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Abstract 

Background Exercise training elicits changes in muscle physiology, epigenomics, transcriptomics, and proteom‑
ics, with males and females exhibiting differing physiological responses to exercise training. However, the molecular 
mechanisms contributing to the differing adaptations between the sexes are poorly understood.

Methods We performed a meta‑analysis for sex differences in skeletal muscle DNA methylation following an endur‑
ance training intervention (Gene SMART cohort and E‑MTAB‑11282 cohort). We investigated for sex differences 
in the skeletal muscle proteome following an endurance training intervention (Gene SMART cohort). Lastly, we 
investigated whether the methylome and proteome are associated with baseline cardiorespiratory fitness (maximal 
oxygen consumption; VO2max) in a sex‑specific manner.

Results Here, we investigated for the first time, DNA methylome and proteome sex differences in response to exer‑
cise training in human skeletal muscle (n = 78; 50 males, 28 females). We identified 92 DNA methylation sites (CpGs) 
associated with exercise training; however, no CpGs changed in a sex‑dependent manner. In contrast, we identified 
189 proteins that are differentially expressed between the sexes following training, with 82 proteins differentially 
expressed between the sexes at baseline. Proteins showing the most robust sex‑specific response to exercise include 
SIRT3, MRPL41, and MBP. Irrespective of sex, cardiorespiratory fitness was associated with robust methylome changes 
(19,257 CpGs) and no proteomic changes. We did not observe sex differences in the association between cardi‑
orespiratory fitness and the DNA methylome. Integrative multi‑omic analysis identified sex‑specific mitochondrial 
metabolism pathways associated with exercise responses. Lastly, exercise training and cardiorespiratory fitness shifted 
the DNA methylomes to be more similar between the sexes.

Conclusions We identified sex differences in protein expression changes, but not DNA methylation changes, fol‑
lowing an endurance exercise training intervention; whereas we identified no sex differences in the DNA methy‑
lome or proteome response to lifelong training. Given the delicate interaction between sex and training as well 
as the limitations of the current study, more studies are required to elucidate whether there is a sex‑specific training 
effect on the DNA methylome. We found that genes involved in mitochondrial metabolism pathways are differen‑
tially modulated between the sexes following endurance exercise training. These results shed light on sex differences 
in molecular adaptations to exercise training in skeletal muscle.
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Highlights 

• The skeletal muscle proteome displayed robust sex differences at baseline.
• The skeletal muscle proteome responded to 4 weeks of endurance training in a sex‑specific manner.
• The skeletal muscle DNA methylome responded to 4 and 8 weeks of endurance training similarly between males 

and females.
• VO2max levels, an indicator of cardiorespiratory fitness and lifelong training, displayed a strong, universal signa‑

ture on the muscle methylome, but not on the muscle proteome; both in a sex‑invariable manner.
• Both endurance training and cardiorespiratory fitness shifted the DNA methylomes to be more similar 

between the sexes.

Plain English Summary 

Exercise provides health benefits to every organ of the body, with specific genes and proteins changing in response 
to exercise. Males and females have distinct physiology which influences the body’s responds to exercise. However, 
it is largely unknown whether males and females respond differently to exercise on a molecular level. To function 
effectively, our muscles need specific proteins whose expression is regulated by a process called epigenetics. Epige‑
netics refers to modifications to our DNA that occur as a result of various environmental factors, such as exercise. We 
investigated sex differences in two aspects of molecular response to exercise: epigenetics and protein expression. We 
discovered that few weeks‑long exercise programmes led to significant changes in protein expression but minimal 
changes in epigenetics. The proteins changed after exercise differed between the sexes and were involved in metabo‑
lism. This indicates that exercise has an immediate impact on muscle proteins in a sex‑specific manner, but perhaps 
changes in epigenetics are slower. We then wondered whether a longer period of exercise would illicit sex‑specific 
changes in epigenetics and protein expression. We showed that fitter individuals exhibited epigenetic differences 
compared to less fit individuals, while protein expression remained unchanged. Fit males and females showed 
similar epigenetic changes compared to their unfit counterparts. This suggests that lifelong training shifts the muscle 
epigenetic patterns in a similar manner in both males and females. Our findings emphasise the importance of life‑
long fitness for stimulating epigenetic remodelling in muscle, as well as the importance of taking sex differences 
into consideration.

Keywords Sex differences, Skeletal muscle, Proteome, DNA methylation, Epigenetics, Exercise

Background
Regular exercise is one of the most cost-effective and 
accessible ways to improve and maintain health, with evi-
dent benefits across many tissues and diseases [1]. Thus, 
there is much interest in understanding how physical 
activity promotes health at the molecular level [2]. Both a 
single acute bout of exercise and exercise training induce 
epigenetic changes in skeletal muscle, the most energy-
demanding tissue during exercise [3]. Various modalities 
of exercise training modulate the skeletal muscle methyl-
ome [3], transcriptome [4], proteome [5], and subsequent 
physiology [6], ultimately promoting health benefits. 
Although males and females differ in their physiologi-
cal response to exercise [7], much of our understanding 
of molecular adaptations to exercise is limited to studies 
where the majority of participants were male or sex was 
not accounted for [8, 9], despite sex modulating various 
biological processes. Therefore, elucidating sex-specific 
genes and pathways following exercise training is crucial 

for the comprehensive understanding of the molecular 
benefits of exercise.

Both the skeletal muscle methylome and proteome are 
responsive to exercise training [4, 5, 10–14], however sex 
differences have yet to be investigated. At baseline, the 
skeletal muscle transcriptome [15–19] and DNA methy-
lome (from our lab, meta-analysis using Gene SMART 
cohort) [20] differ between the sexes, particularly across 
genes involved in metabolic processes; while baseline 
proteome sex differences have not been studied. The 
only investigation, to our knowledge, of skeletal muscle 
sex differences in -omic response to exercise training, is 
a recent transcriptome meta-analysis, which identified 
247 genes differentially expressed in skeletal muscle fol-
lowing exercise training in males and females, with many 
of these genes involved in chromatin organisation [21]. 
However, it is unknown whether exercise triggers sex-
specific responses at the epigenetic and/or proteomic 
level in skeletal muscle. It is also unknown whether the 
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same genes and pathways display a sex-specific exercise 
response across different -omic layers, or whether the 
altered genes are distinct between the different -omic 
layers.

Varying exercise training modalities incur a multitude 
of systemic molecular and physiological health ben-
efits, which vary depending on intensity, duration, and 
frequency. Specifically, moderate-intensity continuous 
endurance training (MICT) and high-intensity inter-
val training (HIIT) both improve cardiovascular fitness, 
namely maximum oxygen consumption (VO2max) [22]. 
VO2max is a gold-standard, commonly used measure-
ment to represent cardiorespiratory fitness, given its pos-
itive association with several metabolic health outcomes 
and negative association with cardiovascular disease risk 
[23]. Higher VO2max levels are representative of lifelong 
endurance training [24–26].

In the present study, we uncovered the epigenetic 
(DNA methylation) and proteomic signature of lifelong 
training [VO2max levels, representing cardiorespiratory 
fitness (CRF)] in skeletal muscle, and tested, for the first 
time, whether this signature was sex-specific. We also 
examined, for the first time, sex differences in genome-
wide DNA methylation and protein expression changes 
following 4 and 8 weeks of endurance training. We inves-
tigated differences in muscle protein expression between 
males and females, regardless of training or CRF. We 
integrated the sex-specific epigenetic and proteomic 
responses to exercise training to uncover biological path-
ways differentially activated by endurance exercise train-
ing between males and females. Finally, we investigated 
whether exercise training and CRF shift the methylomes 
of the sexes to be more similar.

Methods
Datasets
The E-MTAB-11282 data were publically available and 
accessed from Array Express. The Gene SMART data 
were collected in our lab, have been used for other pub-
lications [20, 27, 28], and are publically available on GEO 
(GSE171140). For the Gene SMART study, the exercise 
training protocol, study design, and methods have been 
extensively outlined previously [24]. Brief descriptions 
regarding the Gene SMART study protocol are outlined 
below. The DNA methylome meta-analysis was con-
ducted on E-MTAB-11282 and the Gene SMART data-
sets. The proteome analysis was conducted solely on the 
Gene SMART dataset.

Muscle biopsy and blood sampling
Muscle biopsies were sampled from the vastus lateralis 
muscle after an overnight fast, using a suction‐modified 
Bergström needle, under local anaesthesia of the skin and 

fascia (1% Xylocaine). The muscle samples were cleaned 
of excess blood, fat, and connective tissue and then flash-
frozen in liquid nitrogen and stored in – 80 ºC. Intrave-
nous blood was drawn immediately after the biopsy.

Study design and physiological measurements
An overview of the exercise protocol used in the Gene 
SMART (Skeletal Muscle Adaptive Response to Train-
ing) study has been previously published [25]. The train-
ing intervention consisted of 4 weeks of a control period, 
followed by 4  weeks of high-intensity interval training 
(HIIT) performed on a cycle ergometer. The sex compari-
son of physiological measurements (VO2max, PP, or LT), 
before and after the interventions, was analysed using a 
linear model of the form:

Controlling for diet
Participants were provided with individualised, pre-
packaged meals for the 48 h prior to the resting mus-
cle biopsies. The energy content of the provided meals 
was calculated using the Mifflin St-Jeor equation and 
each participant’s body mass, height and age [26]. The 
content of the diets were constructed based on the cur-
rent National Health and Medical Research Council 
(NHMRC) guidelines. Participants were provided with 
a post-training and post-testing snack consisting of pro-
tein (0.3 g kg–1 BM) and carbohydrates (0.3 g kg–1 BM) 
[29]. Participants were asked to refrain from alcohol and 
caffeine during the dietary-control period, which is 48 h 
prior to each resting biopsy. Outside of the dietary-con-
trol period they were asked to continue with their normal 
exercise and dietary habits.

Participants and control of confounders
Females with a regular menstrual cycle (26–35 days) [30] 
not taking hormonal contraceptives were recruited in 
order to obtain a homogenous cohort, as different contra-
ceptives have different dosage, administration patterns, 
and different hormone combinations causing variability 
in metabolism and gene expression [31]. For consistency 
and to control for the potential effects of hormonal fluc-
tuations during the female menstrual cycle, all biopsies 
were performed during the early follicular phase (days 
1–7 of cycle).

Participants (total of six females and one male) served 
as their own controls as they underwent 4  weeks of a 
control period prior to starting the training, this was 
done in order to assess whether DNA methylation fluctu-
ates with regular lifestyle (diet, sleep, exercise, etc.) in the 

VO2max ∼ sex ∗ time+ age.
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absence of the exercise training intervention (Additional 
file 1: Fig. S1F).

DNA extraction and methylation
Genomic DNA was extracted from the samples using 
the AllPrep DNA/RNA MiniKit (Qiagen, 80204) follow-
ing the user manual guidelines. Global DNA methylation 
profiling was generated with the Infinium MethylationE-
PIC 850K BeadChip Kit (Queensland University of Tech-
nology and Diagenode, Austria). The first batch contained 
only males, were randomised for timepoint and age and 
were randomised across chips to minimise batch effects. 
The second batch contained males and females and sam-
ples were scrambled on the chips to ensure random-
ness when correcting for batch effect (i.e. old and young 
males and females across all time points included on each 
chip). The genome-wide DNA methylation pattern was 
analysed with the Infinium MethylationEPIC BeadChip 
array.

Protein extraction and proteomics
Muscle tissue was lysed in 300  µl SDS solubilisation 
buffer (5% SDS, 50 mM TEAB, pH 7.55), heated at 95 °C 
for 10  min and then probe-sonicated before measur-
ing the protein concentration using the BCA method. 
A total protein amount of 100  µg (suspended in 50  µl) 
was used for each sample for subsequent analyses. The 
lysed samples were denatured and alkylated by adding 
TCEP (Tris(2-carboxyethyl) phosphine hydrochloride) 
and CAA (2-chloroacetamide) to a final concentration of 
10 mM and 40 mM, respectively, and the mixture incu-
bated at 55 °C for 15 min. Sequencing grade trypsin was 
added at an enzyme-to-protein ratio of 1:50 and incu-
bated overnight at 37 °C after the proteins were trapped 
using S-Trap mini columns (Profiti). Tryptic peptides 
were eluted from the columns using (i) 50  mM TEAB, 
(ii) 0.2% formic acid and (iii) 50% acetonitrile, 0.2% for-
mic acid. The fractions were pooled, concentrated in a 
vacuum concentrator and reconstituted in 40 µl 200 mM 
HEPES, pH 8.5. Using a Pierce Quantitative Colorimet-
ric Peptide Assay Kit (Thermo Scientific), equal peptide 
amounts of each sample were labelled with the TMTpro 
16plex reagent set (Thermo Scientific) according to the 
manufacturer’s instructions and considering a labelling 
strategy to minimise channel leakage. Individual samples 
were pooled and high-pH RP-HPLC was used to frac-
tionate each pool into 12 fractions, acquired individually 
by LC–MS/MS to maximise the number of peptide and 
protein identifications.

Using a Dionex UltiMate 3000 RSLCnano system 
equipped with a Dionex UltiMate 3000 RS autosa-
mpler, an Acclaim PepMap RSLC analytical column 
(75  µm × 50  cm, nanoViper, C18, 2  µm, 100  Å; Thermo 

Scientific) and an Acclaim PepMap 100 trap column 
(100  µm × 2  cm, nanoViper, C18, 5  µm, 100  Å; Thermo 
Scientific), the tryptic peptides were separated by increas-
ing concentrations of 80% acetonitrile (ACN)/0.1% for-
mic acid at a flow of 250 nl/min for 158 min and analysed 
with an Orbitrap Fusion Tribrid mass spectrometer 
(ThermoFisher Scientific). The instrument was operated 
in data-dependent acquisition mode to automatically 
switch between full scan ms1 (in Orbitrap), ms2 (in ion 
trap) and ms3 (in Orbitrap) acquisition. Each survey full 
scan (380–1580  m/z) was acquired with a resolution of 
120,000, an AGC (automatic gain control) target of 50%, 
and a maximum injection time of 50 ms. Dynamic exclu-
sion was set to 60 s after one occurrence. Cycle time was 
fixed at 2.5  s, the most intense multiply charged ions 
(z ≥ 2) were selected for ms2/ms3 analysis. Ms2 analysis 
used CID fragmentation (fixed collision energy mode, 
30% CID Collision Energy) with a maximum injection 
time of 150 ms, a “rapid” scan rate and an AGC target of 
40%. Following the acquisition of each MS2 spectrum, 
an ms3 spectrum was acquired from multiple ms2 frag-
ment ions using Synchronous Precursor Selection. The 
ms3 scan was acquired in the Orbitrap after HCD colli-
sion with a resolution of 50,000 and a maximum injection 
time of 250 ms.

The raw data files were analysed with Proteome Dis-
coverer (Thermo Scientific) to obtain quantitative ms3 
reporter ion intensities.

Proteomics bioinformatics analysis
Before normalisation, proteomic intensity data were fil-
tered for high-confidence protein observations. In addi-
tion, contaminants, proteins only identified by a single 
peptide and proteins not identified/quantified consist-
ently across the experiment were removed. The remaining 
missing values were imputed using the missing-not-at-
random (MNAR) method, assuming the missingness was 
due to low expression for such proteins. Intensity was log 
transformed and normalised using the variance–stabilis-
ing–normalisation (VSN) method, which transforms the 
data in such a way that the variance remains nearly con-
stant over the whole intensity spectrum (Additional file 1: 
Fig. S4). Both imputations and VSN were conducted by 
the DEP package [32]. Batch effects were corrected using 
internal referencing scaling (IRS) method [33] by the use 
of reference channels.

To identify differentially expressed proteins, we used 
linear models implemented in the limma package in R 
[34], using the participants’ ID as a blocking variable to 
account for the repeated measures design. Proteins show-
ing a π-value < 0.005 were considered significant, which 
was calculated using the absolute value of the logFC 
and the FDR as described in Xiao et al. [35]. π-value is a 
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mathematic combination of p-value and log2FC for bet-
ter ranking of genes (calculated according to [35]), which 
was used for proteomics analysis.

DNA methylation bioinformatics analysis
The pre-processing of DNA methylation data was per-
formed according to the bioinformatics pipeline devel-
oped for the Bioconductor project [36]. Raw methylation 
data were pre-processed, filtered and normalised across 
samples. Probes that had a detection  p-value of > 0.01, 
located on X and Y chromosomes or cross-hybridising, 
or related to a SNP frequent in European populations, 
were removed. It is important to note that the list of 
cross-hybridising probes was supplied manually [37] as 
the list supplied to the ChAMP package was outdated. 
Specifically, there are thousands of probes in the Illumina 
microarrays that cross-hybridise with the X-chromosome 
and may lead to false discovery of autosomal sex-asso-
ciated DNA methylation [38]. The BMIQ algorithm was 
used to correct for the Infinium type I and type II probe 
bias. β-values were corrected for both batch and position 
in the batch using ComBat [39].

To identify DMPs, we used linear models as imple-
mented in the limma package in R [34], using the par-
ticipants’ ID as a blocking variable to account for the 
repeated measures design. All results were adjusted for 
multiple testing using the Benjamini and Hochberg cor-
rection [40] and all CpGs showing an FDR < 0.005 were 
considered significant for the association of DNA meth-
ylation with baseline fitness [41]. When no DMPs were 
detected at FDR < 0.005, we examined the histogram of 
p-values to evaluate whether results were truly nega-
tive or whether we were underpowered. CRF-associated 
DMRs were identified using the DMRcate package [42]. 
DMRs with Stouffer, Fisher, and harmonic mean of the 
individual component FDRs (HMFDR) statistics < 0.005 
were deemed significant. Effect sizes are reported as 
mean differences in DNA methylation beta values (%).

We adjusted each EWAS for bias and inflation using the 
empirical null distribution as implemented in bacon [43]. 
Inflation and bias in EWAS are caused by unmeasured 
technical and biological confounding, such as popula-
tion substructure, batch effects, and cellular heterogene-
ity [44]. The inflation factor is higher when the expected 
number of true associations is high; it is also greater for 
studies with higher statistical power [43]. The results 
were consistent with the inflation factors and biases 
reported in an EWAS in blood [43]. Results from the 
independent EWAS were combined using an inverse var-
iance weighted meta-analysis with METAL [45]. We used 
METAL since it does not require all DNA methylation 
datasets to include every CpG site on the HumanMeth-
ylation arrays. For robustness, we only included CpGs 

present in both cohorts (639,759 CpGs). Both MICT [46] 
and HIIT [47] induce skeletal muscle DNA methylation 
and VO2max changes, therefore we were able to meta-
analyse the Gene SMART and E-MTAB-11282 cohorts.

We integrated a comprehensive annotation of Illumina 
HumanMethylation arrays [48] with chromatin states 
from the Roadmap Epigenomics Project [49] and the lat-
est GeneHancer information [50]. Baseline fitness-DMPs 
that were annotated to two differing chromatin states 
were removed for simplicity and because there were very 
few such DMPs. GSEA on Reactome and GO databases 
was performed on DMRs using the goregion (for GO) 
and gsameth (for Reactome) functions in the missMethyl 
R package [51, 52]. The linear models used are in Addi-
tional file 1: Fig. S1. Integration of the DNA methylome 
and proteome was performed using the Mitch R package 
utilising all genes in the analysis; for DNA methylation, 
gene statistics were averaged across CpGs annotated to 
the same gene.

For the analysis of the both proteome and DNA methy-
lome, the linear models used were are of the form:

To assess for overall proteome/DNA methylome asso-
ciations with training (denoted as “timepoint”) and CRF 
(denoted as “baselineVO2max”), irrespective of sex:

To assess for sex differences in proteome/DNA methyl-
ome associations with training:

To assess for sex differences in proteome/DNA methyl-
ome associations with CRF:

For DNA methylation analysis, batch was also included 
in the linear models for Gene SMART and lean/obese 
for E-MTAB-11282. Timepoint refers to before and after 
the training intervention. Age was included in the linear 
models given the known effect age on the methylome and 
proteome [53].

To assess whether CRF and training converge sex-
biased DNA methylation sites, we ran a Pearson cor-
relation between the first dimension of the principal 
component analysis (PCA) of sex-biased DMPs and 
CRF/training intervention. Furthermore, we compared 
the effects of sex vs sex*training and sex vs sex*CRF at 
these loci. Lastly, we removed the effects of the rest of the 
covariates by extracting the residuals of the linear models 
not containing the covariate of interest (training or CRF). 

Proteome/DNAmethylome ∼ timepoint

+ age+ sex + baselineVO2max.

Proteome/DNAmethylome ∼ timepoint ∗ sex

+ age+ baselineVO2max.

Proteome/DNAmethylome ∼ timepoint

+ sex ∗ baselineVO2max + age.
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This allowed to visualise whether training or CRF shifted 
the sex-biased methylome, when all other factors such as 
sex and age, were removed.

Results
Endurance training interventions of 4–8 weeks induce 
physiological, proteomic, and DNA methylomic changes, 
irrespective of sex
We performed a meta-analysis of sex-specific DNA 
methylation response to exercise training utilising 
the Gene SMART cohort [24] and a recent dataset, 
E-MTAB-11282 [54]). The analysis of sex-specific pro-
teome response to exercise training was performed solely 
on the Gene SMART cohort (Fig. 1). The Gene SMART 
study [24] consisted of 20 females and 45 males (aged 
18–45 years) who completed 4  weeks of HIIT, and we 
collected measures of peak power output (PP), lactate 
threshold (LT), and VO2max before and after the exercise 
intervention. At baseline, males had higher aerobic fit-
ness levels than females, in both absolute terms and rela-
tive to body weight (Table 1). Four weeks of HIIT elicited 
substantial improvements in PP and LT (p-value < 0.05, 
Table 1), but not VO2max (p-value = 0.109, Table 1), and 
there were no sex differences in the degree of response 
to 4  weeks of HIIT (p-value for interaction of time and 
sex > 0.05 for all fitness measurements, Table  1). A por-
tion of the individuals completed a control period prior 
to the training intervention; no changes were observed 
in DNA methylation or physiological measurements 

following the control period. The E-MTAB-11282 cohort 
[54] consisted of five males and eight females (aged 
21–54 years) who underwent 8 weeks of MICT. Partici-
pants from E-MTAB-11282 were healthy, sedentary, and 
either lean or obese. Similar to the Gene SMART cohort, 
males had higher VO2max levels than females, in both 
absolute terms and relative to body weight (p = 0.04, 
Table  1). VO2max did not increase significantly follow-
ing the training intervention (p = 0.11; Table 1), with no 
sex differences in the degree of response (p-value for 
interaction between time and sex = 0.7; Table  1). Both 
males and females from the Gene SMART cohort had 
slightly higher cardiorespiratory fitness levels than those 
reported in the healthy general population for the cor-
responding age groups (males: 48.6 in Gene SMART vs 
35–45 ml/min/kg in the general population; females: 44.1 
in Gene SMART vs 30–40 for ml/min/kg in the general 
population) [55]. In contrast, both males and females 
from E-MTAB-11282 had lower cardiorespiratory levels 
than those reported in the healthy general population for 
the corresponding age groups (E-MTAB-11282 males: 
23.1  ml/min/kg; females 20.3  ml/min/kg), although this 
cohort was made up of lean and obese individuals who 
were otherwise healthy.

Utilising data from solely the Gene SMART study, we 
investigated potential sex differences in the muscle pro-
teome following an endurance training intervention and 
lifelong training, represented by cardiorespiratory fitness 
(CRF, baseline VO2max). Utilising data from the Gene 

Fig. 1 Analysis schematic. Summary of datasets used for each analysis performed in the study as well as the overall findings indicated in colour
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SMART study and E-MTAB-11282 [54], we performed a 
meta-analysis of sex differences in DNA methylation fol-
lowing an endurance training intervention and lifelong 
training (CRF, baseline VO2max). Both MICT [46] and 
HIIT [47] induce skeletal muscle DNA methylation and 
VO2max changes, therefore we were able to meta-analyse 
the Gene SMART and E-MTAB-11282 cohorts.

We identified 63 proteins differentially expressed fol-
lowing HIIT, irrespective of sex (π-value < 0.005; Addi-
tional file  2, see “Methods” for π-value). π-value is a 
mathematic combination of p-value and effect size that 
improves gene ranking [35], which was used for prot-
eomics analysis. These proteins were mostly upregu-
lated (77%) following the training intervention and were 
enriched for pathways such as metabolism of proteins 
and MTORC1-mediated signalling (π-value < 0.005; 
Additional file  2). We identified 82 proteins differen-
tially expressed between the sexes at baseline, irre-
spective of training and CRF (included in model as 
covariates; π-value < 0.005; Additional file  2; Fig.  2G). 
49% of the sex-specific proteins at baseline were more 
abundant in males than females. Sex-specific proteins 
were enriched for pathways such as metabolism of pro-
teins and mRNA splicing (π-value < 0.005, Additional 
file 2; Additional file 1: Fig. S2E).

We identified 92 CpGs whose methylation changed 
after endurance exercise training (irrespective of sex) at 
FDR < 0.005 (Fig.  3E; Additional file  2). Thirty-eight  % 
of the differentially methylated positions (DMPs) 
increased in methylation following the intervention 
(Additional file  2). These genes were not overrepre-
sented in Gene Ontology (GO) terms or Reactome 
pathways (FDR < 0.005) (Additional file 2).

The proteome, but not the DNA methylome, respond 
to a short-term endurance training intervention 
in a sex-specific manner
We found no sex-specific DNA methylation changes after 
the training intervention at FDR < 0.005 in the meta-anal-
ysis of the Gene SMART and E-MTAB-11282 cohorts 
(Additional file 2). A global examination of all the statis-
tical tests performed did not reveal an inflation of near 
zero p-values, suggesting that males and females do not 
differ in their epigenetic response to 4  and  8  weeks of 
endurance training (Additional file 1: Fig. S1A).

In contrast, training triggered marked sex-specific 
proteome changes in muscle. We identified 189 proteins 
that showed different degrees of response between the 
sexes (π-value < 0.005 for interaction between sex and 
training; Fig.  3A). Approximately two-thirds (67%) of 
the proteins showing a sex-specific response displayed 
a larger increase in males compared with females. Pro-
teins showing the most robust (i.e. largest π-value) sex-
specific response to HIIT include SIRT3, MRPL41, and 
MBP (Fig.  3B). For example, SIRT3 showed an overall 
small and insignificant 0.13 logFC following HIIT when 
males and females are pooled together (π value = 0.85), 
but analysing the data for a sex-specific response 
revealed that HIIT-induced changes in SIRT3 levels 
were ~ 3 times greater in males compared with females 
(π value = 7.5 ×  10−10; 1.2 logFC in males compared with 
females; Fig. 3A). Proteins showing a sex-specific training 
response were enriched for Reactome pathways involved 
in protein metabolism and mRNA splicing/binding 
(Fig.  3C; Additional file  2). To understand whether this 
sex-specific response may be due to sex-specific dif-
ferences in fibre type proportions (as sex differences in 
fibre type proportions have been previously identified in 
the Gene SMART cohort [20] and other cohorts [56]), 
we overlapped the proteins we identified as showing a 

(See figure on next page.)
Fig. 2 Sex‑specific proteome and DNA methylome responses to an endurance training intervention and sex‑specific proteome at baseline. A 
Volcano plot showing the sex‑specific effect of 4 weeks of HIIT on the 2317 tested proteins. X‑axis is the log2 of fold change in males compared 
to females; y‑axis is the − log10 of unadjusted p‑value. The 195 significant proteins (π‑value < 0.005; computed according to [35]) are displayed 
in colours, with red dots denoting proteins with a positive coefficient in males compared to females following HIIT, and blue dots denoting those 
with a negative coefficient. Top 20 significant proteins are labelled. Violin plots to left indicates expression levels (arbitrary units) of SIRT3 in data 
pooled for sexes (upper) and stratified by sex (lower) before and after HIIT; horizontal line in violin indicates the median. B Histogram of raw p‑values 
for the sex‑specific effect of training on the proteome. E Volcano plot showing the sex‑specific effect of 4 and 8 weeks of training on the 641,715 
tested CpGs. The nine DMPs at a false discovery rate (FDR) < 0.005 are displayed in colorus, with red dots denoting DMPs with a larger coefficient 
in males, and blue dots denoting DMPs with a lower coefficient in males. C Top five Reactome pathways from gene set enrichment analysis 
of the differentially expressed proteins between the sexes following HIIT. D Heatmap of scaled protein expression values for the top 30 significant 
proteins (π‑value < 0.005) that change in a sex‑specific manner following HIIT. Rows are proteins ordered hierarchically according to the clustering 
in the female cohort; columns are female (left) and male (right) participants ordered according to hierarchical clustering within each time point. 
Purple denotes higher expression and orange denotes lower expression. Colour scales are separate for each sex. F Histogram of raw p‑values 
for the sex‑specific effect of training on the methylome. G Volcano plot showing the effect of sex on baseline levels 2317 tested proteins. X‑axis 
is the log2 of fold change in males compared to females; y‑axis is the − log10 of unadjusted p‑value. The 82 significant proteins (π‑value < 0.005; 
computed according to [35]) are displayed in colours, with red dots denoting proteins higher expression in males compared to females at baseline, 
and blue dots denoting those lower in males. Boxplot on right denote protein ACTN3 with higher expression in males compared with females 
at baseline
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Fig. 2 (See legend on previous page.)
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sex-specific response to training with those reported to 
differ between type I and type II muscle fibres in response 
to training [5] (134 fibre-specific proteins). For example, 
if the sex-specific protein changes were driven by fibre-
specific responses to exercise, we would expect fibre-
specific proteins to be overrepresented among the 189 
proteins we identified as showing a sex-specific response. 
There were only eight fibre-specific proteins among the 
189 proteins, which was a non-significant overlap (hyper-
geometric test p-value = 0.26).

Cardiorespiratory fitness has a strong, universal signature 
on the muscle methylome, but not on the muscle 
proteome
Despite the lack of convincing evidence for a sex-spe-
cific DNA methylation response to short-term train-
ing, it is possible that 4/8 weeks of exercise training may 

have been too short to reliably detect sex-specific epige-
netic responses to exercise training. Therefore, we then 
assessed whether lifelong training was associated with 
a sex-specific epigenetic signature in skeletal muscle. 
Baseline levels of cardiorespiratory fitness, or VO2max, 
reflect a combination of lifelong training, genetics, and 
other variables (age, sex, etc.). The signature of CRF on 
the muscle methylome was similar in males and females 
(FDR < 0.005 for sex-by-fitness interaction; Additional 
file  2). A global examination of all the statistical tests 
performed genome-wide did not reveal an inflation of 
near zero p-values, supporting results from the training 
intervention indicating a lack of sex-specific epigenetic 
response to exercise training (Additional file 1: Fig. S1D).

Irrespective of sex, we observed a strong signature of 
CRF, represented by baseline VO2max, on the skeletal 
muscle methylome (Additional file  2). We found 19,257 

Fig. 3 The effect of sex on the proteome and DNA methylome associations with cardiorespiratory fitness. A Volcano plot showing the effect of sex 
on cardiorespiratory fitness (CRF; baseline VO2max) on the 2317 tested proteins. X‑axis is the log2 of fold change in males compared to females; 
y‑axis is the –log10 of unadjusted p‑value. No significant proteins were identified (π‑value < 0.005; computed according to [35]). B Volcano 
plot showing the effect of sex on CRF on the 641,715 tested CpGs. The six differentially methylated positions (DMPs) at a false discovery rate 
(FDR) < 0.005 are displayed in colours, with red dots denoting DMPs with a larger coefficient in males, and blue dots denoting DMPs with a lower 
coefficient in males. Dotplot to the right displays DNAm beta‑values of the denoted DMP in Gene SMART cohort individuals corresponding 
to CRF, coloured by sex. Plotted beta values, residuals from batch produced similar results. C Histogram of raw p‑values for the sex‑specific effect 
on the proteome. D Histogram of raw p‑values for the sex‑specific effect on the methylome
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DMPs associated with CRF (FDR < 0.005), with moder-
ate-to-large effect sizes (−  0.8% to 0.5% DNA methyla-
tion difference per unit of VO2max (Fig. 3A; Additional 
file  1: Fig. S1E, S2B). Given that VO2max ranged from 
22 to 65 (Gene SMART) and 16.0–34.6 (EMTAB-11282) 
min/L/kg, a CRF-associated CpG differed up to ~ 30% 
between the fittest and least fit individuals of the cohorts. 
31% of DMPs increased in methylation in fitter individu-
als and were underrepresented in CpG islands and active 
promoters while overrepresented in enhancers and in 
regions flanking active promoters (Fig. 3B, C; Additional 
file 1: Fig. S3) (χ2 p-value < 2.2e−16). DMPs clustered into 
1948 differentially methylated regions (DMRs) located 
in 1873 unique genes (Differentially Methylated Genes, 
DMGs) (Additional file 2). DMPs were involved in Reac-
tome pathway muscle contraction, (FDR = 0.03; Addi-
tional file 2), as well as several skeletal muscle-related GO 
terms such as actin filament-based process, myofibril, 
and muscle contraction (Additional file  2). There was a 
significant overlap between the differentially methylated 
genes we identified, and genes previously reported to dis-
play DNA methylation and transcriptional changes after 
3 months of leg-extensor training [4] (hypergeometric 
test p-value = 4.0 ×  10–14), such as SMAD3.

We did not observe a distinct signature of CRF on 
the skeletal muscle proteome, with no proteins associ-
ated with CRF (π-value < 0.005; Fig.  3A). Furthermore, 
we found no proteins to be differentially associated with 
CRF between the sexes (Additional file 1: Fig. S1J).

Integration of sex differences in the DNA 
methylome and proteome associated with training 
and cardiorespiratory fitness
We integrated the summary statistics for sex-specific 
DNA methylation (meta-analysis of Gene SMART 
study and E-MTAB-11282) with summary statistics for 
sex-specific proteome (Gene SMART) both following 
training and in association with CRF (Figs.  4, 5). The 
integration ranks the genes in each -omic layer and con-
siders all genes tested, allowing an integration despite 
lack of significant findings, and outputs enriched path-
ways. Reactome pathways TCA cycle, respiratory elec-
tron transport, pyruvate metabolism, metabolism, and 
mitochondrial biogenesis were enriched among the 
integration of the sex-specific proteome and methylome 
following training (MANOVA p value < 0.005; Fig.  4A, 
B; Additional file  3). The most significant pathway in 
the integration of sex-specific training response of the 
methylome and proteome was TCA cycle and respira-
tory electron transport (MANOVA p value 1.1 ×  10–7; 
effect size = 0.4; Fig. 4C), with the top three genes being 
NDUFS6, NDUFS2, and TACO1.

We next performed the same -omics integration for 
associations with CRF. Reactome pathways such as the 
TCA cycle, respiratory electron transport, nonsense 
mediated decay, and rRNA processing were enriched 
among the integration of sex-specific association with 
CRF of the proteome and methylome (MANOVA p 
value < 0.005, Fig. 5A, B; Additional file 4). The most sig-
nificant pathway in the integration of sex-specific asso-
ciation with CRF in methylome and proteome was TCA 
cycle and respiratory electron transport (MANOVA p 
value 9.7 ×  10–8; effect size = 0.4; Fig.  5C), with the top 
three genes being NDUFS7, NDUFC2, and NDUFS4.

Training and cardiorespiratory fitness converge 
the sex-biased DNA methylomes of males and females
Given that the muscle methylomes display profound sex 
bias at rest (56,798 DMPs [20]) and that exercise training 
and CRF modulate the methylome similarly in males and 
females, we next wondered whether methylomes of males 
and females converge or stay equally dissimilar with exer-
cise training. In other words, whether trained males and 
trained females are more similar than untrained males 
and untrained females, on an epigenetic level. To address 
this, we investigated the effect of training and CRF on 
sex-biased DMPs. We found that the first dimension of 
the principal component analysis (PCA) of sex-biased 
DMPs was negatively correlated with CRF (R = −  0.3, 
p = 0.0005; Fig. 6A) and slightly negatively correlated with 
the training intervention (R = −  0.17, p = 0.05; Fig.  6D). 
To further corroborate that training and CRF have nega-
tive (i.e. opposite) effects on sex-biased DNA methylation 
loci, which would suggest that training and CRF have the 
opposite effect of sex at these loci and that sex methyl-
omes converge with fitness, we compared the effects of 
sex vs sex*training and sex vs sex*CRF at these loci. We 
found that both sex*CRF and sex*training effect sizes 
were negatively correlated with sex effect sizes at sex-
biased DNA methylation loci (Fig.  6B, E, G). Lastly, to 
visualise whether training and CRF modulate the sex-
biased methylome, we compared the residuals of the 
linear models not containing the covariate of interest 
(training or CRF). This allowed to visualise whether train-
ing or CRF shifted the sex-biased methylome, when all 
other factors such as sex and age, were removed. Residu-
als of sex-biased DMPs clustered according to CRF and 
timepoint on both of the first dimensions (Fig.  6C, F), 
suggesting that CRF and timepoint contribute to the vari-
ance of sex-DMPs.
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Discussion
We investigated whether genome-wide DNA meth-
ylation and protein-wide expression in skeletal mus-
cle have sex-specific responses to endurance training 

and whether male and female muscle displays distinct 
DNA methylation or protein signatures of baseline 
CRF. Finally, we investigated whether training or CRF 
converge the sex-biased DNA methylomes of males 

Fig. 4 Integration of sex‑specific proteome and DNA methylome responses to training. A Summary statistics of the Reactome pathways enriched 
among the sex‑specific response to training in the integration of the proteome and DNA methylome (FDR < 0.005). B Heatmap of the pathways 
in A; colour key denotes direction of effect size. C The distribution of genes in the most significant pathway, TCA cycle and respiratory electron 
transport pathway; grey areas denote the distribution of ranks of all detected genes, with median and quartiles depicted by the wide boxplot. 
Distribution of Reactome pathway members is shown by the black violin, with median and interquartile ranges given by the narrow boxplot
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and females. The endurance training interventions 
induced modest changes in the DNA methylome, and 
we detected no sex-specific response; whereas, a train-
ing intervention induced more robust changes in the 
proteome as well as a sex-specific response. CRF at 
baseline was associated with widespread DNA methyla-
tion changes and minimal protein changes in muscle, 

but these were independent of sex. Proteins associated 
with a sex-specific response to training were involved 
in biological processes known to display sex differ-
ences among other gene regulatory levels, such as 
protein metabolism and mRNA splicing/binding path-
ways. The integrations of the DNA methylome and 
proteome both following training and in association 

Fig. 5 Integration of sex‑specific proteome and DNA methylome association with cardiorespiratory fitness. A Summary statistics of the Reactome 
pathways enriched among the sex‑specific association with cardiorespiratory fitness (CRF) in the integration of the proteome and DNA methylome 
(FDR < 0.005). B Heatmap of the pathways in A; colour key denotes direction of effect size. C The distribution of genes in the most significant 
pathway, TCA cycle and respiratory electron transport pathway; grey areas denote the distribution of ranks of all detected genes, with median 
and quartiles depicted by the wide boxplot. Distribution of Reactome pathway members is shown by the black violin, with median and interquartile 
ranges given by the narrow boxplot
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with cardiorespiratory revealed sex-specific regulation 
of TCA and electron transport pathways. Finally, CRF 
and training converged the methylomes of males and 
females. Altogether, this proposes that long-term train-
ing, as is represented by CRF, induces lasting effects in 
the methylome, but that perhaps the proteome is more 
transient in nature. Furthermore, short-term training (4 
or 8 weeks of endurance) may elicit a greater acute pro-
teomic response than the methylome, given its more 
transient nature. These data suggest that while the 
acute response to training is more pronounced in the 
proteome and is sex-specific, the long-term effects are 
better portrayed by the methylome and converge the 
methylomes of the sexes. Overall, our findings imply 

that long-term training shifts the molecular profiles of 
males and females similarly.

DNA methylome and training
Four and 8 weeks might be relatively short training 
interventions to elicit changes in DNA methylation, in 
particular for Gene SMART’s recreationally active par-
ticipants, nonetheless, we detected small overall changes 
in the muscle methylome after training, most of which 
were hypomethylated. This was corroborated by our 
observation that fitter individuals displayed hypometh-
ylation compared with less fit individuals. A handful of 
studies have reported DNA methylation changes in skel-
etal muscle after short-term (< 6 months) resistance or 

Fig. 6 Effect of training and cardiorespiratory fitness (CRF) on sex‑biased DNA methylation sites. Pearson correlation between the first 
dimension of the principal component analysis (PCA) of the 56,798 sex‑differentially methylated positions (DMPs, at baseline, from [20]) and A 
cardiorespiratory fitness (baseline VO2max) or D timepoint (of training intervention). “PRE” denotes before the training intervention and “4WP” 
denotes following the training intervention. Data represented are from the Gene SMART study. Correlation between the effect sizes of sex versus B 
sex*CRF and versus E sex*training for the 56,798 sex‑DMPs. Principal component analysis of residuals of model for C CRF and F training at the 56,798 
sex‑DMPs. Each dot is an individual and colours denote VO2max (mL/min/kg; C) and timepoint (F). G Heatmap of the effect sizes of the sex‑DMPs 
for sex, sex*CRF, and sex*training. Each row is a sex‑DMP; red denotes a positive effect size and blue denotes a negative effect size (scaled). H 
Boxplot of a CpG site (cg02380025) which has opposite effect sizes for the effect of sex versus sex*training. The left boxplot represents the effect 
of sex and the right boxplot represents the effect of sex*training. Y‑axis is the DNAm beta values
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endurance exercise training [4, 46, 57]. Conversely to our 
results, existing studies reported equal global fractions of 
hypo- and hyper-methylation following training [4, 46, 
57]. Two of these studies contained only males, and in the 
only study containing females [4], sex was confounded 
with batch and therefore could not be statistically taken 
into account. Batch effects in the Illumina arrays can 
significantly confound results and it is often not possi-
ble to resolve signal when batches are confounded with 
variables of interest [58], therefore samples should be 
strategically positioned in the array. Thus, the dispar-
ity in fractions of global hyper- and hypo-methylation 
between our study and those in the literature may be due 
to the inclusion of both sexes and the subsequent statis-
tical adjustment. One study failed to detect changes in 
the muscle methylome after HIIT/resistance/combined 
training [47], but their analysis was restricted to promot-
ers and to DNA methylation changes > 5%. In the present 
study, fitness-related DMPs were depleted across active 
promoters, which is consistent with enrichment reported 
by Lindholm et  al. among enhancers, gene bodies, and 
intergenic regions [4]. In addition, we, as well as oth-
ers [4, 57], detected only modest (< 6%) effect sizes with 
training, suggesting that Robinson et  al. were unable to 
detect exercise-induced changes because of their strin-
gent effect size threshold and limited genome coverage.

Proteome and training
Despite the DNA methylome not exhibiting a sex-spe-
cific response to training, the proteome responded in 
a sex-specific manner. Studies in males [5, 10, 12–14] 
and one study including both males and females [11] 
have found that various exercise training interventions 
induce skeletal muscle proteomic changes, however no 
studies to our knowledge have investigated proteomic 
sex differences at baseline or in response to exercise 
training in skeletal muscle [59]. Apart from Hostrup 
et  al. which included 21 males, the abovementioned 
proteome-wide studies had relatively small sample sizes 
(< 12 total participants), and the only study includ-
ing both sexes comprised six healthy controls and six 
type II diabetics (overall only four females); therefore 
making it challenging to elucidate potential sex dif-
ferences with the existing proteomic data available. In 
the current study, the proteins which changed follow-
ing training in a sex-specific manner were enriched 
for pathways involved in protein metabolism, which 
has frequently been shown to display sex differences at 
rest as well as during/following exercise across various 
layers of physiology and gene regulation [60]. Specifi-
cally, at the RNA level, male-biased gene transcripts in 
resting skeletal muscle are enriched for protein catabo-
lism [15]. At the more fundamental physiological level, 

males excrete less urea in urine than females following 
exercise [61], indicating higher oxidation of proteins in 
males urea excretion, as urea excretion is used to esti-
mate the relative contribution of amino acid oxidation 
to intermediary metabolism [60, 61]. In the sex-specific 
proteomic response to training, we found that riboso-
mal, mitochondrial, and RNA binding/splicing path-
ways were enriched among proteins associated with 
sex and training, shedding light on mechanisms in 
which sex-specific regulation should be further inves-
tigated. Sex-specific mRNA splicing [15] and transcrip-
tion factor binding [17] have been reported in human 
skeletal muscle, suggesting that various aspects of gene 
regulation display sex bias. However, our data suggest 
that sex-specific gene regulation via DNA methylation 
is not apparent following training. The lack of overlap 
between sex-specific training proteins (current study) 
and previously identified sex-specific training mRNA 
[21] suggests that the various layers of gene regulation 
(i.e. DNA methylation, transcription, translation) have 
intricate roles in affecting consequent biological func-
tion and that they do not mirror one another. This is 
likely conserved across species, as studies in bacterial 
growth report low correlation between transcriptome 
and proteome, indicating that changes in the proteome 
are highly influenced by pre-translational regulators, 
such as small non-coding RNAs [62]. In addition to the 
effect of sex on the muscle proteome, the effect of fibre- 
and cell-type must also be taken into consideration in 
protein-wide analysis. Given fibre type-specific pro-
tein expression patterns both at rest and in response to 
training [5], it was important to elucidate whether the 
differences in fibre type proportions between the sexes 
contributed to the observed proteomic sex differences. 
The insignificant overlap between proteins differentially 
expressed between the sexes following training (cur-
rent study) and those differentially expressed between 
the fibre types following training [5] implies that the 
observed sex-specific proteomic response to training 
was not due to differences in fibre type proportions.

DNA methylome and CRF
In our cross-sectional sample of healthy individuals, 
CRF reflects years, if not lifelong patterns of regular 
physical activity. Although VO2max capacity is partially 
(~ 22–57%) inherited [63], nevertheless, it is represent-
ative of lifelong endurance training in various cohorts 
[64–66]. Individuals with higher CRF displayed dis-
tinct DNA methylation patterns, with no sex-specific 
differences. This suggests that lifelong physical activity 
induces similar changes in the male and female mus-
cle methylomes, which is consistent with the lack of 
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sex-specific response to training observed. CRF-associ-
ated regions were mostly found to be hypermethylated 
and were enriched in enhancers and regions flanking 
active promoters while depleted in active promoters. 
In contrast, Sailani et  al. found that lifelong physical 
activity was associated with promoter hypomethyla-
tion in older healthy men [67]; discrepancies between 
our results and theirs may be due to the differences in 
genomic coverage owing to the utilisation of a differ-
ent DNA methylation technique, as well as age and sex 
of participants. Studies comparing other -omic levels 
across people of varying fitness levels is warranted to 
understand the effect of lifelong training on molecular 
signatures in skeletal muscle.

Proteome and CRF
There are limited studies which have investigated the 
effect of training status in males [68] (n = 5 trained; 5 
untrained) or in both sexes [69] (n = 42 total; 11 trained/
young, 11 sedentary/young, 10 trained/old, 10 sedentary/
old) on protein-wide expression and none have investi-
gated for potential sex differences. Both studies identi-
fied proteins which differ between trained and untrained 
individuals. The only study to include females did not 
state whether they took sex into consideration in their 
statistical analysis [69], despite the recognised effect of 
sex on other skeletal muscle-omic profiles [19]. In the 
current study, we did not identify sex-specific proteomic 
patterns associated with CRF; moreover, the absence of 
changes associated with CRF suggest that protein expres-
sion in the muscle may not reflect lifelong adaptations.

Integration of -omic layers (CRF and training)
Integration of -omic layers may provide deeper insight on 
affected molecular pathways than a single -omic level, as 
all tested genes are inputted and ranked for the integra-
tion analysis (as opposed to simply identifying signifi-
cant genes in one layer). The integration of proteome and 
methylome identified mitochondrial energy metabolism-
related pathways, such as TCA cycle, respiratory electron 
transport, and mitochondrial biogenesis, which may be 
regulated differently between males and females both 
following a training intervention and in association with 
CRF. Similar pathways were enriched among sex-specific 
training and sex-specific CRF genes. This suggests that 
while the proteome appears to respond to acute adapta-
tions in a sex-specific manner for the abovementioned 
pathways, the sex-specific effect of sustained training 
is only observed with the integration, and affects the 
same pathways as acute training. Irrespective of sex, the 
modest effect of exercise training and the robust effect 
of CRF on the DNA methylome suggest that exercise-
induced DNA methylation changes are dependent on 

the sustained stimuli (i.e. training over more extended 
periods leads to more pronounced epigenetic changes 
in muscle); wheras the robust effect of exercise training 
and the absence of effect of CRF on the proteome suggest 
that exercise-induced protein changes are more acute 
and transient in nature. Altogether, this sheds light on the 
differing and complex roles of various -omic layers in the 
molecular response and adaptation to exercise.

One other study investigated whether CRF modulates 
sex differences in skeletal muscle-omic profiles. Chap-
man et  al. [70] reported that lifelong endurance train-
ing diminishes transcriptomic sex differences in skeletal 
muscle. However, this study did not analyse for an inter-
action between training status and sex, rather, the num-
ber of differentially expressed genes between trained 
males and females was compared to the number of dif-
ferentially expressed genes between untrained males and 
females. Therefore, no firm conclusions can be drawn 
from the study. For the first time, we report that exer-
cise training shifts the DNA methylomes of males and 
females to appear more similar to one another.

The transcriptome has been thoroughly investigated for 
sex-specific changes following exercise training. In a sin-
gle cohort (12 males and 11 females), no transcriptomic 
differences were observed between the sexes follow-
ing training despite baseline transcriptomic differences 
[4]. However, utilising a meta-analysis (409 males and 
310 females), Amar et al. detected sex differences in the 
transcriptomic response to training (247 genes). Thus, 
it cannot be excluded that additional cohorts could pro-
vide sufficient power to detect sex differences in the DNA 
methylome in response to training. Altogether, our find-
ings indicate that short-term training similarly alters the 
male and female skeletal muscle methylomes. However, 
the paucity of studies on the topic means it is too early to 
draw firm conclusions.

Strengths and limitations
Participants in our human cohort ranged from sedentary to 
recreationally active, to exceptionally active (one male and 
one female outliers). This heterogeneity in baseline fitness 
levels may limit our ability to detect changes in the DNA 
methylome and proteome following training, as changes in 
physiological and molecular measures may differ in mag-
nitude depending on the exercise training history of the 
individual. To address this potential limitation, we assessed 
whether DNA methylation and protein changes associ-
ated with training were also associated with CRF (time-
by-CRF interaction). Although we found no significant 
loci, the inflation of near zero p-values for the methylome, 
but not the proteome, suggests that there may be an asso-
ciation between baseline fitness levels and level of DNA 
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methylation training response but that we were underpow-
ered to detect it. This further supports our observation that 
lifelong fitness is better-characterised by the DNA methy-
lome, as the DNA methylomic response to training was 
potentially influenced by baseline CRF, and not the same is 
true of the more transient proteome. In contrast, a hetero-
geneous cohort might be advantageous as it better reflects 
the general population. Given that baseline CRF is associ-
ated with sex, the study presents collinearity issues. The 
inherent link between sex and CRF may explain why some 
of the presented p-value distributions are not flat and seem 
to have less low and less high p-values than expected (e.g., 
Fig. 2F), suggesting over-correction of the data. This is not a 
shortcoming of the analysis, rather, a limitation of the data 
due to small sample sizes. Although the current study had a 
sample size considerably larger than previous studies with 
human muscles (typically n = 7–10), larger sample sizes, 
multi-site studies and initiatives, and open access data shar-
ing, are required to detect the shifts in the proteome and 
methylome achieved with exercise training.

Perspectives and significance
Overall, these findings emphasise the need for taking 
sex into consideration in exercise physiology studies 
as we found that biological sex affects the proteome at 
baseline and its response to exercise training. Further-
more, our study sheds light on the similar epigenetic 
response between males and females to lifelong, sus-
tained cardiorespiratory fitness. These findings support 
that biological sex has a large impact on skeletal muscle 
physiology, gene regulation, and exercise metabolism. 
A recent meta-analysis of the muscle transcriptome 
response to exercise training reports hundreds of genes 
differentially expressed between males and females in 
response to exercise training [21]. Thus, our study inves-
tigates two other important layers of genomic regulation 
that have yet to be investigated for potential sex differ-
ences in response to training. These findings highlight 
the complexity of various genomic layers in modulating 
the molecular response to exercise, as well as highlight 
the effect of sex on each -omic layer and its modulatory 
behaviour in exercise adaptations.

Conclusions
Short-term exercise training induced robust and sex-
specific changes in the proteome with few and sex-inde-
pendent changes in the muscle methylome. In contrast, 
CRF, which represents lifelong physical activity pat-
terns, was associated with marked and sex-independent 
DNA methylation signatures. Altogether, our study elu-
cidated the effect of sex on the DNA methylome and 
proteome responses to exercising training in human 

skeletal muscle. Given that the majority of studies inves-
tigating the molecular response to exercise training have 
not taken sex into consideration, this study is pivotal in 
advancing our current knowledge of molecular exercise 
physiology.
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Additional file 1: Figure S1. Histogram of p‑values for DNA meth‑
ylation and protein expression for all tested CpGs and proteins. DNA 
methylation (meta‑analysis) histograms are A‑F; proteomics (Gene 
SMART) histograms are G‑K. (A) P‑value histogram for the effect of 
training, model DNAm ~ sex + timepoint + batch (Gene SMART) + lean/
obese (E‑MTAB‑11282) + age + baseline VO2. (B) P‑value histogram for 
the interaction of sex and the training, model DNAm ~ sex * time‑
point + batch (Gene SMART) + lean/obese (E‑MTAB‑11282) + age + base‑
line VO2. (C) P‑value histogram for the interaction of baseline VO2 (CRF) 
and training, model DNAm ~ sex + batch (Gene SMART) + lean/obese 
(E‑MTAB‑11282) + age + baseline VO2 * timepoint. (D) P‑value histogram 
for the interaction of sex and baseline VO2 (CRF), model DNAm ~ time‑
point + batch + age + baseline VO2 * sex. (E) P‑value histogram for 
baseline VO2 (CRF), model DNAm ~ timepoint + batch + age + baseline 
VO2 + sex. (F) P‑value histogram for the control time point (“CON”; one 
month control period) relative to the PRE time point (Gene SMART 
only, before starting the HIIT intervention), model DNAm ~ sex + time‑
point + batch + age + baseline VO2. (G) P‑value histogram for the effect 
of training, model protein expression ~ sex + timepoint + age + baseline 
VO2. (H) P‑value histogram for the interaction of sex and the training, 
model protein expression ~ sex * timepoint + age + baseline VO2. (I) 
P‑value histogram for the interaction of baseline VO2 (CRF) and training, 
model protein expression ~ sex + age + baseline VO2 * timepoint. (J) 
P‑value histogram for the interaction of sex and baseline VO2 (CRF), model 
protein expression ~ timepoint + age + baseline VO2 * sex. (K) P‑value 
histogram for baseline VO2 (CRF), model protein expression ~ time‑
point + age + baseline VO2 + sex. Figure S2. Volcano plots for proteomics 
and DNA methylation associations with training regardless of sex, sex, and 
cardiorespiratory fitness (CRF) regardless of sex. (A) Volcano plot of DNA 
methylome association with training, irrespective of sex. Red dots denote 
differentially methylated positions (DMPs) whose methylation increased 
with training; blue dots denote DMPs whose methylation decreased with 
training; black dots denote insignificant CpGs. Boxplots are the methyla‑
tion levels (beta values residuals for batch) of the DMP pointed to, before 
and after training in the Gene SMART cohort. (B) Volcano plot of DNA 
methylome association with CRF, irrespective of sex. Red dots denote 
differentially methylated positions (DMPs) whose methylation increased 
with baseline VO2max (CRF); blue dots denote DMPs whose methylation 
decreased with baseline VO2max (CRF); black dots denote insignificant 
CpGs. Scatterplots are the methylation levels of the DMP pointed to (beta 
values residuals for batch), plotted against baseline VO2max in the Gene 

https://doi.org/10.1186/s13293-023-00539-2
https://doi.org/10.1186/s13293-023-00539-2


Page 18 of 20Landen et al. Biology of Sex Differences           (2023) 14:56 

SMART cohort. (C) Volcano plot of proteome association with training in 
the Gene SMART cohort, irrespective of sex. Red dots denote differen‑
tially expressed proteins whose expression increased with training; blue 
dots denote proteins whose expression decreased with training; black 
dots denote insignificant proteins. Boxplots are the protein levels of the 
protein pointed to, before and after training. (D) Volcano plot of proteome 
association with CRF, irrespective of sex in the Gene SMART cohort. Black 
dots denote insignificant proteins. Figure S3. Correlation plots of residuals 
from the chi2 test for baseline fitness‑DMPs enriched among the differing 
(A) Roadmap Epigenome project chromatin states and (B) CpG island 
locations. Blue denotes enrichment and red denotes depletion. Figure 
S4. Proteomics data before and after normalisation and plex correc‑
tion.  Log2 intensities (A) before and (B) after normalisation. (C) PCA plot 
of all samples in Gene SMART cohort after VSN normalisation and plex 
correction, each colour denotes a plex. Samples used in the manuscript 
were subsetted from a larger proteomics study. Figure S5 Sensitivity 
analyses for DNA methylation analysis. (A) Sensitivity analysis for using all 
covariates in one linear model or using a separate linear model (original) 
to detect delicate interaction between CRF and sex. 2D plot of effect sizes 
of each CpG for sex:CRF when comparing using one model (~ timepo
int*sex + age + batch + baselineVO2*sex) vs a separate model (~ time‑
point + age + batch + baselineVO2*sex). (B) Sensitivity analysis for using all 
covariates in one linear model or using a separate linear model (original) 
to detect delicate interaction between training and sex. 2D plot of effect 
sizes of each CpG for sex:training when comparing using one model (~ 
timepoint*sex + age + batch + baselineVO2*sex) vs a separate model 
(~ timepoint*sex + age + batch + baselineVO2). (C/D) Sensitivity analysis to 
ensure that a potential batch effect was not influencing our main findings, 
as one of the two batches in the Gene SMART data contained only males. 
We limited our analysis to only batch 2 in the Gene SMART study, which 
contained both males and females. We compared the effect sizes for coef‑
ficients of (C) sex:training and (D) sex:CRF (baseline VO2max) for all Gene 
SMART data (original) vs batch 2 of Gene SMART data at all CpGs. (E/F) 
Sensitivity analysis for effect of CRF on the DNA methylome by comparing 
to PRE‑training samples only. 2D plot of effect sizes of (E) each CpG and (F) 
DMPs (FDR < 0.005) for effect of CRF on the DNA methylome, regardless 
of sex in Gene SMART cohort in all samples vs the Gene SMART cohort 
limited to PRE samples. Effect sizes are of beta values, FDR from M values. 

Additional file 2: All results for: (1) proteins associated with sex*training. 
(2) proteins associated with sex, regardless of training or CRF. (3) proteins 
associated with training, regardless of sex. (4) proteins associated with CRF, 
regardless of sex. (5) proteins associated with sex*CRF. (6) DMPs associated 
with sex*training. (7) DMPs associated with sex*CRF. (8) DMPs associated 
with training, regardless of sex. (9) DMPs associated with CRF, regardless 
of sex. (10) enriched GO terms for DMPs with training, regardless of sex. 
(11) enriched GO terms for DMPs with CRF, regardless of sex. (12) enriched 
Reactome pathways for DMPs with training, regardless of sex. (13) 
enriched Reactome pathways for DMPs with CRF, regardless of sex. (14) 
enriched Reactome pathways for proteins with sex*training. (15) enriched 
GO terms (molecular function, cellular component, biological process) for 
proteins with sex*training. (16) enriched KEGG pathways for proteins with 
sex*training. (17) enriched Reactome pathways for proteins with train‑
ing, regardless of sex. (18) enriched GO terms for proteins with training, 
regardless of sex. (19) enriched KEGG pathways for proteins with training, 
regardless of sex. (20) enriched Reactome pathways for proteins with sex, 
regardless of training or CRF. (21) enriched GO terms for proteins with sex, 
regardless of training or CRF. (22) enriched KEGG pathways for proteins 
with sex, regardless of training or CRF. 

Additional file 3: Integration of DNA methylome and proteome for 
sex*training, output from MITCH package. 

Additional file 4:  Integration of DNA methylome and proteome for 
sex*CRF, output from MITCH package.
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