Plasma samples 
were snap-frozen in liquid nitrogen and stored at − 80 °C 
until further use. Samples were processed for biochemi-
cal tests and EV isolation.

EV isolation from human plasma
Plasma EVs were isolated using a total exosome isolation 
kit (catalog number 4484450, Invitrogen, USA), following 

https://bioinfo.cipf.es/sal-chronics
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the manufacturer’s instructions. 250 μL of initial plasma 
was used to isolate EVs, which were collected and frozen 
at − 80 °C until processing.

EV characterization by transmission electron microscopy 
and nanoparticle tracking analysis
Freshly isolated EVs were fixed with 2% paraformalde-
hyde and prepared for transmission electron micros-
copy (TEM) and nanoparticle tracking analysis (NTA) 
as previously described [17]. Briefly, EV preparations 
were examined under a FEI Tecnai G2 Spirit TEM (FEI 
Europe, Eindhoven, The Netherlands) with a Morada 
digital camera (Olympus Soft Image Solutions GmbH, 
Münster, Germany). The absolute size range and concen-
tration of EVs were analyzed by NTA using a NanoSight 
NS300 Malvern (NanoSight Ltd., Minton Park, UK). Fig-
ures 1A and C show data regarding EV characterization 
by TEM and NTA.

Western blot analysis
The Western blotting was performed to characterize 
plasma EVs (Fig.  1B), as previously described [18]. The 
primary antibodies used were anti-CD9, CD63, CD81, 

and calnexin antibodies (Santa Cruz Biotechnology, 
USA). Membranes were washed, incubated with the cor-
responding HRP-conjugated secondary antibodies, and 
developed using the ECL system (ECL Plus; Thermo 
Fisher Scientific). Additional file  1: Figure S1 includes a 
representative whole membrane for the expression of 
each protein.

Lipid extraction
Lipids were extracted from equal amounts of plasma EVs 
(0.2 mL/sample) using a modified Folch extraction proce-
dure. The last phase containing the lipids was transferred 
to fresh tubes, dry vacuumed with nitrogen, and lipids 
were stored at − 80 °C until further analysis. Dried sam-
ples were resuspended with isopropanol for liquid chro-
matography with tandem mass spectrometry (LC–MS/
MS) acquisition using positive and negative ion modes.

LC–MS/MS analysis
In fully automated quadrupole time of flight mass spec-
trometer (QTOF MS) acquisition mode, a pooled lipid 
extract representing the thirty-six samples (four condi-
tions × nine replicates) was acquired by iterative tandem 

Fig. 1 Characterization of plasma EVs. A Transmission electron microscopy image of human plasma EVs. B Analysis of the protein expression of EV 
markers (CD9, CD63, and CD81) in plasma EVs and astroglial cell lysates (positive control for calnexin expression). Calnexin expression was used 
to detect possible cytosolic protein contamination in EV samples. A representative immunoblot for each protein is shown. C Measurement 
of human EV size distribution (left) and concentration (right) by nanoparticle tracking analysis
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mass spectrometry (MS/MS). Detailed experimental 
methods for liquid chromatography (LC) and auto MS/
MS were followed as previously described [19, 20] with 
minor modifications. Briefly, sample separation was 
performed using an Agilent 1290 Infinity LC system 
coupled to the 6550 Accurate-Mass QTOF (Agilent 
Technologies, Santa Clara, CA, USA) with electrospray 
interface (Jet Stream Technology) operating in positive-
ion mode (3500  V) or negative-ion mode (3000  V) and 
high sensitivity mode. The optimal conditions for the 
electrospray interface were a gas temperature of 200 °C, 
drying gas flow of 12  L/min, nebulizer of 50 psi, sheath 
gas temperature of 300  °C, and sheath gas flow of 12 L/
min. Lipids were separated on an Infinity Lab Poroshell 
120 EC-C18 column (3.0 × 100  mm, 2.7  μm) (Agilent, 
Santa Clara, CA, USA). Under optimized conditions, the 
mobile phase consisted of solvent A (10 mM ammonium 
acetate, 0.2 mM ammonium fluoride in 9:1 water/metha-
nol) and solvent B (10 mM ammonium acetate, 0.2 mM 
ammonium fluoride in 2:3:5 acetonitrile/methanol/iso-
propanol) using the following gradient: 0  min 70% B, 
1 min 70% B, 3.5 min 86% B, 10 min 86% B, 11 min 100% 
B, 17 min 100% B operating at 50 °C and a constant flow 
rate of 0.6  mL/min. The injection volume was 5  µL for 
positive and negative modes.

The Agilent Mass Hunter Workstation Software was 
employed for data acquisition. LC/MS Data Acquisition 
B.10.1 (Build 10.1.48) was operated in auto MS/MS mode, 
and the three most intense ions (charge states, 1–2) 
within 300–1700  m/z mass range (over a threshold of 
5000 counts and 0.001%) were selected for analysis. The 
quadrupole was set to a “narrow” resolution (1.3  m/z), 
and MS/MS spectra (50–1700  m/z) were acquired until 
25,000 total counts or an accumulation time limit of 
333 ms. To assure the desired mass accuracy of recorded 
ions, continuous internal calibration was performed 
during analyses using signals m/z 121.050873 and m/z 
922.009798 for positive mode and signals m/z 119.03632 
and m/z 980.016375 for negative mode. Additionally, all 
ions MS/MS [21] data were acquired on individual sam-
ples with an MS acquisition rate of three spectra/second 
and four scan segments (0, 10, 20, and 40 eV).

Lipid annotator database
Five sets of five iterative MS/MS data files from pooled 
human cell extracts were analyzed with Lipid Annotator 
software 1 as the first step in the lipidomics workflow. 
This study used a novel software tool (Lipid Annotator) 
[22] with a combination of Bayesian scoring, a probabil-
ity density algorithm, and non-negative least-squares fit 
to search a theoretical lipid library (modified LipidBlast) 
developed by Kind et  al. [23, 24] to annotate MS/MS 
spectra.

Agilent MassHunter Lipid Annotator Version 1.0 was 
used for all other data analyses. Default method param-
eters were used, except only [M+H]+ and [M+NH4]+ 
precursors were considered for positive ion mode analy-
sis, and only [M−H]− and [M+HAc−H]− precursors 
were considered for negative ion mode analysis. The 
Agilent MassHunter Personal Compound Database and 
Library (PCDL) Manager Version B.08 SP1 was used to 
manage and edit the exported annotations.

Lipid identification
The lipid PCDL databases created were used for batch-
targeted feature extraction using the Agilent Mass 
Hunter Qualitative version 10.0 on the respective 
batches of 36 all ions MS/MS data files. The provided 
“Profinder—Lipids.m” method was adapted in Mass 
Hunter Qualitative software with modifications previ-
ously described by Sartain et al. [20]. Data were analyzed 
using the Find by Formula (FbF) algorithm in Mass-
Hunter Qualitative Analysis. This approach uses a modi-
fied version of the FbF algorithm, which supports all ions 
MS/MS. Mass peaks in the low energy channel are first 
compared against the PCDL created for compounds with 
the same m/z values, and then a set of putative identifica-
tions is automatically compiled. For this list, the fragment 
ions in the MS/MS spectra from the PCDL are compared 
to the ions detected in the high-energy channel to con-
firm the presence of the correct fragments. The precur-
sors and productions are extracted as ion chromatograms 
and evaluated using a coelution score. The software cal-
culates a number that accounts for abundance, peak 
shape (symmetry), peak width, and retention time. The 
resulting compounds were reviewed in the Mass Hunter 
Qualitative version, and unqualified features were manu-
ally removed. Mass Hunter Qualitative results and quali-
fied features were exported as a.cef file.

Bioinformatic analyses
The strategy applied for this study was based on a tran-
scriptomic analysis workflow. All bioinformatics and sta-
tistical analyses were performed using R software v.4.1.2 
[25]. Figure  2A illustrates the experimental design, and 
Fig. 2B displays the whole lipidomic workflow.

Data preprocessing
Data preprocessing included filter entities, normaliza-
tion of abundance lipid matrix, and exploratory analyses. 
Mass Hunter Qualitative results (.cef file) were imported 
into Mass Profiler Professional (Agilent Technologies) 
for statistical analysis. Entities were filtered based on 
frequency, selecting those consistently present in all 
replicates of at least one experimental group. A percen-
tile shift normalization algorithm (75%) was used, and 
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datasets were baselined to the median of all samples. 
Normalized data were labeled according to negative and 
positive ion modes, and all data were consolidated into a 
single data frame. This step was followed by exploratory 
analysis using hierarchical clustering, principal compo-
nent analysis (PCA), and box and whisker plots by sam-
ples and lipids to detect abundance patterns between 
samples and lipids and batch effects anomalous behav-
ior in the data. At this point, anomaly-behaving samples 
and outliers (values that lie over 1.5 × interquartile range 
(IQR) below the first quartile (Q1) or above the third 
quartile (Q3) in the dataset) were excluded for presenting 
a robust batch effect with a critical impact on differential 
abundance analysis.

Differential lipid abundance
The limma R package compared lipid abundance levels 
between groups [26]. P-values were adjusted using the 
Benjamini & Hochberg (BH) procedure [27], and sig-
nificant lipids were considered when the BH-adjusted 
p-value ≤ 0.05.

Class enrichment analysis
Class annotation was conducted using the RefMet data-
base [28] and compared with the LIPID MAPS database 
[29]. Additional file  1: Table  S2 details the description 

of abbreviations. Annotation was followed by ordering 
lipids according to the p-value and sign of the statistic 
obtained in the differential lipid abundance. Similar to a 
Gene Set Enrichment Analysis (GSEA) method, a class 
enrichment analysis was carried out using Lipid Set 
Enrichment Analysis (LSEA) implemented in the mdgsa 
R package [30]. The p-values were corrected for BH, and 
classes with a BH-adjusted p-value ≤ 0.05 were consid-
ered significant.

Lipid network
The Lipid Network Explorer platform  (LINEX2, https:// 
exbio. wzw. tum. de/ linex/) was used for lipid metabolic 
network analysis to gain insights into the sex-specific 
dysregulation of lipid metabolism in AUD patients [11]. 
For this purpose, single lipid species were considered as 
the sum or molecular species regardless of their reten-
tion time and ion mode acquisition. Therefore, before 
conducting the analysis, the lipid nomenclature was 
checked to ensure that most lipids in the study were 
included. This review was carried out using the Metabo-
Analyst 5.0 platform [31] and the LipidLynxX Converter 
tool (http:// www. lipid maps. org/ lipid lynxx/ conve rter/) 
[32]. Additionally, a manual lipid-by-lipid revision was 
performed to ensure accuracy.  LINEX2 analysis provided 
several results. The global lipid species network provides 

Fig. 2 Experimental design and lipidomic workflow. A Description of the experimental groups and the comparisons made. B In the lipidomic 
workflow, lipids were extracted for quantification and identification through LC–MS/MS after isolating EVs from human plasma. Following 
data normalization and lipid class annotation, exploratory and differential analyses assessed lipid abundance. A class enrichment analysis 
was also performed. The  LINEX2 platform provided: (i) a reaction global network, (ii) the subgraph with the most significant average 
substrate‑product change, and (iii) a target lipids list for further enrichment analysis using LION‑web

https://exbio.wzw.tum.de/linex/
https://exbio.wzw.tum.de/linex/
http://www.lipidmaps.org/lipidlynxx/converter/
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qualitative and quantitative associations between spe-
cies based on defined reaction types and Spearman’s cor-
relation, respectively. In addition, changes in lipid levels 
between different experimental conditions can be derived 
from different statistical metrics. The subgraph with the 
most significant average substrate-product changes was 
obtained through a lipid network enrichment algorithm, 
which considered enzymatic multispecificity and gener-
ated hypotheses regarding enzymatic dysregulation. This 
algorithm consists of a local search approach that exam-
ines a search space greedily by iteratively testing local 
candidate solutions for the one with an optimal objective 
function. Candidate solutions are generated by applying 
one of three operations: node insertion, deletion, and 
substitution to the solution from the last iteration or a 
randomly selected subgraph in the first iteration. Lastly, 
 LINEX2 provided a target lipids list derived from the 
lipids subgraph, which was utilized for an enrichment 
analysis using LION-web (http:// www. lipid ontol ogy. 
com/) [33]. This enabled a more in-depth examination of 
the functional significance and potential biological impli-
cations of the identified lipid alterations.

Comparisons
Three comparisons were performed to analyze differen-
tial lipid abundance (Fig. 2A):

 i. AUD Impact in Females (IF) compares AUD 
females and control females (AUD.Females - Con-
trol.Females).

 ii. AUD Impact in Males (IM) compares AUD males 
and control males (AUD.Males - Control.Males).

 iii. Impact of Sex in AUD (IS) compares IF and 
IM (AUD.Females  -  Control.Females)  -  (AUD.
Males - Control.Males).

Class enrichment analysis was assessed using the same 
three principal comparisons.  LINEX2 analysis related to 
the global network was conducted using IF and IM com-
parisons, and the subgraph with the most significant 
average substrate-product changes was obtained using 
the control groups as a reference. The IF and IM compar-
isons were performed to identify the lipids whose abun-
dance was affected by alcohol consumption separately in 
each sex. The IS comparison allowed us to identify the 
lipids whose abundance differed due to sex in the context 
of AUD.

The statistics used to measure the differential patterns 
were the logarithm of fold change (LFC) to quantify the 
effect of differential lipid abundance and the logarithm 
of odds ratio (LOR) to measure the enrichment of each 
functional class. A positive statistical sign indicates a 
higher mean for the variable in the first element of the 

comparison, whereas a negative statistical sign indicates 
a higher mean value for the second element. The IS com-
parisons focus on finding differences between female and 
male comparisons. Thus, a positive statistic may indi-
cate either upregulation in females and downregulation 
in males or a higher increase or a lower decrease of the 
variable in AUD females. On the other hand, a negative 
statistic may indicate either upregulation in males and 
downregulation in females or a higher increase or a lower 
decrease of the variable in AUD males. In this compari-
son, the behavior of each lipid across the groups must 
be assessed a posteriori, examining female (IF) and male 
(IM) comparisons (Additional file 1: Figure S2).

Web platform
All data and results generated in the different steps of 
bioinformatics strategy analysis are available on a web 
platform (https:// bioin fo. cipf. es/ sal- chron ics), which 
is freely accessible to any user and allows the confirma-
tion of the results described in this manuscript. The front 
end was developed using the Angular Framework, the 
interactive graphics used in this web resource have been 
implemented with plotly [34], and the exploratory analy-
sis cluster plot was generated with the ggplot2 R package 
[35].

This easy-to-use resource is divided into seven sec-
tions: (1) a summary of analysis results; the detailed 
results of the (2) class annotation results; (3) exploratory 
analysis; (4) differential abundance between experimental 
groups; (5) LSEA results; and (6) metabolic lipid network 
results, where the user can interact with the web plat-
form through graphics and tables and search for specific 
information related to lipid species or classes; and (7–8), 
which include methods, bioinformatics scripts, and sup-
plementary material.

Results
Sex‑based differences in lipid species and class lipid 
profiling of plasma EVs isolated from individuals with AUD
The lipidomic profiles of plasma EVs from AUD and 
control females and males revealed 311 and 264 lipid 
compounds using negative and positive ion modes, 
respectively. After normalizing sample data, we labeled 
lipid species by ion mode. We employed RefMet and 
LIPID MAPS databases to classify all lipids (575 species) 
into different subclasses and their upper levels (super and 
main classes) (Fig.  3A and Additional file  1: Table  S3). 
The descriptive analysis of lipid composition revealed 
enrichment of TAG, PC and SM subclasses in plasma 
EVs (Fig. 3A). Regarding the lipid abundance distribution 
of lipid subclasses (Fig. 3B), all patient groups displayed 
similar abundance profiles except for OxPC-O and CAR; 
however, hierarchical clustering of EV lipid species, 

http://www.lipidontology.com/
http://www.lipidontology.com/
https://bioinfo.cipf.es/sal-chronics
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regardless of their subclass, revealed distinct lipid pro-
files for the four experimental groups (Fig.  3C and D). 
The samples were separated by disease (AUD vs. healthy 
control) and sex (female vs. male) (Fig.  3C); moreover, 
part of the variance could be explained by sex (PC1) and 
disease (PC2) (Fig. 3D).

To assess significant variations in lipid abundance 
in plasma EVs, we carried out three comparisons: (1) 
AUD females vs. control females (IF), (2) AUD males 
vs. control males (IM), and (3) IF vs. IM (named “IS” to 

note the impact of sex). Figure  4A demonstrates that 
32 and 39 lipid species displayed significant alterations 
(p-value ≤ 0.05) when comparing AUD females and males 
to controls, respectively. The IS comparison revealed fif-
teen significantly altered lipids, indicating a sex-specific 
response to AUD. Delving into the lipid subclasses noted 
in Fig. 4A to which significant lipids belong, we observed 
differences between all comparisons. Specifically, the 
Cer_AP and Cer_AS subclasses revealed significantly 
altered lipids with greater abundance in AUD females, 

Fig. 3 Lipid composition and distribution of EVs lipids in patient groups. Sum of the total (A) and median (B) of lipid abundance by lipid subclass 
across patient groups. Lipids were quantified as log2 of the identified peak area by LC–MS/MS analysis. According to the RefMet classification, 
the inner and outer lines of the radar plots indicate the lipid main class and super class, respectively. The color of the border of the bars indicates 
the patient group (AUD_M: green, AUD_F: yellow, C_M: orange, and C_F: blue). C Heatmap demonstrating the abundance patterns between lipids 
(columns) and samples (rows). Lipid subclasses and patient groups are indicated by the same colors previously assigned to them in the radar plots. 
Abundance levels are represented on a red‑blue scale, where red indicates lower abundance and blue indicates higher abundance. D Principal 
component analysis (PCA) score plot showing 4 separate clusters according to the patient groups, which are indicated by the same color code 
as previously
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Fig. 4 Summary of differential abundance analysis and molecular lipid profiles for each comparison. A Volcano plots summarize lipid data 
for IF, IM, and IS comparisons, while associated bar plots display significantly altered lipids classified by subclass and LFC. Significantly altered 
lipids with greater and lower abundance are shown in red and blue, respectively (p‑value adjusted ≤ 0.05), in the volcano plots. Non‑significant 
altered lipids are shown in gray. The capital letters in the volcano plots are the significantly altered lipids in at least two comparisons include, 
A: Cer_NDS d39:1_neg, B: Cer_NDS d42:2 RT:12.673_neg, C: Cer_NS d18:1_22:0_neg, D: Cer_NS d18:1_24:1_neg, E: Cer_NS d18:2_23:0_neg, F: 
EtherPC 16:0e_18:2_neg, G: FA 22:0 RT:6.523_neg, H: PC 32:3 RT:6.415_pos, I: PI 18:0_18:2_neg, J: SM d18:2_24:0_neg, K: Cer_NDS d42:1_neg, 
L: Cer_NS d18:1_24:0_neg, M: EtherPC 38:5e_neg, N: EtherPE 16:1e_22:6_neg, O: PC 18:2_20:4_neg, P: SM d37:2_pos, Q: Cer_NDS d18:0_18:0 
RT:12.135_neg, R: PC 39:4_pos, S: SM d42:4_neg, T: TG 18:1_18:1_20:1_pos, U: TG 54:7_pos. Neg: negative ion mode, pos: positive ion mode. B 
Upset plot of the differential abundance analysis of lipids. Data from each comparison are separated according to the LFC sign. Horizontal bars 
indicate the number of significant lipids in each comparison (a specific color for each comparison). Vertical bars indicate the lipids included 
in the intersection of the groups denoted with a colored dot underneath. A colored dot under a bar indicates the specificity of the lipids in this 
group. C Analysis of the enriched significantly altered lipid subclasses by LSEA. Dot colors represent the sign and magnitude of the change (LOR). IF 
impact of AUD in females (orange), IM impact of AUD in males (purple), IS impact of sex in AUD (blue)
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while LPC and PE subclasses displayed significantly 
altered lipids with lower abundance in AUD females. 
The FAHFA subclass exhibited significantly altered lipids 
with greater abundance only in AUD males, whereas the 
PE-O subclass displayed one significantly altered lipid 
with lower abundance in AUD males. Notably, lipid spe-
cies belonging to the PE-O subclass (Fig.  4A; label N) 
displayed lower abundance in AUD males and appeared 
significant with LFC > 0 in the IS comparison.

The analysis of significantly altered lipids shared 
between the different comparisons identified sex-spe-
cific lipid species (Fig.  4B). Specifically, we identified 
twenty-two female-specific lipid species, twenty-nine 
male-specific lipid species, and ten lipid species shared 
between the IF and IM comparisons. Considering these 
last ten lipid species, seven showed lower abundance 
in AUD females and males (Additional file  1: Table  S4). 
The remaining three lipid species displayed the opposite 
abundance and significant alterations in the IS compari-
son (Additional file  1: Table  S4). Furthermore, 15 lipids 
exhibited sex-based differences (IS comparison) in the 
AUD patients; some displayed significant alterations in 
the IF and/or IM comparisons, while one lipid displayed 
significant alterations in the IS comparison.

The LSEA results displayed a significant enrichment of 
the SM subclass in the IF comparison, with a lower repre-
sentation in AUD females than control females (negative 
LOR value) (Fig.  4C). The IM comparison in the LSEA 
results suggested that the FAHFA subclass had greater 
representation in AUD males than control males (posi-
tive LOR value). We also observed a significantly higher 
enrichment of the Cer_NDS subclass in AUD females 
compared to AUD males; however, we also observed a 
significantly higher enrichment of Unsaturated FA and 
FAHFA subclasses in AUD males compared to AUD 
females (SI comparison).

Sex‑based differences in the lipid network of plasma EVs 
isolated from AUD patients
LINEX2 aims to obtain a biological interpretation from 
lipidomics data. Figure  5 represents the global network 
of lipid species, which provides qualitative associa-
tions between species based on defined reaction types. 
Most reactions relate to fatty acid modification/removal 
(orange and blue edges). Figure  6 depicts similar quali-
tative associations as Fig.  5 while also providing quan-
titative information regarding alterations in lipid levels 
between AUD and control females (IF) (Fig.  6A) and 
males (IM) (Fig.  6B). The colored spherical nodes rep-
resent higher lipid abundance; therefore, the IF network 
(Fig.  6A) reveals lipids with increased abundance (not 
significant) in control females (blue nodes) and AUD 
females (red nodes) with a uniform distribution within 

the network; however, we also observed abundant lipids 
in control males (Fig.  6B, blue nodes). Analysis of the 
abundance lipids in AUD males (larger spherical nodes) 
also indicates statistical significance. The edge color in 
the network indicates the correlation change of the reac-
tion connecting two nodes. Figure 6A, B reveals distinct 
patterns between the sexes, with some lipids exhibit-
ing opposing LFC values. The magnified network view, 
represented by the lipid species Cer(18:1;O2/24:1), 
Cer(18:1;O2/22:0), and Cer(42:2;O2) (Fig.  6C and F), 
denoted as Cer_NS d18:1_24:1_neg, Cer_NS d18:1_22:0_
neg, and Cer_NDS d42:2 RT:12.673_neg (Fig.  4), 
also confirmed sex significant differences. The lipid 
DG(18:1/18:1) (highlighted node, Fig. 6D and G) showed 
significant connections with several other lipids, dis-
playing different correlations in the IF and IM compari-
sons. For instance, the interaction of DG(18:1/18:1) with 
TG(18:1/18:1/21:0) revealed a non-significant correlation 
in AUD females but a significant correlation in control 
females in the IF comparison. In the IM comparison, this 
correlation is significant for AUD males but not for con-
trol males. Furthermore, the global network also showed 
notable differences in the correlations between both 
sexes (Fig.  6E and H). In females, green edges indicate 
significant reactions in control patients (not significant 
in AUD females); in contrast, males showed an opposite 
network zoomed view (blue edges).

Sex‑based differences in lipid enzymatic dysregulation 
of plasma EVs isolated from AUD patients
Using lipid class reactions from common metabolic 
databases through a network enrichment algorithm 
[11], we can determine enzymatic dysregulation from 
our EVs lipidomics data. Figure  7 depicts the enrich-
ment networks generated by  LINEX2 based on the global 
networks (Figs.  5 and 6). Figure  7A highlights the most 
dysregulated subnetworks between AUD and control 
females and males. The resulting subnetworks include 
only PC and LPC lipid species in female patients and Cer 
and SM in male patients, suggesting that enzymatic dys-
regulation participates in different biochemical reactions 
in the different sexes, transforming the lipid species into 
each other.

We identified differences between the sexes in LION 
enrichment analysis, using the lipids in the subnetwork 
as targets in target list mode (Fig.  7B). Female patients 
exhibited ontology terms related to membrane activ-
ity and stability, such as “positive intrinsic curvature”, 
“headgroup with positive charge/zwitter-ion”, “lipid-
mediated signaling”, and “endoplasmic reticulum”. These 
concepts normally associate with the lipid class term 
“glycerophosphocholine”; the terms related to this class 
became enriched. The two most significant terms in male 
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Fig. 5 LINEX2 lipid network based on LC–MS/MS data. Colored spherical nodes depict lipid classes. Edge colors indicate the type of reaction 
connecting nodes. For further exploration and analysis, an interactive version of the network, along with all other  LINEX2 analyses, are accessible 
in the web‑platform http:// bioin fo. cipf. es/ sal‑ chron ics/ lipid_ net. html

Fig. 6 Lipidomics data visualized with  LINEX2. Global lipid network visualization for IF (A) and IM (B) comparisons. C–H Magnified network 
views of specific lipids for IF (C–E) and IM (F–H). IF impact of AUD in females, IM impact of AUD in males. Red spherical nodes represent lipids 
with a positive LFC (higher abundance in AUD), whereas blue nodes indicate a negative LFC (higher abundance in control). The spherical node sizes 
indicate the −log10 FDR corrected p‑values of lipid species between AUD and control females and males (a larger node size represents a higher 
level of statistical significance). Edges are colored by correlation changes for lipids from AUD patients to healthy individuals: negative to positive 
(significant correlation in both groups, < 0 in AUD and > 0 in control), positive to negative (significant correlation in both groups, > 0 in AUD and < 0 
in control), significant to insignificant (significant correlation in AUD, insignificant in control), unchanged significant (significant in both groups, 
either both > 0 or both < 0), insignificant (uncorrelated in both groups), and insignificant to significant (insignificant in AUD, significant in control). 
Lipid network and other  LINEX2 analyses can be explored in an interactive version, available as in the web‑platform http:// bioin fo. cipf. es/ sal‑ chron 
ics/ lipid_ net. html

(See figure on next page.)

http://bioinfo.cipf.es/sal-chronics/lipid_net.html
http://bioinfo.cipf.es/sal-chronics/lipid_net.html
http://bioinfo.cipf.es/sal-chronics/lipid_net.html
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Fig. 6 (See legend on previous page.)
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patients were “sphingolipids” and “plasma membrane”, 
which related to cell membrane and lipid signaling path-
ways. Female patients exhibited ontology terms related to 
the “positive intrinsic curvature” of the membrane, while 
male patients presented “negative intrinsic curvature” 
terms (Fig. 7C); interestingly, both terms relate to EV bio-
genesis. Thus, the properties of the lipidome assigned by 
the LION algorithm suggest alterations of lipids involved 

in membrane remodeling and lipid-mediated signaling in 
EVs from AUD patients, with a different pattern observed 
between the sexes.

Web platform
The web platform (https:// bioin fo. cipf. es/ sal- chron ics) 
contains detailed information regarding the complemen-
tary computational approaches involved in this study. 

Fig. 7 Enrichment subnetworks generated by  LINEX2 based on global networks. A  LINEX2 enrichment subnetworks for the IF and IM comparisons. 
IF—impact of AUD in females (orange); IM—impact of AUD in males (purple). Spherical nodes represent lipid species, and triangular nodes 
represent reaction type. B The most enriched ontology terms result from using the lipids in the subnetworks as targets in the target list mode. C 
A hierarchical network displaying the most enriched ontology terms results from using the lipids in the subnetworks as targets in the target list 
mode. The raw p‑value scales the node colors, and the node size indicates the number of lipids involved in each ontology term

https://bioinfo.cipf.es/sal-chronics
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This resource includes statistical indicators of each per-
formed analysis, which users can explore to identify their 
profiles of interest. This open resource hopes to con-
tribute to data sharing between researchers, elaborating 
innovative studies, and discovering new findings.

Discussion
Unveiling the lipid landscape in AUD
Preclinical studies have highlighted the importance of 
improving our understanding of the biological and meta-
bolic pathways involved in AUD to promote the develop-
ment of new therapeutic and diagnostic methods. While 
many related studies have focused on the use of EV-res-
ident microRNAs and proteins as plasma biomarkers, 
our results demonstrated, for the first time, that LPC and 
PC lipids (and enzymes such as phospholipases and acyl-
transferases) suffer from changes associated with can-
cer progression and neuroinflammation in female AUD 
patients. Moreover, male AUD patients exhibit dysregu-
lation of Cer and SM lipid species (which involve sphin-
gomyelinases, sphingomyelin phosphodiesterase, and 
sphingomyelin synthase), which potentially contributes 
to ethanol-induced hepatotoxicity. Additionally, compu-
tational analyses highlight sex-specific variations in EV 
lipids that play roles in vesicle fusion processes.

Considering that most, if not all, cells in the human 
body secrete EVs into circulating bodily fluids, the char-
acterization of EV lipid profiles could provide infor-
mation regarding the cell/tissue of origin and their 
functional state [36]. The distribution of lipid species in 
absolute amounts highlighted PC, SM, and TAG as the 
most abundant lipid subclasses. Whereas PC represents 
an abundant lipid subclass in EVs derived from neural 
cells [37], the SM subclass participates in EV biogenesis 
and is among the most abundant classes in brain-derived 
EVs [38, 39]; moreover, we identify the novel lipid spe-
cies SM d18:2_24:0 as a potential biomarker in female 
and male AUD patients. The presence of the TAG lipid 
subclass in EVs could arise from the secretory autophagy 
pathway [40]; in addition, TAG could become transferred 
from lipoproteins to exosomes once released into the 
bloodstream [41], suggesting the absence of lipoprotein 
contamination during the EV isolation procedure [9].

AUD induced sex‑based differences in lipid profiles 
related to EVs biogenesis and may underlie inflammatory 
and neurodegenerative responses
We previously reported that acute ethanol intoxication 
induced the enrichment of distinct plasma EV lipid spe-
cies (e.g., LPC, PA, FAHFA) in human female adoles-
cents compared to males; these lipid classes participate 
in the formation, release, and uptake of EVs and immune 
response activation [9]. Following the same sex-based 

differential analysis in AUD patients, our current results 
indicate a lower abundance of the LPC and PE subclasses 
in AUD females than in healthy individuals. LPC, which 
is enriched in EVs, is related to pro-inflammatory func-
tions and participates in EV biogenesis [42]; moreover, 
LPC promotes demyelination by activating CNS inflam-
matory responses and inducing microglia pyroptosis [43]. 
Indeed, alcohol-induced pro-inflammatory molecules 
in the periphery may provoke neuroinflammation by 
crossing the brain-blood barrier [44]. A general decline 
in plasmalogen lipids (mainly PC and PE subclasses) has 
been described in multiple brain regions in Alzheimer’s 
disease [37], which could associate with increased oxi-
dative stress, inflammatory responses, and neuronal cell 
death [45, 46]; however, additional studies have reported 
high and low levels of PC and PE in highly metastatic 
breast cancer, respectively [47]. In addition, our results 
demonstrated that most ceramide lipid species (e.g., 
Cer_NS d18:1_24:1, Cer_NS d18:1_22:0, and Cer_NDS 
d42:2 RT:12.673) exhibited sex-specific abundances. 
The subclasses Cer_AP and Cer_AS displayed a greater 
abundance in AUD females, whereas some lipids belong-
ing to Cer_NS and Cer_NDS displayed lower abundance. 
An increase in Cer_AS species along with a decrease in 
Cer_NS and Cer_NDS has been previously described in a 
mouse model of metachromatic leukodystrophy, suggest-
ing that alpha-hydroxylation of ceramides may play a role 
in the brain pathology of this disease (e.g., demyelination 
and motor dysfunction) [48].

The Fatty Acids main class has been associated with 
inflammation [49] and neurotransmitter release [50] 
through cell surface and intracellular receptors, thereby 
being linked to the modification of membrane composi-
tion, cell signaling, gene expression, and lipid mediator 
production [49]. Our results revealed that unsaturated 
FA subclass (main class Fatty acids) had a negative LOR 
in the IS comparison, indicating class enrichment in 
AUD males compared with females. FAs have been impli-
cated in neural cell pathology in lysosomal storage dis-
eases, including metachromatic leukodystrophy, which 
is characterized by lipid accumulation in the brain, spinal 
cord, and peripheral nerves [48]. Furthermore, although 
the FAHFA subclass emerges as a significantly more 
abundant lipid in AUD males, we know little regarding 
the involvement of FAHFA in biological processes other 
than its anti-inflammatory role [51].

Lipid network enrichment unveils intriguing sex‑based 
variations in the pathology linked to AUD
Incorporating  LINEX2 lipid network enrichment into 
our data provided the basis for a knowledge-driven 
integration of lipidomics with proteomics data by con-
necting enzymatic activity to lipid species [11]. The 
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resulting network analysis revealed more significant 
substrate-product changes in AUD females for reac-
tions involving the LPC and PC subclasses, including 
phospholipases and acyltransferases (e.g., LPCAT3/4). 
The upregulation of enzymes such as LPCAT1 has been 
reported in human colorectal adenocarcinoma [52] and 
metastatic prostate cancer [53], suggesting the involve-
ment of the LPC metabolism in cancer progression. In 
addition, PLA2-activated neuroinflammatory pathways 
(through the upregulation of the oxidative stress sta-
tus) become induced by binge alcohol drinking in adult 
rats and in organotypic hippocampal-entorhinal cortical 
slice cultures [54]. Our results also demonstrated that 
PLA2G2A becomes upregulated in AUD females; this 
enzyme, which possesses lysophospholipase, transac-
ylase, and PLA2 activities [55], plays an antimicrobial 
role by degrading bacterial membranes and releasing 
pro-inflammatory eicosanoids from inflammatory cell 
EVs [56].

We also observed the enzymatic dysregulation of Cer 
and SM lipid species in AUD males. Previous studies 
reported alterations in the levels of various sphingolipids 
(including Cer and SM) in human chronic alcohol-related 
liver disease [57] and individuals with high alcohol con-
sumption [58]. The enzymes involved in these substrate-
product reactions—the sphingomyelinases (e.g., ASM, 
ENPP7, SMPD family, and SGMS1)—have been linked 
to chronic alcohol consumption [59]. In addition, recent 
studies revealed increased sphingomyelinase activity in 
ethanol-treated microglial cells [60] and high sphingo-
myelinase protein levels associated with alcoholic liver 
disease [61]. Since the enzymes involved in sphingolipid 
metabolism may mediate ethanol’s hepatotoxic effects 
[62], ASMase activation and C16-ceramide generation 
could sensitize hepatocytes to the effects of TNF-α [63]. 
In agreement with our results, a sex-based evaluation by 
Mühle et al. reported high levels of serum ASMase activ-
ity in alcohol-dependent male patients [64].

Sex‑based differences in the properties of lipids associated 
with membrane remodeling and lipid‑mediated signaling 
in EVs from AUD patients
As lipids exhibit many structural and signaling functions, 
the biosynthesis of lipids and changes to biophysical 
properties must be considered. We performed a compre-
hensive computational lipidomic analysis using network-
based and lipid property-related methods through the 
LION algorithm to evaluate membrane remodeling and 
lipid-mediated signaling in EVs. Interestingly, our results 
demonstrated LION-term enrichment featuring “positive 
intrinsic curvature” in AUD females but “negative intrin-
sic curvature” in AUD males. Lipids with positive intrin-
sic curvature (such as LPC) hinder stalk formation during 

vesicle fusion [65] to facilitate fusion pore expansion [66]. 
While lipids with greater negative curvature (such as 
PE and DAG) represent critical players in fusion, lipids 
of lesser negative curvature (such as phosphatidic acid) 
generally play modulatory roles [67]. Lipids with nega-
tive curvature (such as oleic acid or DAG) significantly 
influence vesicle fusion processes [67, 68] and tend to 
promote stalk formation and inhibit pore expansion [69]. 
Notably, the formation and expansion of fusion pores 
during SNARE-dependent vesicle fusion remain essential 
for neurotransmitter release and vesicle recycling during 
exocytosis [70].

Sex‑specific lipidomic profiles suggest distinct mechanisms 
of alcohol‑induced brain injury with direct therapeutic 
implications
Dysregulation of glycerophospholipid and sphingolipid 
metabolism, the most altered lipid classes in our study, 
underlies the disproportionate atrophy of the brain 
white matter (WM) in patients with AUD. WM is largely 
composed of myelin, characterized by an increased rep-
resentation of cholesterol, glycosphingolipids and sul-
fatides, as well as phospholipids [71]. Chronic alcohol 
consumption compromises the microstructural integrity 
of the WM through demyelination, dysmyelination and 
axonal degeneration, leading to widespread volume loss 
at the macrostructural level [72]. In fact, all studies with 
postmortem brain tissue from AUD patients or animal 
models conclude that the most affected regions showed 
a broad and significant decrease in glycerophospholipids 
and sulfatides, the most abundant and characteristic lipid 
subclass of myelin [73–75], as well as ceramides, poly-
unsaturated fatty acids and cholesteryl ester fatty acid 
chains [76].

Sexual dimorphism in WM atrophy has been widely 
described. Whereas some areas are more affected in 
males, others are more affected in females, with direct 
implications for the sex differences observed in behav-
ioral patterns associated with alcoholism [77, 78]. This 
differential brain regional vulnerability may be due to dif-
ferential expression of enzymes that mediate the biosyn-
thesis and degradation of membrane phospholipids and 
sphingolipids in males and females across brain regions. 
In line with our results, transgenic mice overexpressing 
ASM have shown differential expression of ASM between 
males and females in different brain regions, effects 
that are associated with different emotional behavior; a 
depressive phenotype in males and a social anxiety dis-
order-like phenotype in females [79]. Indeed, in recent 
years, there has been evidence that ASM may play a role 
in the mechanism of comorbidity between AUDs and 
anxiety/depression [80]. For instance, during alcohol 
withdrawal, ASM levels gradually decrease in both sexes, 
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but the positive correlation with withdrawal symptoms 
is stronger in males than in females [64]. These findings 
are consistent with reports from retrospective studies of 
coexistence patterns of AUD and depression in the devel-
opment of depressive disorders. Females are more likely 
to experience depression preceding AUD, whereas males 
are more likely to develop depression resulting from 
AUD [81]. These sex differences have direct implications 
for the treatment of the comorbid depression in AUD. 
Interestingly, several antidepressants act as ASM inhibi-
tors [82, 83]. However, the prescription of this type of 
drugs should be limited to those patients whose depres-
sive trigger is characterized by a high ASM activity, and 
therefore, prove to be much more promising in the emo-
tional behavior of males with AUD.

Limitations and considerations
This study aimed to provide data regarding individual 
lipid species to support a rigorous lipidomic pathway 
analysis, as lipid species of the same class can behave 
differently, leading to distinct biological functions; how-
ever, this analysis does suffer from certain limitations. 
For instance, (i) a lack of standardization in lipid nomen-
clature and integration into computational tools (e.g., 
FAHFA displays significant abundance but may not be 
included in the  LINEX2 software); (ii) lipid databases 
(e.g., LIPID MAPS and HMDB) contain general informa-
tion regarding lipid class biology; and (iii)  LINEX2 details 
lipid species and their enzymatic activity, although this 
software package does not allow complete control and 
provides aleatory results based on the algorithm. Of 
additional note, the EVs used in this study have sizes and 
protein marker expression profiles similar to exosomes; 
however, we cannot currently specifically identify them 
as exosomes.

Perspectives and significance
Given the role of sex differences in modulating vulner-
ability in AUD, our findings underscore the presence of 
sex-based differences in EV lipidomic profiles induced 
by AUD. These distinctions, evident in lipid network 
analysis and enzymatic dysregulation, highlight the inno-
vative nature of our study. It employs a comprehensive 
bioinformatic strategy to explore the sex-specific effects 
of ethanol on lipidomic profiles, providing new insights 
into lipid metabolism. These findings suggest that AUD 
exerts diverse influences on the lipidome of EVs based 
on sex, emphasizing the critical role of sex-specific bio-
markers (e.g., PC 16:0_16:1 in females, PI 34:1 in males, 
see Additional file  1: Table  S4). Notably, dysregulation 

of glycerophospholipid and sphingolipid metabolism 
revealed a tendency toward phospholipid-mediated neu-
roinflammation in females and sphingolipid-mediated 
neuroinflammation in males. This knowledge not only 
advances our understanding of the intricate interplay 
between AUD and lipid metabolism, but also offers novel 
perspectives that could guide personalized diagnostic 
and treatment strategies.

Conclusions
In conclusion, this study employed an innovative strategy 
based on a network enrichment algorithm to gain insight 
into the sex-specific dysregulation of lipid enzymatic 
reactions in AUD patients. Our findings unveiled sex-
based differences in lipid profiles related to EV biogenesis 
that may underlie inflammatory and neurodegenerative 
responses. These methodological advancements have 
deepened our understanding of lipid metabolism and the 
associated regulatory mechanisms, facilitating the identi-
fication of novel lipid targets and the potential discovery 
of sex-specific clinical biomarkers for AUD.
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