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Abstract 

Background Sex differences in language‑related abilities have been reported. It is generally assumed that these dif‑
ferences stem from a different organization of language in the brains of females and males. However, research in this 
area has been relatively scarce, methodologically heterogeneous and has yielded conflicting results.

Methods Univariate and multivariate sex differences and similarities in gray matter volume  (GMVOL) within 18 
essential language‑processing brain areas were assessed in a sex‑balanced sample (N = 588) of right‑handed young 
adults. Univariate analyses involved location, spread, and shape comparisons of the females’ and males’ distributions 
and were conducted with several robust statistical methods able to quantify the size of sex differences and similari‑
ties in a complementary way. Multivariate sex differences and similarities were estimated by the same methods 
in the continuous scores provided by two distinct multivariate procedures (logistic regression and a multivariate 
analog of the Wilcoxon–Mann–Whitney test). Additional analyses were addressed to compare the outcomes of these 
two multivariate analytical strategies and described their structure (that is, the relative contribution of each brain area 
to the multivariate effects).

Results When not adjusted for total intracranial volume (TIV) variation, “large” univariate sex differences 
(males > females) were found in all 18 brain areas considered. In contrast, “small” differences (females > males) in just 
two of these brain areas were found when controlling for TIV. The two multivariate methods tested provided very 
similar results. Multivariate sex differences surpassed univariate differences, yielding "large" differences indicative 
of larger volumes in males when calculated from raw  GMVOL estimates. Conversely, when calculated from TIV‑adjusted 
 GMVOL, multivariate differences were "medium" and indicative of larger volumes in females. Despite their distinct size 
and direction, multivariate sex differences in raw and TIV‑adjusted  GMVOL shared a similar structure and allowed us 
to identify the components of the SENT_CORE network which more likely contribute to the observed effects.

Conclusions Our results confirm and extend previous findings about univariate sex differences in language‑pro‑
cessing areas, offering unprecedented evidence at the multivariate level. We also observed that the size and direc‑
tion of these differences vary quite substantially depending on whether they are estimated from raw or TIV‑adjusted 
 GMVOL measurements.
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Plain language summary 

While it is generally assumed that there is a distinct organization of language in the brains of females and males, stud‑
ies investigating potential sex‑based differences in language‑related neural circuits have been characterized by their 
methodological heterogeneity and yielded inconclusive results. In this study, we explored how the brains of men 
and women differ in a well‑defined network of brain areas essential for basic language functions. We found that there 
are indeed differences in the size of certain brain regions involved in language, with men and women showing vary‑
ing patterns of these differences. Interestingly, the way these differences were observed depended on whether they 
are assessed at the whole network or at individual brain regions. Also, when considering the size of these brain 
regions in relation to overall cranial volume, the differences changed. So, this study highlights that understanding 
these brain differences requires considering different factors, like existing sex differences in cranial size, and looking 
at local effects but also their interactions and relationships in the broader context of functional brain networks.

Highlights

– There are consistent gray matter volume  (GMVOL) differences between males and females in brain regions 
associated with language processing.

– Multivariate analyses at the whole network level reveal larger sex differences in  GMVOL compared to univariate 
comparisons at individual brain regions.

– The direction and magnitude of these univariate and multivariate differences vary significantly depending on 
whether raw or TIV-adjusted  GMVOL is used, emphasizing the importance of considering TIV-related varia-
tions.

– The structure of multivariate sex differences is quite similar when inferred from raw and from TIV-adjusted 
 GMVOL, hence allowing the identification of the brain areas that more significantly contribute to the neuroana-
tomical divergences of this network in females and males.

Introduction
Language is fundamental of nearly every facet of human 
cognition and behavior. It is also frequently cited as a 
domain in which sex differences have been established 
(e.g., [1–4]) and commonly affected in developmental, 
psychiatric, and neurological diseases with a sex-biased 
prevalence and/or prognosis (e.g., [5–7]). While it is 
generally assumed that these behavioral and clinical dif-
ferences arise from a distinct organization of language 
in the brains of females and males, studies investigating 
potential sex-based anatomical and functional differences 
in language-related neural circuits are surprisingly lim-
ited [3, 8] and have yielded inconclusive results [2, 3, 8, 
9]. Thus, for example, there are only two studies that have 
explored possible sex differences in gray matter volume 
 (GMVOL) at the inferior frontal gyrus (IFG) in children, 
and they reported contradictory sex effects (Blanton 
et  al., males > females [10]; Wilke et  al., females > males 
[11]). These and similar conflicting findings might lead to 
the interpretation that there are no sex differences in the 
IFG and in other language-processing brain areas. How-
ever, this lack of consistency in the results of the stud-
ies assessing possible sex differences in brain structure 

and function related to language can, at least in part, be 
attributed to methodological heterogeneity observed 
across these studies [3, 8, 12].

One factor that likely affects the replicability in these 
studies is the lack of consensus regarding which brain 
areas can be considered “language areas” and how exactly 
they should be anatomically parcellated and labeled 
[13, 14]. In this regard, it should be noted that many 
language studies have focused on lateralization and 
have reported sex differences in some brain structures 
located in the right hemisphere. However, these brain 
regions do not appear to be “essential language areas” 
but rather responsible of other processes, such as selec-
tive attention, context/prosody processing, and manipu-
lation verbal material in working memory, which are 
recruited during specific tasks or functions but not oth-
ers [13, 15–17]. Consequently, the involvement of these 
structures and the effects of sex that may be observed 
in them may exhibit lower replicability across studies 
[15, 17, 18]. On the other hand, classical descriptors for 
essential language-processing brain regions in the left 
hemisphere, such as “Broca’s area” or “Wernicke’s area”, 
have been used so liberally that they no longer have clear 
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anatomical meanings, to the point that some research-
ers have proposed discontinuing their use [14, 19, 20]. 
This ambiguity also extends to other anatomical descrip-
tors related to language, which could help explain the 
low replicability of sex effects in these brain regions. For 
example, as mentioned earlier, Blanton et  al. [10] and 
Wilke et al. [11] found opposite sex differences in the left 
IFG, but they also defined this region differently. While 
Blanton et al. [10] pre-defined the IFG as a single region 
of interest (ROI) that included its orbitalis, opercularis, 
and triangularis subregions, Wilke et  al. [11] employed 
voxel-based analyses without predefining any ROI. This 
makes unclear to what extent both studies were examin-
ing a comparable anatomical region despite employing 
the same anatomical label. Another example of how the 
definition of ROIs can affect the identification of sex dif-
ferences in language-processing areas, even when evalu-
ated in a single sample, was provided by Harrington 
et  al. [21]. This neurofunctional study did not identify 
any effect of sex in the activation of the IFG when this 
anatomical region was defined as a single ROI but found 
opposite sex effects in the same participants when sepa-
rately assessing task-induced activations in the three IFG 
subdivisions [21]. Therefore, as these examples illustrate, 
what may appear to be contradictory results when ana-
lyzing the effects of sex in a particular anatomical region 
may actually be different effects in different anatomical 
regions conflated under the same anatomical label, just 
as similar findings may be reported under different ana-
tomical descriptors.

While the parcellation of ROIs is a crucial aspect, it is 
not the only variable that differs and that has probably 
contributed to disparate findings in this research area. 
For instance, the studies of Blanton et al. [10] and Wilke 
et al. [11] also diverged in terms of sample size, statistical 
significance thresholds, and the inclusion of covariates 
of no interest in their analyses. The interplay of sample 
size (often small in such studies [2, 8]) and significance 
thresholds (which have not always been corrected for 
multiple comparisons [12]) is of paramount importance 
because it essentially determines the likelihood of find-
ing a statistically significant effect as well as their reli-
ability/ reproducibility [22, 23]. Furthermore, although it 
is known that language abilities and its neural underpin-
nings can be affected by variables such as age, handed-
ness, educational and socio-economic level [12, 24–26], 
not all studies have statistically controlled for all these 
covariates. Similarly, the impact of male–female differ-
ences in total intracranial/ brain volume (TIV/TBV) is of 
major importance when exploring volumetric sex differ-
ences, but only some studies have taken into account and, 
among those that did, some (e.g., [11, 27–29]) have used 
simple proportions or other methods that may introduce 

biases leading to larger relative gray matter (GM) vol-
umes in females [30–33].

The present study was designed to address these limita-
tions and describe the sex similarities and differences in 
 GMVOL at the brain areas subserving basic language func-
tions. Specifically, we utilized a large (n = 588) sample of 
right-handed young adults with no significant differences 
in age, handedness scores, overall cognitive status, edu-
cational or socio-economic levels. We conducted our 
assessments using both raw  GMVOL estimates and after 
adjusting these estimates with the well-validated [30, 31, 
33] power-corrected proportions method [34]. Further-
more, our ROIs were selected, parcellated, and labeled 
according to the only available anatomical atlas specifi-
cally constructed to include essential language areas and 
networks in right-handed healthy individuals (the SEN-
SAAS atlas; [13]). Within this atlas, we focused on the 
so-called SENT_CORE network (see Table 1 and Fig. 1), 
consisting of 18 ROIs of the left hemisphere that have 
been consistently reported in meta-analyses of healthy 
individuals mapped during language tasks [20, 35] and 
that lead to aphasia when damaged [13, 36]. Lastly, given 
that these areas form a coherent functional network, 
we conducted both univariate and multivariate analy-
ses using robust statistical methods capable of providing 
meaningful effect sizes for individual network compo-
nents as well as the entire network [37].

Materials and methods
Participants
The present study was conducted using data from the 
1,200 Subject Release of the Human Connectome Project 
(HCP), which includes structural magnetic resonance 
imaging (MRI) data from 1,113 healthy young adult par-
ticipants (606 females and 507 males) [38]. From this 
dataset, a final sex-balanced sample of 588 right-handed 
participants (294 females, 294 males) was extracted using 
the following procedure: (1) because the SENSAAS atlas 
has been constructed for right-handed individuals, par-
ticipants with scores ≥ 50 in the Edinburgh Handedness 
Inventory were preselected (N = 931, 512 females, 410 
males). (2) From this pool of subjects, a maximum of two 
individuals per family was randomly selected (N = 741, 
413 females, 328 males). (3) Eleven and five individu-
als were excluded because of missing values in scores of 
total cognition adjusted by age (CogTotalComp_AgeAdj) 
and socio-economic level (SSAGA_income), respec-
tively. (4) On the remaining subjects, the downSample 
function of the caret package for R [39] was used to ran-
domly select the same number of females and males so 
that both classes had the same frequency as the minor-
ity class in each age range defined in the variable "Age 
range" of the HCP dataset (specifically, 56 individuals of 
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22–25 years, 144 individuals of 26–30 years, 92 individu-
als of 31–35 years, and 2 individuals over 36 years).

As indicated by their medians and inter-quartile 
ranges (IQR), the 294 female and 294 male participants 
finally selected had similar ages (medians = 29.05 and 

Table 1 The SENT_CORE network

The table displays the ROI names, abbreviations, and MNI space coordinates of the mass center of 18 local volumes of the SENT_CORE network of the SENSAAS atlas. 
The last column contains some of the terms more tightly associated to the anatomical coordinates of each of these areas according to Neurosynth as well as the 
z‑score value obtained in the meta‑analytical association test. Note that ROIs are named and abbreviated as in the AICHA atlas because this is the atlas that was used 
to construct the SENSAAS atlas, although, as mentioned in the main text, there is a lack of consensus in the labeling of language‑processing areas and some these 
ROIs can be found under other names (e.g., F2_2 is named F3opd in [35] and mFG in [20]; see [13] for details)

ROI name
(AICHA atlas)

Abbreviation X
(mm)

Y
(mm)

Z
(mm)

Associated terms

S_Precentral‑4 prec4  − 42.2 0.7 49.9 Sentence (9.01), comprehension (8.12), language (7.65)

G_Frontal_Sup‑2 F1_2  − 11.9 46.5 41.4 Inferences (5.82), medial prefrontal (5.62), social (4.88)

S_Inf_Frontal‑2 f2_2  − 43.1 14.8 29.4 Semantic (10.85), phonological (9.21), lexical (6.76), sentence (5.96)

G_Frontal_Inf_Tri‑1 F3t  − 49.4 25.6 4.7 Semantic (12.31), sentences (10.89), words (9.76)

G_Frontal_Inf_Orb‑1 F3O1  − 42.2 30.5  − 16.9 Semantic (9.19), words (6.86)

G_Insula‑anterior‑2 INSa2  − 33.8 16.8  − 12.7 Olfactory (7.93), amygdala/hippocampus (5.99), salience network (4.17)

G_Insula‑anterior‑3 INSa3  − 33.7 23.7 0.6 Gain (10.18), difficulty (6.44), orthographic (4.48)

G_Temporal_Sup‑4 T1_4  − 58.7  − 23.3 3.7 Auditory (22.09), speech (16.77), listening (16.06)

G_Temporal_Mid‑3 T2_3  − 61.0  − 35.0 − 4.8 Comprehension (8.64), sentence (7.98), semantic (5.7), syntactic (5.14)

G_Temporal_Mid‑4 T2_4  − 53.1  − 59.4 7 Temporal (7.24), Temporal sulcus (7.09), language (4.21)

S_Sup_Temporal‑1 STS1  − 49.7 14  − 21.5 Comprehension (9.03), sentences (8.26), semantic (7.92), syntactic (4.25)

S_Sup_Temporal‑2 STS2  − 54.9  − 7.2  − 12.8 Sentences (9.85), comprehension (8.87), semantic (7.46), syntactic (5.89)

S_Sup_Temporal‑3 STS3  − 54.7  − 33.0  − 1.7 Sentences (10.95), language (10.03), comprehension (8.57), syntactic (6.28)

S_Sup_Temporal‑4 STS4  − 56.5  − 48.4 13.4 Sentences (10.21), comprehension (8.53), speech (8.22)

G_SupraMarginal‑7 SMG7  − 55.2  − 51.7 25.5 Theory mind (6.7), mind (6.1), mind tom (5.49)

G_Angular‑2 AG2  − 37.5  − 70.4 39.5 Retrieval (9.03), semantic (6.29)

G_Supp_Motor_Area‑2 SMA2  − 10.6 18.2 63.1 Personal (5.84), autobiographical (4.86), mentalizing (3.91)

G_Supp_Motor_Area‑3 SMA3  − 7.2 7.6 65.6 Reappraisal (6.22), comprehension (6.1), language (5.5)

Fig. 1. The SENT_CORE network. The SENT_CORE network (in yellow) is the larger of the three language‑related networks included in the SENSAAS 
atlas developed by Labache et al. [13], and it includes 18 of its 32 regions. The SENT_CORE network (also referred as the LANG network) comprises 
the cortical areas essential for sentence processing and which lesion causes aphasia. The full names corresponding to the abbreviations used in this 
figure plus additional information are provided in Table 1
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28.45 years, p = 0.118; IQR = 6 and 4), handedness (medi-
ans = 83.06 and 86.11, p = 0.175; IQR = 15 and 16), over-
all cognition (medians = 113.72 and 115.25, p = 0.441; 
IQR = 27.97 and 28.57), educational level (medians = 16 
and 15.99, p = 0.288; IQR = 2 and 2), and socio-economic 
level (as derived from reported income; medians = 5.88 
and 5.79, p = 0.755; IQR = 2 and 2). Moreover, none of 
these variables showed a statistically significant corre-
lation with the raw or TIV-corrected volumes of the 18 
brain regions defined in the SENT_CORE network of the 
SENSAAS atlas (Additional file  1: Table  S1A-2). There-
fore, it might be reasonably assumed that the sex differ-
ences and similarities estimated in the present study were 
not affected by these potential confounders.

On the other hand, the selected sample included 24 
and 25 pairs of monozygotic and dizygotic twins (8.16% 
and 8.5% of the selected sample), proportions that are 
substantially lower than those observed in the original 
HCP dataset (24.21% and 26.78%, respectively).

Imaging and data preprocessing
MRI acquisition and images preprocessing
The MRI acquisition details for the HCP-sample can be 
found in the reference manual of the S1200 release of the 
HCP (https:// www. human conne ctome. org/ stora ge/ app/ 
media/ docum entat ion/ s1200/ HCP_ S1200_ Relea se_ Refer 
ence_ Manual. pdf ).

Brain images were preprocessed with  the CAT12.2 
toolbox (http:// www. neuro. uni- jena. de/ cat/, version 
r1290) of the SPM12 (http:// www. fil. ion. ucl. ac. uk/ spm/ 
softw are/ spm12/, version 7219) software. CAT12 pre-
processing was conducted according to the standard 
default procedure suggested in the manual (https:// 
neuro- jena. github. io/ cat12- help/). Briefly, it includes the 
following steps: (1) segmentation of the images into gray 
matter, white matter, and cerebrospinal fluid; (2) registra-
tion to a standard template provided by the International 
Consortium of Brain Mapping (ICBM); (3) DARTEL 
normalization of the gray matter segments to the MNI 
template; (4) modulation of the normalized data via the 
“affine + non-linear” algorithm; and (5) data quality check 
(in which no outliers or incorrectly aligned cases were 
detected). Images were not smoothed because we were 
only interested in the modulated images.

After applying this procedure, which does not include 
any correction for overall head size, voxels were mapped 
into the 18 regions of the SENT_CORE network of the 
SENSAAS atlas (see Fig.  1 and Table  1; for a complete 
description, see [13]) by calculating the total gray matter 
volume for each region of interest (ROI) and participant 
via a MATLAB script (https:// www0. cs. ucl. ac. uk/ staff/g. 
ridgw ay/ vbm/ get_ totals.m). TIV was estimated using 
native-space tissue maps obtained in the segmentation 

step. More specifically, TIV was calculated as the sum of 
gray matter, white matter, and cerebrospinal fluid total 
values multiplied by voxel size and divided by 1,000 to 
obtain a milliliter (ml) measurement.

TIV adjustment: the raw and the PCP datasets
Previous studies have shown that the estimates of univar-
iate and multivariate sex differences are largely depend-
ent on TIV variation, but also that not all the currently 
used methods are equally effective and valid for remov-
ing TIV-variation [30, 31, 40]. Therefore, in the present 
study, all analyses were conducted twice on the same 
subjects, without introducing any TIV adjustment (“raw” 
dataset) and after removing TIV variation with the well-
validated [34] power-corrected proportions (PCP) method 
(PCP dataset). The PCP method improves the traditional 
proportions approach by introducing an exponential cor-
recting parameter in the denominator. Thus the adjusted 
volume for a specific brain region is calculated as 
 VOLadj = VOL/TIVb, where the b parameter corresponds 
to the slope value of the LOG(VOL) ~ LOG(TIV) regres-
sion line calculated for the entire sample of participants 
[34].

To enhance comparability and avoid possible distor-
tions due to their different ranges [41, 42], the volu-
metric scores of the raw and the PCP datasets were 
transformed to robust z-scores, using the formula: 
robust z-score = 0.6745(xi–median)/median absolute 
deviation. This formula includes the appropriate rescal-
ing coefficient (0.6745), so the median absolute devia-
tion is put in the same scale than the normal standard 
deviation, so the obtained scores can be numerically 
interpreted as conventional z-scores [43].

Statistical analyses
All statistical analyses were conducted based on the raw 
and the PCP datasets using different packages for R [44]. 
Except noted otherwise, p-values were adjusted for mul-
tiple comparisons using the FDR-method [45], and only 
effects remaining statistically significant after this cor-
rection are discussed in the main text (although unad-
justed and adjusted p-values for all effects are provided 
in Additional file 1). In addition to statistical significance, 
descriptive methods and measures of effect size were 
used that are based on robust, non-parametric tech-
niques that do not assume normality nor homoscedas-
ticity [12]. The functions used are described in [12] and 
included in the Rallfun-v41 file, which is freely accessible 
at https:// osf. io/ xhe8u/.

Univariate analyses
To offer a complete perspective of the univariate differ-
ences and similarities between females and males in the 

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://neuro-jena.github.io/cat12-help/
https://neuro-jena.github.io/cat12-help/
https://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
https://www0.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
https://osf.io/xhe8u/
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raw and in the PCP datasets, five complementary strate-
gies were used. More specifically:

1) Differences between the females’ and males’ distribu-
tions of the robust z-scores corresponding to each of 
the 18 brain areas included in the SENT_CORE net-
work were globally estimated using a heteroscedastic 
analog of the Wilcoxon–Mann–Whitney (WMW) 
test.

2) The overall degree of similarity between these dis-
tributions was quantified using the η overlap index, 
which measures the area intersected by two probabil-
ity density functions but, conversely to other overlap 
measures, η(the sample estimate of η) can be calcu-
lated in the absence of symmetry, unimodality, or any 
other distributional assumption [46]. In the present 
study, kernel density estimation (KDE) and η̂  were 
obtained through the boot.overlap (1000 repetitions) 
function of the overlapping package for R [47].

3) The decile values of these distributions were com-
pared with the qcomhd function (see [37]), which 
uses the Harrell–Davis quantile estimator in con-
junction with a percentile bootstrap approach (4,000 
repetitions) to calculate the deciles, their between-
groups differences, and their 95% confidence inter-
vals (CI) while adjusting the significance level for 
multiple comparisons. Because these calculations 
were conducted on robust z-scores, the obtained dif-
ferences between deciles (hereinafter denoted as d̂ ) 
provide a standardized effect size index which can be 
numerically interpreted in the same way that Cohen’s 
d values. Therefore, the size of these differences were 
qualified as "large", "medium", "small", or "negligible" 
according to the benchmarks commonly used to 
characterize Cohen’s d values [48]

4) The cidv2 function (see [12]) was employed to cal-
culate the probability of superiority (PS). The PS is 
defined as P(A > B), the probability that a randomly 
sampled member of group A will have a higher score 
than the score attained by a randomly sampled mem-
ber of group B [49]. A 95% confidence interval for 
Cliff ’s delta value [50], which is P(A > B)-P(A < B), was 
computed and its statistical significance was tested. 
The size of the obtained Cliff ’s delta values were 
qualified as "large", "medium", "small", or "negligible" 
according to the benchmarks provided in [51]. More-
over, to add further perspective, we also calculated 
Cohen’s U3 [48, 49], another dominance effect size 
index that quantifies the percent of cases of group 
A that have scores larger than the median score of 
group B. Although this index is often derived from 
a formula assuming normality [48, 52], in the pre-
sent study U3 was empirically calculated by directly 

counting the cases of group A with larger scores than 
the median score of group B and their non-paramet-
ric 95% CI were estimated through the bootstrap per-
centile interval (2,000 repeats) with the boot.ci func-
tion of the boot package [53].

5) Possible sex differences in scatter, skewness, and kur-
tosis were also assessed. Differences in scatter were 
evaluated with the function IQR2g.W that employs 
the Harrell–Davis quantile estimator in conjunction 
with a Wald-type test to compare the inter-quartile 
ratios of two groups (see [37]). Differences in skew-
ness and kurtosis were assessed with the function 
pb2gen that uses a percentile bootstrap method (2000 
repeats) to estimate the statistical significance of the 
difference between any estimates of two independent 
samples [37].

Previous studies have shown that estimates of raw 
 GMVOL  are directly related to TIV [34, 54, 55] and that 
the strength of these relationships (slope values and/ or 
 R2 of linear TIV-VOLraw  regressions) is correlated with 
the size of the sex differences found in these  VOLraw [30, 
31]. Conversely,  VOLadj with appropriate methods no 
longer show any relationship with TIV, and the size of 
the sex differences in  GMVOL  are uncorrelated with the 
TIV-VOLadj  regression parameters [30, 31, 34]. There-
fore, in the present study, we employed Spearman’s rho 
to evaluate the extent the univariate sex differences 
observed in the raw and in the PCP datasets were related 
to the amount of variance explained by TIV  (R2) in each 
 VOLraw/VOLadj of these datasets.

Multivariate analyses
As initially proposed by Lippa and Connelly [56], we used 
classification probabilities as a continuous dependent 
variable on which individual and between-group multi-
variate similarities and differences can be quantified with 
a variety of effect size indexes (for a recent example, see 
[40]). More specifically, in the present study, we utilized 
the lrm, validate, calibrate and pentrace functions of 
the rms package [57] to implement, bootstrap-validate, 
and calibrate two L2-penalized logistic regression (LR) 
models. These LR models aimed to predict sex catego-
ries from the 18 regional brain volumes included in the 
SENT_CORE network in the raw and in the PCP data-
sets, respectively. The sex category used as reference in 
each of these two LR models was chosen according to 
the direction of the observed univariate differences of the 
corresponding dataset, so higher Pclass scores were asso-
ciated with larger raw or TIV-adjusted  GMvol.

From the fitted models, optimism-corrected mod-
els’ discrimination indexes (Nagelkerke’s R2, Somers’ 
Dxy, the C-index) as well as individual classification 
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probabilities (hereinafter referred to as Pclass scores) 
were obtained. The univariate vector of Pclass scores 
was analyzed using the tests and metrics described in 
Sect. 2.3.1. However, in this case, depictions of the males 
and females’ cumulative density functions (CDFs) were 
also included, making it possible to visually illustrate 
how males and females compare between them in three 
complementary ways: 1) the proportion of cases in each 
group with Pclass scores equal to or lower/ higher than 
any possible cutoff can be directly estimated (e.g., 0.5 to 
estimate the achieved accuracy, an effect size typically 
employed in classification studies); 2) the proportion of 
individuals of one group that have Pclass values equal 
to or lower than a given proportion of individuals of the 
other group (e.g., the median to obtain the Cohen’s U3 
value); and, 3) by comparing the Pclass values at specific 
quantiles (the decile values) of the females/ males’ distri-
butions. In addition, because it offers a complementary 
perspective to that offered by the males-females com-
parisons previously described (see [58]), the distribution 
of all pairwise differences between females and males 
was calculated and described in terms of its deciles and 
the percent of differences indicating larger  GMVOL in the 
reference sex category in each dataset. Of note, because 
Pclass scores range between 0 and 1 the size of the group 
differences calculated on this dependent variable can be 
gauged in terms of their percent to the maximum possi-
ble (POMP scores, [59]).

The results of the analyses conducted with Pclass scores 
were validated by comparing them to those obtained with 
an alternative method with different mathematical foun-
dations. More specifically, multivariate sex differences 
and similarities were re-assessed using the multivari-
ate projection-type analogue of the Wilcoxon–Mann–
Whitney test implemented by the mulwmwv2 function 
[37]. To our knowledge, this method has not been pre-
viously employed to assess multivariate brain differences 
between females and males, but, as described in [60], this 
method is specifically designed to compare two groups in 
terms of P(A < B) on a projection of the multivariate data. 
Thus, in contrast with most classic multivariate statistics 
(e.g., Hotelling’s T2) and with classification-based proce-
dures, it does not incorporate any arbitrariness about the 
direction of the observed between-groups differences. 
Moreover, the mulwmwv2 function does not only pro-
vide a PS estimate (and its 95% CI that allows testing the 
null hypothesis of P(X < Y) = 0.5 at p < 0.05), it also makes 
it possible to obtain and  R2 effect size and the individual 
distances to the multivariate center which can be used 
as individual continuous scores to assess within- and 
between-sex similarities and differences with other sta-
tistical methods. Therefore, in the present study, some 
of the tests and metrics described in Sect. 2.3.1 (overlap, 

PS, Cliff ’s delta, and Cohen’s U3) were applied to these 
distance-based scores and the obtained results were 
compared to those gathered when using Pclass scores. 
In addition, we estimated Q [61], a classification-based 
effect size similar to the accuracy obtained from the LR 
models but that can be calculated from any continuous 
measurement and that allowed an additional compari-
son of the magnitude of the multivariate sex differences 
calculated from the distance-based and the Pclass scores. 
Finally, the possible relationships between these dis-
tances and TIV values and Pclass scores were evaluated 
using the rhohc4bt function [37], which estimates Pear-
son’s correlations using a bootstrap-t method in conjunc-
tion with the HC4 estimator.

Finally, the architecture of the fitted LR models was 
explored by building up their corresponding nomograms 
and by correlational analyses involving the LR coeffi-
cients. Nomograms are graphical calculating devices that 
consist of a series of scales (one by each variable included 
in the model) whose length is proportional to its relative 
importance to the final model. Although nomograms are 
ordinarily used to predict individual classification prob-
abilities, in this case they were used to describe how 
the females’ and males’ scores in these variables added 
up into a final composite from which Pclass scores are 
non-linearly derived. To assess whether Pclass scores 
adequately recapitulate the identified univariate effects, 
the relationship between the coefficient values in these 
models and the size of the univariate differences (as esti-
mated from the medians’ differences, the Cliff ’s delta, 
and the Cohen’s U3 values) in each predictor in the raw 
and in the PCP dataset was assessed with the Spearman’s 
rho correlation index. The absolute value of the Spear-
man’s rho correlation index (denoted as ( 

∣∣rho
∣∣ ) was also 

employed to quantify whether the regression coefficients 
in these two LR models had a similar ordering (that is, 
to assess till which extent the same brain features con-
tributed the most in both models). These nomograms 
were also compared to others obtained after fitting LR 
models that incorporated TIV as an additional predic-
tor. This last comparison served to compare the relative 
importance of TIV to that of the rest of predictors, and 
also provided an unprecedented experimental confirma-
tion of the adequacy of the PCP method when aiming to 
statistically control the influence of TIV-variation in mul-
tivariate scenarios.

Results
Univariate sex differences and similarities
Males exhibited larger raw  GMvol than females in the 18 
areas comprised in the SENT_CORE network (Fig.  2). 
Thus, the males’ distributions of the robust z-scores of 
these raw volumes were significantly shifted towards 
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higher values (median shift = 0.78z, p < 0.001 in all cases; 
Additional file 1: Table S1B), so in all these brain areas the 
majority of males had  GMvol scores that were larger than 
the females’ median (Cohen’s U3 range = 65.31–92.52%) 
and the males and females’ distributions exhibited gen-
erally “low” levels of overlap (median = 49.21%; see Fig. 2 
and Additional file 1: Table S1C). Moreover, statistically 
significant and, in most cases, “large” M > F differences 
were found at all decile values of these 18 distributions 
(range d̂ = 0.27–1.20, median d̂ = 0.80, p < 0.01 in all cases; 
Fig. 2 and Additional file 1: Table S1D). Accordingly, the 
probability that a randomly picked male would exhibit 
a larger  GMvol score than a female (PS-M) was found to 
be larger than its counterpart (PS-F) in each and every 
brain area, hence resulting in Cliff ’s delta values spanning 
between 0.22 (T2_3) and 0.62 (STS2) with a median value 
of 0.47 (p < 0.001 in all cases; Fig. 2 and Additional file 1: 
Table  S1E). In contrast, across all the brain areas con-
sidered, females and males seemed to exhibit a similar 
shape and spread as no statistically significant differences 
in their respective skewness, kurtosis, or IQR estimates 
were found (Additional file 1: Table S1F).

Taken together, these results indicate that males and 
females exhibit widespread and “large” differences in 
their respective amounts of raw  GMvol in the 18 areas of 
the SENT_CORE network. However, as summarized in 
Table 2, the sizes of the observed sex differences in local 
 GMvol were highly correlated with the variance accounted 
for by TIV in each of these 18 brain areas (see  R2 and 
other regression outputs in Additional file 1: Table S1G), 
hence indicating that differences in raw  GMvol are largely 
dependent on gross morphology differences between 
females and males.

Controlling for TIV-related variation resulted in a sup-
pression of most, but not all, of the previously observed 
sex differences in local  GMvol. Thus, in the PCP dataset 
(Fig. 3), the robust z-scores’ distributions of females and 
males were very much alike and WMW tests revealed sta-
tistically significant differences after p-values correction 
in just 2 brain areas (T2_3 and F2_2), in both of which 
females exhibited slightly larger scores than males (esti-
mated shifts: 0.28 and 0. 25z, respectively; p < 0.05 in both 
cases; Additional file 1: Table S2B). Accordingly, Cohen’s 

U3 values were close to the 50% in all brain regions and 
all the females and males’ distributions exhibited a “large” 
degree of mutual overlap (median = 87.42%, see Fig.  3 
and Additional file 1: Table S2C). As a result, few statis-
tically significant differences were found when compar-
ing the deciles of these distributions (Fig.  3, Additional 
file 1: Table S2D). These differences were again “small” in 
size and their direction varied for different brain areas. 
Thus, F > M differences were predominant and specifi-
cally found in all deciles’ values of T2_3, in the D2-D9 
values of F2_2, and the D3 value of SMA2 (range d̂ = 
− 0.2, − 0.39; median = − 0.28), whereas M > F differences 
where only found for the D9 ( ̂d = 0.39) and the D2 ( ̂d = 
0.27) values of STS1 and STS2, respectively (Fig. 3, Addi-
tional file  1: Table  S2D). Accordingly, in most areas the 
probability that a randomly picked female (PS-F) would 
exhibit a larger  GMvol score than a male was similar to its 
counterpart PS-M in most brain areas, and, once again, 
only in T2_3 and F2_2 the difference between PS-M and 
PS-F achieved statistical significance (Cliff ’s delta = 0.16 
and 0.14, respectively; p < 0.05; Fig.  3, Additional file  1: 
Table  S2E). Finally, no statistically significant sex dif-
ferences in shape (skewness and kurtosis) nor spread 
were observed in any brain region (Additional file  1: 
Table S2F).

Taken together these results suggest that, when the 
contribution of gross morphology differences between 
females and males to local brain volumes is ruled out, 
females and males are very similar regarding their  GMvol 
in the majority of the brain regions of the SENT_CORE 
network. Thus, only in two brain areas (T2_3 and F2_2) 
“small” but consistent F > M differences were confirmed 
through distinct statistical approaches. As could be 
expected, the size of these differences was uncorrelated 
with TIV (Table 2) and TIV did not explain any variance 
in these brain sites (Additional file 1: Table S2E).

Multivariate sex differences and similarities
Estimating multivariate sex differences and similarities 
from classification probabilities
To evaluate the possible multivariate sex differences 
and similarities in the SENT_CORE network as a whole 
in the raw and PCP datasets, the information of its 18 

(See figure on next page.)
Fig. 2. Univariate sex differences and similarities in the raw dataset. Panels depict the distributions of females (red) and males (blue) z‑scores 
and report the percent of mutual overlap and the estimated Cohen’s U3 values in each of the 18 brain areas included in the SENT_CORE network. 
Under these density‑based depictions: the tenths (deciles) of the same distributions of males (top) and females (bottom) are displayed as colored 
rectangles, whereas black solid segments are used to denote statistically significant differences in the values of the deciles that define these tenths. 
At the top of the panels, the probability of superiority of males (blue) and females (red) and the corresponding Cliff’s delta statistic are reported 
(including the associated p‑value only in those cases in which it remained statistically significant after multiple comparisons correction) (M = males, 
F = females, PS = probability of superiority, O = overlap)
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Fig. 2. (See legend on previous page.)
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brain regional components was condensed into a uni-
dimensional metric space defined by the classification 
probabilities (Pclass scores) provided by two independ-
ent logistic regression models. The reference category 
of each model was chosen according to the direction of 
the observed univariate differences of each dataset, so 
higher Pclass scores were associated with larger amounts 
of raw or TIV-adjusted  GMvol, respectively (see details 
in Sect. 2.3.2). The fitted LR models identified a statisti-
cally significant relationship between the predictors and 
sex categories in both the raw (χ2

(16.36) = 324.34, p < 0.001) 
and the PCP (χ2

(14.12) = 59.48, p < 0.001) datasets. The 
discrimination indexes associated with these LR models 
indicated that multivariate sex differences would prob-
ably be “large” in the raw dataset (R2 = 0.55, C = 0.89, 
Dxy = 0.79) but “small” in the PCP dataset (R2 = 0.11, 
C = 0.68, Dxy = 0.37). This initial inference was confirmed 
by all subsequent analyses.

Figure  4A displays the distributions of the males 
and females’ pclass-scores obtained when using 
the raw amounts of  GMvol. Both males and females 
exhibited highly skewed and opposing distributions 

 (skewnessM = −  0.99,  skewnessF = 1.01, p < 0.001), with 
most of the females accumulating near the lower bound 
of the Pclass continuum, and most of the males accu-
mulating near the upper bound. These distributions 
did not seem to differ in kurtosis  (kurtosisM = 3.17, 
 kurtosisF = 3.10, p = 0.905) or spread  (IQRM = 0.35, 
 IQRF = 0.32, p = 0.417) but they clearly did in location, 
hence exhibiting a “small” degree of mutual overlap 
(25.13%). Thus, the probability that a randomly chosen 
male would have a Pclass score higher than that of ran-
domly chosen female was “large” (PS-M = 0.89) and sig-
nificantly higher than its counterpart (PS-F = 0.11; Cliff ’s 
delta = 0.78, p < 0.001; Additional file 1: Table S3A).

In contrast, when Pclass scores were calculated from 
TIV-adjusted  GMvol estimates (PCP dataset; Fig.  4E), 
the males and females’ Pclass-scores were much 
more symmetrically distributed  (skewnessM = −  0.16, 
 skewnessF = 0.16, p = 0.298), and both of them occupied 
the most central regions of the Pclass continuum with-
out apparent differences in kurtosis  (kurtosisM = 2.77, 
 kurtosisF = 2.61, p = 0.508), or spread  (IQRM = 0.16, 
 IQRF = 0.16, p = 0.744) and showing just slight differences 

Table 2 Influence of TIV in the observed differences and similarities in the raw and in the PCP datasets

Spearman’s rho correlations were calculated between the proportion of variance explained by TIV  (R2) and the estimates of the sex differences/similarities (differences 
at each decile value, Cliff’s delta, Cohen’s U3, and percent of overlap) obtained in the raw and in the PCP dataset

Raw dataset PCP-dataset

Statistic rho p value fdr-
p value

Statistic rho p value fdr-
p value

Quantile Quantile

0.1 0.511 0.003 0.004 0.1 0.273 0.024 0.221

0.2 0.589 p < 0.001 0.002 0.2 0.049 0.126 0.283

0.3 0.612 p < 0.001 0.002 0.3 0.046 0.173 0.283

0.4 0.631 0.001 0.002 0.4 0.073 0.189 0.283

0.5 0.616 p < 0.001 0.002 0.5 0.030 0.352 0.352

0.6 0.653 p < 0.001 0.002 0.6 0.036 0.344 0.352

0.7 0.593 0.002 0.003 0.7 0.009 0.334 0.352

0.8 0.573 0.004 0.005 0.8 0.123 0.094 0.282

0.9 0.120 0.120 0.120 0.9 0.337 0.071 0.282

Cliff’s delta 0.697 0.001 0.001 Cliff’s delta − 0.001 0.996 0.996

Cohen’s U3 0.671 0.002 0.002 Cohen’s U3 − 0.053 0.836 0.836

Overlap ‑0.686 0.002 0.002 Overlap − 0.179 0.478 0.478

Fig. 3 Univariate sex differences and similarities in the PCP dataset. Panels depict the distributions of females (red) and males (blue) z‑scores 
and report the percent of mutual overlap and the estimated Cohen’s U3 values in each of the 18 brain areas included in the SENT_CORE network. 
Under these density‑based depictions, the tenths of the same distributions of males (top) and females (bottom) are displayed as colored rectangles, 
whereas black solid segments are used to denote statistically significant differences in the values of their deciles. At the top of the panels, 
the probability of superiority of males (blue) and females (red) and the corresponding Cliff’s delta statistic are reported (including the associated 
p‑value in those cases in which it remained statistically significant after multiple comparisons correction) (M = males, F = females, PS = probability 
of superiority, O = overlap)

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 Multivariate sex differences and similarities estimated from Pclass scores in the raw and PCP datasets. A and E Scaled density function 
for the males (blue) and females’ (red) distributions of the Pclass scores in the raw and PCP datasets. Within each panel, the percent of overlap 
(O) as well as the probabilities of superiority for males and females (PS) as well as the p‑value associated and an R2 effect size index derived 
from the comparison of these PS values using Cliff’s delta are provided. Panels B and F Cumulative density functions (CDF) of Pclass scores of males 
(blue) and females (red), along with the tenths of these distributions (colored rectangles), the decile values (vertical lines). The size of the estimated 
sex differences in these deciles is also included (see further details of these comparisons in Additional file 1: Table S3C). C and G Scaled density 
functions of all the pairwise differences between females and males. Within each density plot, two different areas are colored according 
to the direction of these differences (F > M, red; M > F, blue) and, at the top of the panel, the percent of pairwise differences favoring the reference 
sex category (males in the raw dataset, females in the PCP dataset) as well as its 95% CI are included. Each of these two panels also includes 
the CDFs of pairwise differences’ distributions (black line), the tenths of these distributions (colored rectangles) and the size of the estimated 
deciles’ differences. D and H Scatterplots depicting the bivariate relationship (quantified by a robust analog of Pearson’s r correlation index) 
between the Pclass and TIV scores (M = males, F = females)
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in location. Consequently, both distributions exhibited 
a substantial degree of overlap (60.03%) between them, 
and the PS of the reference sex category (in this case, the 
females) was significantly different but not much larger 
than that of the alternative sex category (PS-F = 0.68, 
PS-M = 0.32; Cliff ’s delta = 0.36, p < 0.001; Additional 
file 1: Table S3A).

To delve deeper into the characterization of these 
multivariate sex differences, Fig. 4B displays the empiri-
cal cumulative distribution functions (CDFs) of the 
males’ and females’ Pclass-scores obtained in the raw 
dataset, along with their respective decile values. This 
figure makes it possible to compare females and males 
in three complementary ways (see Sect.  2.3.2), lead-
ing to the following main observations: 1) 80.61% of 
females and 82.93% of males were below and above the 
0.5 cutoff value classically used in classification stud-
ies, then resulting in a classification accuracy of 81.77%; 
2) 96.26% of males had Pclass scores that were higher 
than or equal to the median Pclass score of the females 
(Cohen’s U3; Additional file 1: Table S3B); 3) Statistically 
significant M > F differences were found at all decile val-
ues (range d̂ = 0.32–0.6, p < 0.001 in all cases; Additional 
file  1: Table  S3C). Accordingly, when all M-F pairwise 
differences were calculated (Fig.  4C), M > F differences 
were far more frequent (89%) and expectable (86–92%) 
than F > M differences and, in the majority of the cases, 
these observed differences were “moderate” to “large” in 
size (e.g., 50% of the differences had a size equal of larger 
than 50% of the maximum possible). However, individual 
Pclass scores were highly correlated to TIV (rho = 0.80, 
p < 0.001; Fig. 4D), hence suggesting that sex differences 
estimated from these Pclass scores could be largely 
driven by the differences between males and females in 
TIV values.

In contrast, as shown in panels F-G of Fig. 4, the same 
comparisons indicated that when TIV-related variation 
was statistically controlled (see Panel H of the same fig-
ure), multivariate sex differences were much smaller. 
More specifically: (1) the percent of correctly classified 
cases dropped to 63.09%; 2) Cohen’s U3 and Cliff delta 
values were substantially smaller than those observed 
in the raw dataset (75.51% vs. 96.26% and 0.36 vs. 0.78, 
respectively; Additional file 1: Table S3A, B); (3) although 
statistically significant F > M differences were observed 
in all decile values of the Pclass distribution, the size 
of these differences” ranged between 0.07 and 0.09 
(p < 0.001 in all cases; Additional file 1: Table S3C). As a 
result, the distribution of all pairwise differences between 
females and males was quite symmetrical and centered 
close to the zero value (0.08), hence indicating that F > M 
differences were just slightly more frequent (68%) and 
expectable (64–72%) than M > F differences. Moreover, 

most of the observed pairwise differences were “small” in 
size (e.g., 80% of the observed differences had a size that 
was equal to or less than 20% of the maximum possible).

Taken together, these results indicate that, when the 
SENT_CORE network is taken as a whole, males have 
larger amounts of raw  GMvol than females but also that, 
as already observed when the 18 brain areas composing 
this network were analyzed separately, these volumetric 
measures (and, therefore, their mutual differences) are 
largely driven by the existing M > F differences in TIV. 
In fact, when statistically controlling for TIV-variation, 
larger relative amounts of  GMvol in females should be 
expected although the observed multivariate differences 
should be much smaller.

Validating and interpreting the multivariate sex differences 
and similarities estimated from classification probabilities
To validate and gain additional insight on the multi-
variate sex differences in the SENT_CORE network 
estimated from Pclass scores, additional analyses were 
conducted. Firstly, multivariate sex differences and simi-
larities were re-assessed using a very different statistical 
approach sustained on a projection pursuit method that 
unambiguously assesses the direction of these differences 
and allow estimating their size with the same indexes 
used for Pclass scores (see details in Sect. 2.3.2 and [60]). 
The results of this re-assessment are summarized in Fig. 5 
and, as it can be readily observed, they confirmed the 
correctness of the direction imposed to those obtained 
from Pclass scores and provided very similar estimates 
in terms of size (see Table 3). Moreover, individual scores 
based on projected distances calculated from raw, but 
not from PCP-adjusted, GMvol showed a similar depend-
ency on TIV values than Pclass scores (r = 0.87, p < 0.01 
and r < 0.01, p > 0.970, respectively; Fig. 5C, D). Addition-
ally, in both the raw and the PCP datasets, individual 
projected distances were significantly correlated with 
individual Pclass scores (r = 0.85, p < 0.01 and r = 0.84, 
p < 0.01, respectively; Fig.  5E, F). Taken together, these 
results suggest that, despite their different mathemati-
cal foundations, Pclass scores and projected distances 
capture the same multivariate reality and provide nearly 
identical estimates of the multivariate sex differences and 
similarities in the SENT_CORE network.

Secondly, to obtain further insight on the structure of 
the multivariate sex differences estimated from Pclass 
scores, the nomograms of the LR models fitted in the 
raw and PCP datasets were built up (Fig.  6A, B). These 
nomograms illustrate the relative contribution of each 
brain area to the final model (length and maximum of 
points assigned to each scale), but also how the scores 
of males and females (as represented by their medians) 
in each of these weighted dimensions were additively 
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integrated into overall scores that non-linearly project 
into the Pclass continuum. Of note, the relative impor-
tance of these 18 brain areas for the final LR models 
(quantified in terms of the regression coefficient values) 

exhibited a similar ordering than that of their univariate 
sex differences (assessed in terms of medians’ difference, 
Cliff ’s delta, or Cohen’s U3), hence resulting in direct and 
statistically significant correlations between both sets of 

Fig. 5 Multivariate sex differences and similarities estimated from projected distances in the raw and PCP datasets. A and E Scaled density function 
for the males (blue) and females’ (red) distributions of the projected distances’ scores in the raw and PCP datasets. Within each panel, the percent 
of overlap (O) as well as the probabilities of superiority for males and females (PS) as well as the p‑value associated and an R2 effect size index 
derived from the comparison of these PS values using Cliff’s delta are provided. C and D Scatterplots of the bivariate relationships (quantified 
by a robust analog of the correlation coefficient Pearson’s r) between the projected distances and TIV scores in the raw and PCP datasets. E and F 
Scatterplots of the bivariate relationships (quantified by a robust analog of the correlation coefficient Pearson’s r) between the projected distances 
and Pclass scores in the raw and PCP datasets (M = males, F = females)
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observations (rho = 0.7, 0.67, 0.68 and rho = 0.84, 0.86, 
0.82 in the raw and in the PCP dataset, respectively; see 
Fig. 6C and Additional file 1: Fig. S1).

Figure  6 also allows noticing that, although the mul-
tivariate sex differences observed in the raw dataset are 
much larger than those observed in the PCP dataset, 
the nomograms obtained in these two datasets were 
remarkably similar (although the direction of their axes 
are reversed due to the use of different sex categories as 
reference in the LR models). Indeed, the values of the 
regression coefficients of these two LR models exhib-
ited a very similar ordering ( 

∣∣rho
∣∣ = 0.93, p < 0.001; panel 

D). This suggest that statistically controlling TIV-var-
iation affects the size of the multivariate sex differences 
in  GMVOL at the SENT_CORE network, but it does not 
artefactually alter their structure. This conclusion was 
confirmed after rebuilding the same models but adding 

TIV as an additional predictor. Thus, as shown in panels 
A and B of Fig.  7, the nomograms obtained were virtu-
ally identical and their regression coefficients showed 
an almost perfect correlation between them ( 

∣∣rho
∣∣>0.99, 

p < 0.001). Furthermore, the ordering of the regression 
coefficients corresponding to the components of the 
SENT_CORE network in these two last LR models was 
also very similar to that observed in the other two previ-
ously fitted LR models ( 

∣∣rho
∣∣> 0.92 in all cases; Fig. 7C).

Finally, given the structural similarities of these four 
LR models, we conducted an assessment across mod-
els aimed to identify which components of the SENT_
CORE networks more consistently contributed to the 
multivariate effects observed in this network. From the 
nomograms of these models (and even better so from 
the heatmap panel D of Fig.  7), it can also be readily 
observed that three brain features achieved statistical 

Table 3 Comparison of the multivariate sex differences estimated from Pclass scores and projected distances

The table shows the similarity of the point estimates of the probability of superiority (PS) for females and males, the associated Cliff’s delta value, the percent of 
overlap between the females and males’ distributions, the Cohen’s U3, the Wilcox and Muska’s Q, and  R2 statistics obtained from Pclass scores and projected distances. 
The 95% CI of these estimates are provided between square brackets

Raw dataset PCP dataset

Projected distances Pclass Projected distances Pclass

PS‑M 0.83
[0.80, 0.86]

0.89
[0.86, 0.92]

0.36
[0.31, 0.4]

0.32
[0.28, 0.36]

PS‑F 0.17
[0.14, 0.2]

0.11
[0.08, 0.14]

0.64
[0.6, 0.69]

0.68
[0.64, 0.72]

Cliff’s delta 0.66
[0.6, 0.73]

0.78
[0.73, 0.83]

0.28
[0.2, 0.37]

0.36
[0.28, 0.45]

Overlap 34.04%
[28.56, 39.58]

25.13%
[20.39, 29.91]

67.6%
[59.04, 76.45]

60.13%
[52.8, 68.25]

Cohen’s U3 90.48%
[86.73, 95.24]

96.26%
[92.18, 98.3]

72.45%
[64.29, 77.89]

75.51%
[67.35, 81.97]

Wilcox and Muska’s Q 0.75 0.81 0.60 0.63

R2 0.58 0.55 0.12 0.11

(See figure on next page.)
Fig. 6. Structure of the LR models fitted in the raw and PCP datasets. A and B Nomograms illustrating the relative contribution of each component 
to the SENT_CORE network to the Pclass scores yielded by the LR models fitted in the raw (reference sex category: males) and in the PCP (reference 
sex category: females) datasets. The values of three discrimination indexes (R2, C index, and Somers’ D) of each of these two models are reported 
within the plots. Although nomograms are ordinarily used to predict individual classification probabilities, in this case, the males (blue) and females 
(red) medians are used to represent how the scores of these groups in each feature were scored (i.e., points; orange numbers), additively integrated 
in composites (“total points”), and non‑linearly project to the Pclass continuum on which the multivariate sex differences and similarities displayed 
in Fig. 4 were estimated. Note that to enhance readability: (1) brain features are decreasingly sorted according to their contribution to the model; 
(2) instead of including a points’ axis, the points achievable (orange numbers) in each scale are represented back‑to‑back to the features’ values 
(black numbers); (3) the marks of some scales have been suppressed; and, (4) to highlight them, the scales of those features achieving statistical 
significance are depicted with thicker lines. C Ordinal relationship (quantified through the Spearman’s rho correlation index) between the regression 
coefficient values and the size of the univariate differences (medians’ difference) in the raw (left) and PCP (right) datasets. Note that the sign of this 
association is largely arbitrary as it arises from the different sex category used as reference in the raw and PCP models. D Ordinal relationship 
(quantified through the Spearman’s rho correlation index) between the coefficient values of the LR models fitted in the raw and PCP datasets. To 
ease the visualization of the relationships depicted in panels C and D, trend lines obtained through gam‑smoothing (and their 95% interval; yellow 
shade) have been added
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significance as predictors in all LR models, whereas oth-
ers solely achieved significance in some of them, and yet 
other seven features did not exhibit a significant predic-
tive value in any model. Thus, after conducting an inter-
section analysis of the coefficients reaching statistical 
significance in these four LR models (Fig. 7E), it can be 
suggested that T2_3, STS1, STS2 but also F2_2, T1_4, and 
F3O1 were the areas of the SENT_CORE network that 
more consistently contribute to the multivariate separa-
tion between males and females when considering this 
network as a whole.

Discussion
As described in the introduction section, there have been 
relatively few studies dedicated to examining potential 
neuroanatomical differences between females and males 
in brain areas responsible for essential language func-
tions and the findings from these studies have yielded 
inconclusive results. The current study contributes to 
this research area: (1) by extending the current knowl-
edge about the univariate within- and between-sexes 
similarities and differences in  GMVOL at language-pro-
cessing areas; (2) by introducing, comparing, and vali-
dating statistical methods to assess these similarities 
and differences at the multivariate level; and, (3) by pro-
viding unprecedented estimates of these multivariate 
differences.

Univariate sex differences and similarities 
in language-processing brain areas
In line with previous studies, our research aimed to 
describe univariate sex differences and similarities in 
GMVOL within various language-processing areas. 
However, our analysis incorporated three distinctive and 
unprecedented characteristics: (1) targeted brain areas—
we focused our evaluation in all the brain areas compris-
ing the SENT_CORE network of the SENSAAS atlas, 

which is specifically designed for the assessment of high-
order sentence processing in healthy individuals [13]; (2) 
robust statistical methods—unlike most prior studies 
that primarily relied on parametric between-mean com-
parisons without reporting effect sizes, we employed sev-
eral robust, non-parametric tests and effect size indexes 
that do not assume normality nor homoscedasticity and 
allow us to explore the entire female and male distribu-
tions, quantifying their similarities and differences in 
location, spread, and shape; (3) raw and TIV-adjusted 
estimates—our assessment was conducted in parallel 
with raw and TIV-adjusted estimates of  GMVOL (raw and 
PCP datasets), explicitly examining the influence of this 
covariate.

Our findings revealed that in both the raw and PCP 
datasets, within every brain region considered, males 
and females exhibited similar distribution shapes without 
significant differences in skewness, kurtosis, or spread 
(see Figs.  2 and 3). In contrast, consistent and statisti-
cally significant differences in location were observed 
between these male and female distributions. Notably, 
the number, size, and direction of these sex effects varied 
considerably depending on whether raw or TIV-adjusted 
 GMVOL estimates were compared. Thus, in the raw data-
set, statistically significant differences (males > females) 
were evident in all brain regions. These differences were 
robust, consistent (i.e., found with several statistical pro-
cedures and at different location measures) and, accord-
ing to widely used benchmarks for various effect size 
indexes [48, 51], “large” in all regions except for the T2_3 
area, where sex effects appeared “small” (Fig. 2 and Addi-
tional file 1: Table S1D, F). In contrast, the PCP dataset 
revealed consistent and robust sex differences in only two 
brain areas, T2_3 and F2_2. Interestingly, these differ-
ences indicated larger amounts of TIV-adjusted  GMVOL 
in females, and their magnitude was “small” (Fig.  3 and 
Additional file 1: Table S2D, F).

Fig. 7. Structure of the LR models after including TIV as an additional predictor. A, B Nomograms illustrating the relative contribution of TIV 
and each of the features included in the raw and PCP datasets to the Pclass scores. The values of three discrimination indexes (R2, C index, 
and Somers’ D) of each of these two models are reported within the plots. C Ordinal relationships (quantified through the absolute value 
Spearman’s rho correlation index) between the coefficient values of the four LR models fitted in this study and depicted in A and B of Figs. 6 
and 7). Note that these associations were calculated excluding the coefficient value associated to TIV (which is only included in two of these four 
LR models) and that, because the sign of these associations is arbitrary (i.e., it arises from the different sex category used as reference in the distinct 
LR models), absolute rho values are reported. D Values of the regression coefficients in each of the four LR models fitted in the present study. 
Highlighted in green are those coefficients reaching statistical significance (p < 0.05) in each model (see details in Additional file 1: Table S3D). E 
UpSet plot illustrating the intersections between the predictors reaching statistical significance in the fitted LR models. In this plot: (1) the color 
of the line‑joined circles denotes whether the features listed in each column reached statistical significance (green) or not (white) in a particular 
model, thus identifying which models are part of each intersection; (2) the height of the bars of bars on the top illustrates the number of features 
included in each intersection (the cardinality of each intersection); (3) the color of the bars denotes the number of models that included the listed 
features as significant predictors. Thus, for example, the first intersection includes three brain features that reached statistical significance 
as predictors in all four models, the second one includes two brain features that reached statistical significance in the PCP, raw + TIV, and PCP + TIV 
models (but not in the raw model), and so on

(See figure on next page.)
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Given that this study is the first to assess sex differ-
ences in the SENT_CORE language network identified 
by Labache et  al. [13], direct comparisons with previ-
ous research are challenging. Nonetheless, our findings 
appear to align with some prior observations. Specifi-
cally, our results are in agreement with those of other 
large-sample studies that have consistently reported 
“large” univariate sex differences indicating larger raw 
 GMvol in males across nearly all brain regions but less 
abundant and “small” sex differences with site-specific 
direction when comparing TIV-adjusted  GMvol estimates 
(e.g., [30, 31, 33, 62, 63]). Furthermore, our observation 
that females exhibited greater TIV-adjusted  GMvol in 
the T2_3 and F2_2 regions seems consistent with previ-
ous studies reporting larger relative TIV-adjusted  GMvol 
in women in similar or overlapping stereotactic coordi-
nates and anatomical descriptors within the temporal 
(e.g., [64–66]) and inferior frontal (e.g., [65, 67]) cortices. 
However, these results should be regarded with caution 
until replicated by other studies employing the brain par-
cellation proposed by the SENSAAS atlas.

Multivariate sex differences: why and how
In part due to the limitations in traditional multivariate 
methods used for group comparisons (e.g., MANOVA 
[68, 69], neuroimaging studies—including those aimed to 
describe sex differences in language-processing areas—
have been often relied on univariate comparisons, which 
separately assess the potential effects of sex in each brain 
region [70, 71]. However, cognitive/behavioral processes 
as language do not emerge from the activity of isolated 
brain regions but from the coordinated operations of 
localized but distributed neuronal networks, and, within 
these networks, the relevance of each neural component 
depends on its interaction with the rest of components 
[71, 72]. Therefore, univariate comparisons have limited 
value as they only reveal potential group differences at 
the level of individual network components but do not 
provide insights into differences that may exist at the 
whole network level [72–75].

To address this limitation, some recent studies have 
adopted the analytical strategy initially suggested by 
Lippa and Connelly [56]. They use classification probabil-
ities (here referred to as Pclass) generated by regression/ 
classification methods as a continuum that condenses 
information from multiple brain features and that enables 
the estimation of multivariate sex differences (e.g., [40, 
76, 77]). However, it is crucial to note that these methods 
were originally developed for classification, not for infer-
ence or estimation purposes. These are distinct goals and 
involve a distinct trade-off between interpretability and 
complexity/predictive capacity [78]. Thus, in contrast 
with what happens in purely predictive settings, studies 

employing regression/ classification methods to study 
multivariate sex differences may benefit of using “simple” 
but highly interpretable models able to provide insight 
about which brain features contribute and by how much 
to the multivariate separation of females and males [78]. 
Additionally, it is important to consider that multivariate 
differences are inherently larger than univariate ones, and 
their size grows with the number of variables included 
[74, 75]. Therefore, multivariate effects and effect sizes 
are more accurate, meaningful, and interpretable when 
they summarize a coherent, theoretically justified set of 
variables rather than when calculated from hundreds or 
thousands of non-preselected features [74, 75]. Finally, 
just as it happens with traditional multivariate statistics 
and effect sizes [68, 69, 74], predictive methods can esti-
mate the size of a difference, but do not provide infor-
mation about its direction. Thus, it may be beneficial to 
complement the results obtained from predictive models 
with those of other methods.

In our study, we employed two distinct and comple-
mentary analytical strategies: one based on the classi-
fication probabilities obtained from logistic regression 
models and the other based on projected distances [60]. 
Both methods allowed us to condense the information of 
the 18 regions of the SENT_CORE network into a single 
and continuous metric space, but each of them has par-
ticular strengths that address some of the weaknesses 
of the other and, together, they overcome at least two 
of the main limitations of classic multivariate methods 
like MANOVA. Projected distances directly and unam-
biguously inform about the direction of the multivariate 
differences ([60] an aspect unaddressed by traditional 
methods and by those based on classification probabili-
ties). Conversely, logistic regression and other interpret-
able regression/ classification models help to uncover the 
structure of the observed multivariate differences (i.e., 
quantifying the relative contribution of each individual 
variable to the multivariate effect [79]), an aspect that 
cannot be addressed by classic multivariate methods and 
projected distances [68, 69, 74]. Moreover, as these two 
methods very much differ in their mathematical founda-
tions, producing similar results, would mutually validate 
their findings.

Multivariate sex differences and similarities 
in language-processing brain areas
In both the raw and PCP datasets, individual projected 
distances and Pclass scores were highly correlated 
between them (r = 0.85 and r = 0.84, respectively; see 
Panels E and F of Fig.  5). This indicates that, regardless 
their different scale and despite the bounded/ unbounded 
nature of their outcome variables which resulted in dif-
ferently shaped distributions in the raw dataset (Panel 
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A of Figs. 4 and 5), the relative position of each individ-
ual in the Pclass and projected distances’ continuums 
were roughly equivalent. Consequently, the estimates of 
the multivariate sex differences and similarities in the 
SENT_CORE network calculated from these two distinct 
outcome variables were quite similar in size, in both the 
raw and the PCP datasets (see below and Table 3). To our 
knowledge, this kind of between-method comparisons 
had not been previously conducted and its results boosts 
the trustworthiness of the estimates obtained in the pre-
sent study.

Multivariate sex differences in the SENT_CORE net-
work very much varied depending on whether they were 
calculated from raw or TIV-adjusted  GMvol. In the raw 
dataset, multivariate differences indicated larger raw 
 GMvol in males and were not only “large” accordingly to 
commonly used benchmarks [51], but also larger than 
those observed in equivalent univariate analyses and 
similar in size to those yielded by TIV (the largest mac-
roscopical difference in the brains of females and males; 
Additional file 1: Table S3A, B). For instance, the Cliff ’s 
delta and Cohen’s U3 values estimated from Pclass scores 
(0.78 and 96.26%) closely resembled those estimated 
using the projected distances method (0.66 and 90.74%), 
which were larger than the averages (0.46 and 80.78%) 
and that the largest values (0.62 and 92.51%) observed 
among their univariate counterparts, and became nearly 
identical to those estimated from TIV (0.78 and 95.58%). 
On the other hand, multivariate differences in the PCP 
dataset suggested larger TIV-adjusted  GMvol in females 
and their size was “medium”, surpassing the magnitude of 
their univariate counterparts. Specifically, the Cliff ’s delta 
and Cohen’s U3 values for Pclass scores (0.36 and 75.5%) 
and projected distances (0.28 and 68.7%) were quite 
similar, larger than the average and the maximum values 
observed in univariate analyses (0.06, 51.02% and 0.16, 
59.86%, respectively), but notably smaller than those esti-
mated from TIV.

This study marks the first assessment of multivariate 
sex differences in  GMVOL within the CORE_SENT net-
work. Therefore, our estimates of these differences can-
not be directly compared to those from previous studies. 
Nevertheless, the fact that these estimated differences 
were larger when calculated from raw than from TIV-
adjusted  GMVOL aligns with the results of other studies 
employing classification/ regression methods to assess 
multivariate sex differences in  GMVOL at the whole brain 
level [31, 40, 77, 80] and specific neural systems [81]. 
Additionally, the similarity in estimates obtained from 
two robust methods with different mathematical foun-
dations suggests that these estimates are likely accurate 
and sound. Consequently, the results of this study con-
tribute to addressing a significant gap in the study of 

sex differences in the neuroanatomical basis of primary 
language functions by extending the analysis to the mul-
tivariate level. However, these findings should be consid-
ered provisional until confirmed by independent studies.

To provide insight and a graphical representation of the 
structure of the observed multivariate effects identified 
in Pclass scores, we depicted the nomograms of the fitted 
LR models (Fig.  6A, B). The inspection of these nomo-
grams (see also Fig. 7D) revealed that, in the raw dataset, 
only 9 (T2_3, T2_4, STS_1, STS_2, STS_3, SMG7, INSa3, 
F3O1, and AG2) out of the 18 brain areas that showed 
consistent statistically significant differences at the uni-
variate level also reached statistical significance within 
the multivariate model. Similarly, in the PCP dataset, the 
two brain areas showing consistent and significant sex 
differences at the univariate level (T2_3 and F2_2) were 
joined by three others (STS1, STS2, T1_4) in achieving 
statistical significance as contributors to the multivari-
ate model. This mismatch illustrates that, while the size 
of the univariate differences in each component of the 
SENT_CORE network was significantly correlated with 
their relative contribution within the multivariate model 
(i.e., the values of the regression coefficients; see Fig. 6C 
and Additional file 1: Fig. S1), multivariate effects cannot 
be equated or directly inferred from univariate effects. 
In other words, to uncover insights at the whole network 
level, a multivariate approach is required.

On the other hand, the obtained nomograms also dem-
onstrated that, despite the major differences in multivari-
ate effects observed in the raw and PCP datasets, their 
underlying structure (as indicated by the ordering of the 
regression coefficients) was quite similar ( 

∣∣rho
∣∣ = 0.93, 

Fig.  6D). This unprecedented observation suggests that, 
although the PCP method removes the influence of TIV-
related variation and reduces the size of the estimated 
multivariate sex differences in  GMvol, it does not alter the 
structure of these differences (i.e., the relative contribu-
tion of each brain region to the multivariate composites 
on which the differences are calculated). This became 
even more evident when examining the nomograms of 
two additional LR models that, in addition to the volu-
metric features of the raw and PCP datasets, included 
TIV as a predictor of the sex categories (Fig.  7A, B). 
These last two LR models were virtually identical in all 
aspects, including the ordering of their coefficient val-
ues ( 

∣∣rho
∣∣>0.99). Furthermore, the ordering of the coeffi-

cients observed in all four LR models was highly similar 
( 
∣∣rho

∣∣> 0.92 in all cases; Fig.  7C), suggesting that these 
models (and the multivariate sex differences estimated 
from them) share a similar structure that enables across-
models’ comparisons. From these comparisons, it can 
be concluded that: (1) T2_3, STS1, STS2 but also F2_2, 
T1_4, and F3O1 were identified as the local components 
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that more consistently made a statistically significant 
contribution to the to the multivariate differentiation of 
the SENT_CORE network in males and females across 
all models (Fig. 7E); (2) TIV is the brain feature that best 
separate females and males; (2) once TIV variation is 
accounted for, the brain features included in the raw and 
in the PCP datasets contain virtually the same informa-
tion; and, consequently, (3) the opposite direction and 
distinct size of the estimated sex differences in those 
datasets are attributable to the TIV-related variation con-
tained in raw  GMvol measurements.

Limitations
The present study is not without limitations, and it is 
important to consider at least for four limitations when 
interpreting our results and valuating our conclusions.

Firstly, as previously mentioned, our study is the first to 
evaluate the univariate and multivariate sex differences/ 
similarities in the SENT_CORE network of the SEN-
SAAS atlas, making it challenging to compare our results 
with those of previous studies. Therefore, our results 
should be regarded with caution until direct replication 
studies are conducted.

Secondly, the SENT_CORE is just one of the three 
networks included in the SENSAAS atlas (the only one 
specifically constructed as to study language-processing 
areas and networks in healthy individuals). Consequently, 
our study does not provide information about the sex dif-
ferences in all brain areas/networks involved in language 
processing, but rather focuses on those essential for sen-
tences’ production and comprehension [13].

Thirdly, our sample consisted of right-handed young 
adults. While this homogenous sample was convenient 
for isolating the effect of sex, it may limit the generaliz-
ability of our results to a broader population. Therefore, 
readers should interpret our results and conclusions with 
caution until replicated by independent studies con-
ducted in other samples that differ in potentially relevant 
variables (e.g., age, scan site, etc.).

Lastly, our study describes anatomical differences/ sim-
ilarities in a well-validated brain language network but 
does not allow us drawing conclusions about the causes 
or potential functional consequences of the observed sex 
effects in  GMvol. Notably, our study did not include any 
behavioral assessment, thus precluding the evaluation of 
whether the identified neuroanatomical sex-based differ-
ences influence sentence-processing abilities in females 
and males. Consequently, further studies are needed to 
investigate these potential functional consequences and 
their possible relationship with the neuroanatomical 
and neurofunctional characteristics of the SENT_CORE 
network.

Conclusion: perspectives and significance
In contrast to the conflicting results observed in previ-
ous studies investigating potential neuroanatomical sex 
differences in language-processing areas, the current 
study confirms the presence of consistent and statisti-
cally significant differences in  GMVOL between males 
and females within the SENT_CORE language network, 
as initially identified by Labache et  al. [13]. Addition-
ally, the present study identifies important moderators of 
these differences. Firstly, these differences are more pro-
nounced when assessed at the entire network level using 
multivariate methods, as opposed to when examined 
at the local component level through multiple univari-
ate comparisons. Secondly, the direction and magnitude 
of these univariate and multivariate differences signifi-
cantly depend on whether they are calculated from raw 
 GMVOL or  GMVOL adjusted for TIV. Specifically, dif-
ferences appear ’large’, indicating larger raw  GMVOL in 
males, but transition to ’small’ or ’intermediate’ and indi-
cate larger relative volumes in females when adjusting for 
TIV-related variations. In this context, there is a growing 
consensus regarding the importance of considering TIV 
variation as a potential confounding factor that should 
be statistically controlled for when assessing sex differ-
ences in local brain volumes [52,59,82,83]. However, it is 
worth noting that raw  GMVOL and TIV-adjusted  GMVOL 
represent two different types of measures (absolute and 
relative, respectively), and they seem to address distinct 
questions rather than providing conflicting answers to 
the same question. Therefore, we advocate for the evalu-
ation of neuroanatomical sex differences using both raw 
and TIV-adjusted measures whenever possible, or at the 
very least, when (as in the case of the present study) it is 
unclear which of these two measurements, if any, may be 
relevant in explaining cognitive processes or other behav-
ioral phenomena.
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