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Coronary artery calcification and aortic valve 
calcification in patients with kidney failure: 
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Abstract 

Background Chronic kidney disease (CKD) is linked to an increased cardiovascular disease (CVD) burden. Albeit 
underappreciated, sex differences are evident in CKD with females being more prone to CKD development, but males 
progressing more rapidly to kidney failure (KF). Cardiovascular remodelling is a hallmark of CKD with increased arterial 
and valvular calcification contributing to CKD. However, little is known regarding sex differences in calcific cardiovas‑
cular remodelling in KF patients. Thus, we hypothesise that sex differences are present in coronary artery calcification 
(CAC) and aortic valve calcification (AVC) in patients with KF.

Methods KF patients, males (n = 214) and females (n = 107), that had undergone computer tomography (CT) assess‑
ment for CAC and AVC were selected from three CKD cohorts. All patients underwent non‑contrast multi‑detector 
cardiac CT scanning, with CAC and AVC scoring based on the Agatston method. Baseline biochemical measurements 
were retrieved from cohort databases, including plasma analyses for inflammation markers (IL‑6, TNF, hsCRP) and oxi‑
dative stress by skin autofluorescence measuring advanced glycation end‑products (AGE), amongst other variables.

Results Sex‑disaggregated analyses revealed that CAC score was associated with age in both males and females 
(both p < 0.001). Age‑adjusted analyses revealed that in males CAC was associated with diabetes mellitus (DM) 
(p = 0.018) and CVD (p = 0.011). Additionally, for females CAC associated with IL‑6 (p = 0.005) and TNF (p = 0.004). In 
both females and males CAC associated with AGE (p = 0.042 and p = 0.05, respectively). CAC was associated with mor‑
tality for females (p = 0.015) independent of age. AVC in females was not reviewed due to low AVC‑positive samples 
(n = 14). In males, in multivariable regression AVC was associated with age (p < 0.001) and inflammation, as measured 
by IL‑6 (p = 0.010).

Conclusions In female KF patients inflammatory burden and oxidative stress were associated with CAC. Whereas 
in male KF patients oxidative stress and inflammation were associated with CAC and AVC, respectively. Our findings 
suggest a sex‑specific biomarker signature for cardiovascular calcification that may affect the development of cardio‑
vascular complications in males and females with KF.
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Highlights 

• The gold standard technique of computer-tomography was used to measure coronary artery calcification (CAC) 
and aortic valve calcification (AVC) scores in males and females with kidney failure.

• In male kidney failure patients age and inflammatory burden was significantly associated with AVC. In addition, 
cardiovascular disease, diabetes, and oxidative stress were significantly associated with CAC score.

• In female kidney failure patients age, oxidative stress, and inflammation were significantly associated with CAC 
score.

• Cardiovascular calcification presents with  a  sex-specific biomarker signature that  may affect cardiovascular 
complications in males and females with kidney failure.

Keywords Calcification, Calcific aortic valve disease, Cardiovascular disease, Chronic kidney disease, Inflammation, 
Oxidative stress, Vascular remodelling

Plain language summary 

Chronic kidney disease (CKD) is a condition that affects the kidneys and increases the risk of heart problems. Males 
and females may experience CKD differently, and our study aimed to understand the differences in the development 
of calcification in the blood vessels of the heart (coronary artery calcification, or CAC) and the heart valves (aortic 
valve calcification, or AVC) between males and females with CKD.

We analysed 214 males and 107 females with CKD who had undergone a heart scan (computer tomography, or CT) 
to measure CAC and AVC. We collected information on age, diabetes, cardiovascular disease, and markers of inflam‑
mation and oxidative stress.

Our results showed that in both males and females CAC was associated with age. In males, CAC was associated 
with diabetes and cardiovascular disease, while in females, it was linked to markers of inflammation. In females, CAC 
was also associated with mortality regardless of age. Unfortunately, we had insufficient samples of females with AVC 
for analysis. However, in males AVC was associated with age and inflammation.

Overall, our study indicates sex‑specific differences in the development of calcification in the blood vessels and heart 
valves of CKD patients. In females, inflammation and oxidative stress are associated with CAC, while in males, oxidative 
stress and inflammation are associated with CAC and AVC, respectively. These findings underscore the importance 
of considering these differences when assessing cardiovascular complications in CKD patients. It may help in develop‑
ing personalised treatment approaches for both males and females with CKD.

Background
Chronic kidney disease (CKD) is a debilitating dis-
ease that has become a worldwide health care burden 
affecting foremost individuals with burden of lifestyle 
diseases, such as diabetes and hypertension [1]. CKD 
is linked to an increased risk for cardiovascular dis-
ease (CVD) and mortality, with the elderly and females 
more prone to CKD development [2]. However, CKD 
in males tends to progress more rapidly toward kidney 
failure (KF), which highlights the important influence 
of sex on CKD phenotype.

Cardiovascular remodelling via vascular and/or val-
vular calcification is a key hallmark of CKD-mineral 
and bone disorders (CKD-MBD) [3]. CKD-MBD con-
tributes to accelerated uraemia-induced vascular ageing 
[4] by potentiating cellular senescence [5], modifying 
the function and structure of vascular endothelial and 

vascular smooth muscle cells (VSMC), which includes 
effects on innate immunity [5].

Vascular calcification, per se, is an active process that 
manifests as early as kidney function starts to deterio-
rate [6] and is influenced by both traditional and non-
traditional cardiovascular risk factors [7]. Potential 
CKD-related mechanisms behind the simultaneous tunica 
intima (atherosclerosis) and tunica media (arterioscle-
rosis) calcification, alongside calcific aortic valve disease 
(CAVD), have been described in previous studies [8–10]. 
However, the identification of biological sex-related factors 
in this population is still lacking. This is of importance, as 
sex as a biological variable could modulate several trig-
gering processes associated with vascular calcification, 
including inflammation, imbalanced calcium-phosphate 
metabolism, VSMC damage and its associated phenotypic 
switch towards the activation of bone formation pathways.
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Thus, the rationale behind our study was to assess 
sex-specific differences in cardiovascular calcification 
measured at the different sites. We aimed to analyse 
associations between CAC and AVC, evaluated via com-
puted tomography (CT) scans, with comorbidities and 
cardiovascular, glycaemic, and oxidative stress biomark-
ers in a population of males and females with kidney fail-
ure. The hypothesis is that males with kidney failure will 
have greater levels of CAC and AVC compared to that of 
females with kidney failure.

Methods
Study population
For the current investigation post hoc analyses of data col-
lected from 321 KF patients that had undergone CT scans 
to assess CAC and AVC, were included. Patient data were 
included from three prospective CKD cohort databases 
from the Division of Renal Medicine, Karolinska Univer-
sity Hospital, Sweden. Patients with KF were included 
from either an incident CKD cohort [11], a prevalent CKD 
cohort with peritoneal dialysis (PD) treatment [12], or a 
living-donor kidney transplantation (LD-Tx) cohort [9]. 
The incident CKD cohort is a prospective cohort, with 
ongoing recruitment since 1994, of patients with kidney 
failure (CKD stage 5, GFR < 15 ml/min) with baseline sam-
pling occurring close to the initiation of renal replacement 
therapy (RRT), with the vast majority having started hae-
modialysis or PD [11]. For the current study, data were 
collated for patients included between February 2006 and 
December 2014 from the incident KF cohort, where CT 
scans were performed. The prevalent CKD cohort was a 
prospective cohort, with recruitment between March 2008 
and April 2011, including CKD patients undergoing PD. 
The LD-Tx cohort is a prospective cohort, with ongoing 
recruitment since March 2009, of kidney failure patients 
undergoing kidney transplantation. The available study 
population consisted of 214 males and 107 females, and 
all data previously included in the cohort databases, either 
derived from patient records or prior experimental results, 
were made available for analysis in relation to CAC and 
AVC.

The Regional Ethics Committee (EPN), Stockholm, 
Sweden, approved the study protocols that were per-
formed in accordance with the Declaration of Helsinki. 
Written informed consent was obtained from all patients 
involved in the study.

Clinical data were recorded at baseline, during the 
first visit, and included information on demographics, 
medications, comorbidities (CVD and diabetes melli-
tus), smoking status, and malnutrition that was assessed 
by subjective global assessment (SGA). eGFR collected 
for this study was calculated using the creatinine-based 
CKD-EPI 2009 Equation [13], validated in the European 

population. Mortality was documented over a five year 
follow up period among KF patients. Death cases were 
retrieved either from patient’s medical journal or the 
National cause of death register.

Biochemical measurements
Baseline data for biochemicals were retrieved from the 
cohort databases for all patients included in the cur-
rent investigation, where available. Biochemical meas-
urements were recorded using overnight fasting blood 
samples that were collected in the morning, with serum 
isolated for necessary analyses, and samples were either 
immediately analysed or stored at -70 °C for future analy-
ses. Analyses for blood lipids, haemoglobins, albumin, 
creatinine, and inflammation markers (IL-6, hsCRP, 
TNF) were performed via routine clinical laboratory 
techniques. Cardiovascular disease (CVD) risk markers 
(GDF-15, MMP-9, YKL-40) were analysed using com-
mercial enzyme-linked immunosorbent (ELISA) kits, 
previously described [14]. Skin autofluorescence was 
measured as a proxy of advanced glycation end-products 
(AGE), using an Autofluorescence AGE reader (Diag-
nOptics Technologies BV, the Netherlands) as previously 
described [15].

Coronary artery calcification and aortic valve calcification
All patients underwent non-contrast multi-detector car-
diac CT (LightSpeed VCT or Revolution CT; GE Health-
care, WI, USA) scanning with standard ECG-gated 
protocol, to evaluate AVC and CAC scores. We used semi-
automatic software (syngo.via CT Ca Scoring, Siemens 
Healthcare, Germany). CAC score was assessed as a lesion 
with an area > 1  mm2and peak intensity > 130 Hounsfield 
units (HU) based on the Agatston method and expressed 
in Agatston units (AU) [16]. AVC scores were computed 
using the Agatston CAC-scoring method from non-con-
trast cardiac CT scans. AVC score was determined as the 
sum of total calcifications in the aortic valve area including 
calcifications within the valve leaflets as well as in the aor-
tic wall immediately connected to the leaflets.

Statistical analyses
Continuous data are expressed as median ± interquar-
tile range, and categorical data are presented as the fre-
quency with percentage. Individual counts for analytes 
are provided to present the number of patients with 
available data. Baseline comparisons between females 
and males, for continuous data Wilcoxon sum rank test 
was performed, and for categorical data either Fisher’s 
exact test or Pearson’s Chi-squared test were performed.

This investigation was designed as a sex-disaggregated 
study, therefore further analysis was performed after the 
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sub-setting the data set by sex, one for males and the 
other for females. First, all analytes were separately put 
in the sex-disaggregated univariate Gamma regression 
by using CAC or AVC scores as dependent variables. 
Gamma regression, using the identity link, analyses were 
performed to assess associations between independent 
variables and CAC scores. The Variance Inflation Factors 
(VIF) tool was used to address multicollinearity within 
multivariable regression analyses assessing CAC scores. 
Herein, multivariable models that resulted in variables 
with a VIF greater then 2, indicating a high collinear rela-
tionship to other variables, were not interpreted. Mul-
tivariable models were reduced in terms of number of 
variables included so that collinearity was not present in 
accordance with VIF.

For analysing AVC score we had to perform Gamma 
regression analyses using the log link to solve conver-
gence issues. The values were displayed as relative rates 
using inverse transformation of each value. Then, multi-
variable regression was performed by adjusting only sig-
nificantly associated variables (p-value < 0.05).

After performing sex-disaggregated logistic regression 
analyses, all significant variables were put into multivari-
ate regression to assess associations between mortality 
and CAC scores. The best model was selected using the 
Bayesian Information Criterion and included age, systolic 
blood pressure, plasma albumin, CAC score and GDF-15 
(only in males). All statistical analyses were carried out 
using R (v4.1.3) in the RStudio environment (RStudio, 
MA, USA).

Results
Study population and baseline characteristics
Patients with KF enrolled in the study included 214 
males and 107 females with baseline characteristics pre-
sented in Table  1. As expected, males presented with a 
greater frequency of cardiovascular disease comorbidity, 
and this is presumed why males were more frequently 
treated with beta-blockers when compared to females 
(Table 1). Females had significantly elevated cholesterol, 
high-density lipoprotein (HDL), lipoprotein(a), and 
apolipoprotein-A1 when compared to males (Table  1). 
Additionally, females presented with a higher frequency 
of protein energy wasting, assessed via SGA, and lower 
albumin levels than males (Table 1). As expected, males 
had higher creatinine levels than females, likely a general-
ised reflection of greater muscle mass (Table 1).

Sex‑specific CAC score associations with age, 
comorbidities, inflammation, and oxidative stress
In linear regression analyses, age was significantly 
associated with CAC scores in both males and females 
(Table  2). Age-adjusted linear regressions were 

performed for all other available variables, with age 
remaining significantly associated with CAC score in 
all models for both males and females. More exten-
sive multivariable linear regressions were not possi-
ble due to increasing collinearity, as tested via the VIF 
tool, between additional variables that were included 
in models. For example, when for analysing predictive 
factors for CAC scores in males, we could not inter-
pret a model including age (VIF = 54), CVD (VIF = 1), 
DM (VIF = 1), use of statins (VIF = 44), cholesterol 
(VIF = 9), AGE (VIF = 2) and homocysteine (VIF = 9) 
due to the high VIFs. In females, all VIFs were above 2 
in multivariate Gamma regression.

Therefore, any significant biomarker correlation is not 
an independent association, but coincides with the sig-
nificant association of age. DM and CVD were associated 
with CAC scores in males, with HbA1c only being asso-
ciated with CAC scores in females (Table 2). Other pre-
dictive parameters for CAC score in females were body 
mass index (BMI), systolic blood pressure (SBP), RRT, 
malnutrition, use of beta-blockers, and ACE inhibitors/
ARBs; whereas in males—only with the use of statins. 
Inflammatory markers hs-CRP, IL-6 and TNF were asso-
ciated with CAC score in females only, whereas oxida-
tive stress marker AGE was associated with CAC score 
in both males and females. Lipid profile was significantly 
correlated to CAC score only in females, alongside addi-
tional cardiovascular biomarkers GDF-15, MMP-9, and 
YKL-40.

AVC score associations with age and IL‑6 in male patients 
with KF
Gaussian regression analyses for possible associations 
with AVC score were also performed. Regression models 
for females were not performed due to the low number 
of females with an AVC score > 0 (n = 14). In males, the 
AVC score was significantly associated with age, haemo-
dynamic parameters, lipid status, antihypertensive medi-
cation, inflammatory and cardiovascular biomarkers 
(Table 3). However, after multiple adjustments, the AVC 
score remained significantly associated with IL-6 and age 
only.

CAC score is associated with mortality in females with KF
In multivariate logistics regression analyses, CAC score 
was shown to be associated with mortality in female 
patients only, independent of age. Moreover, in multivar-
iable analyses a significant association with albumin was 
also present for female patients. In males, CAC score was 
associated with mortality in univariate analyses, however, 
this association was lost in multivariate analyses. GDF-15 
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Table 1 Clinical, laboratory, and imaging characteristics of the study population of patients with kidney failure stratified by sex

Bold p-values signify significance

ACE angiotensin-converting enzyme, AF autofluorescence, AGE advanced glycation end-products, ARB angiotensin receptor-blockers, AVC aortic valve calcification, 

Males, n =  2141 Females, n =  1071 p‑value2

Clinical data

 Age, years 52 (41–65) 55 (45–64) 0.39

 Body mass index, kg/m2 25.1 (23.0–27.8), n = 211 24.4 (21.4–28.0), n = 105 0.11

 Systolic blood pressure, mmHg 143 (128‑ 160), n = 203 138 (125–153), n = 101 0.22

 Diastolic blood pressure, mmHg 87 (79–95), n = 203 86 (78–94), n = 105 0.56

 Cardiovascular disease 36 (27%), n = 135 4 (5.6%), n = 71  < 0.001

 Diabetes mellitus 32 (19%), n = 172 14 (16%), n = 90 0.61

 Renal replacement therapy (RRT) 92 (45%), n = 201 40 (38%), n = 105 0.20

  Haemodialysis 31 (34% of RRT) 10 (25% of RRT)

  Peritoneal dialysis 44 (48% of RRT) 28 (70% of RRT)

  Other (incl. Tx) 17 (18% of RRT) 2 (5% of RRT)

 Vintage, years 1.1 (0.5–3.0), n = 41 1.0 (0.8–2.0), n = 19 0.60

 eGFR, ml/min/1.732 6.21 (5.19–8.57), n = 110 6.51 (4.64–8.40), n = 57 0.92

 Smoking 10 (8.7%), n = 115 4 (6.2%), n = 65 0.77

 Malnutrition, SGA > 1 63 (32%), n = 199 45 (44%), n = 103 0.039

Medications at cohort entry

 ACE‑inhibitors/ARBs 124 (67%), n = 186 58 (65%), n = 89 0.89

 Beta‑blockers 129 (69%), n = 186 48 (54%), n = 89 0.015

  Ca2+ channel blockers 123 (66%), n = 186 49 (55%), n = 89 0.084

 Statins 74 (40%), n = 186 31 (35%), n = 89 0.51

Biochemicals

 Cholesterol, mmol/L 4.3 (3.6–4.9), n = 213 4.8 (4.0–5.6), n = 104  < 0.001

 HDL, mmol/L 1.2 (1.0–1.5), n = 213 1.5 (1.2–1.7), n = 104  < 0.001

 Triglycerides, mmol/L 1.5 (1.1–2.0), n = 213 1.6 (1.2–2.2), n = 104 0.39

 Lipoprotein(a), mmol/L 79.5 (30.5–204.3), n = 156 123.0 (46.3–421.8), n = 82 0.038

 Apolipoprotein‑A1, g/L 1.32 (1.14–1.52), n = 211 1.52 (1.36–1.71), n = 105  < 0.001

 Apolipoprotein‑B, g/L 0.83 (0.66–1.00), n = 211 0.89 (0.72–1.07), n = 105 0.054

 Creatinine, µmol/L 757 (622–911), n = 213 629 (509–740), n = 105  < 0.001

 Albumin, g/L 35.0 (31.0–38.0), n = 212 33.0 (30.8–36.0), n = 104 0.018

 Haemoglobin, g/L 113.0 (103.5–120.0), n = 147 112.0 (101.8–120.0), n = 84 0.64

 HbA1c, mmol/mol 33.0 (28.0–38.0), n = 205 34.0 (28.0–38.0), n = 104 0.85

 Calcium, mmol/L 2.3 (2.2–2.4), n = 212 2.3 (2.2–2.4), n = 105 0.22

 Phosphate, mmol/L 1.8 (1.5–2.2), n = 212 1.7 (1.5–1.9), n = 105 0.19

 25‑OH vitamin D, nmol/L 33.0 (14.0–53.5), n = 187 30.0 (12.0–54.3), n = 84 0.59

 1,25 vitamin D, pmol/L 17.0 (12–23.5), n = 84 17.0 (14.3–22.8), n = 46 0.71

 hs‑CRP, mg/L 1.2 (0.6–3.6), n = 181 1.2 (0.5–3.5), n = 88 0.65

 TNF, pg/mL 12.1 (9.3–16.5), n = 88 12.4 (10.1–16.2), n = 54 0.63

 IL‑6, pg/mL 2.3 (1.0–6.4), n = 78 3.4 (1.4–7.4), n = 50 0.42

 AGE, skin AF 3.1 (2.5–3.5), n = 98 3.4 (2.8–4.0), n = 48 0.021

 Homocysteine, µmol/L 36.0 (28.3–50.8), n = 110 29.0 (22.8–40.3), n = 44 0.002

 GDF‑15, ng/mL 4.3 (2.9–5.2), n = 118 4.4 (3.3–5.2), n = 62 0.86

 MMP‑9, ng/mL 381.1 (244.2–574.8), n = 116 363.3 (229.5–641.1), n = 62 0.88

 YKL‑40, ng/mL 108.3 (77.5–161.0), n = 117 119.8 (89.6–184.6), n = 60 0.27

Imaging markers

 CAC score, AU (ln + 1) 4.16 (0.00–6.88), n = 212 3.86 (0.00–5.94) 0.11

 AVC score, AU (ln + 1) 0.00 (0.00–0.69), n = 209 0.00 (0.00–0.00) 0.005

Follow‑up, 5 years

All‑cause mortality 20 (11%), n = 177 11 (12%), n = 92 0.84
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was the only marker to remain significantly associated 
with mortality in males in the multivariate model. Other 
significant variables that predicted mortality are listed in 
Table 4.

Discussion
The calcification process may have differing impacts on 
CVD outcomes due to specific pathways related to the 
progression of disease or calcification per se. Therefore, 

CAC  coronary artery calcification, hsCRP high sensitivity C-reactive protein, eGFR estimated glomerular filtration, GDF-15 growth differentiation factor 15, HbA1c 
glycated haemoglobin, HDL high-density lipoprotein, IL-6 interleukin-6, MMP-9 matrix metalloproteinase 9, SGA subjective global assessment, TNF tumour necrosis 
factor, YKL-40 chitinase-3-like protein 1
1 Median (IQR); n (%); 2Wilcoxon rank sum test; Fisher’s exact test; Pearson’s Chi-squared test

Table 1 (continued)

Table 2 Sex‑divided, age‑adjusted, gamma regression models showing significant associations of coronary artery calcification (CAC) 
with comorbidities, inflammation, and oxidative stress markers in patients with kidney failure (KF)

Each predictor was modelled separately together with age as a covariate

Bold p-values signify significance.

ACE angiotensin-converting enzyme, AF autofluorescence, AGE advanced glycation end-products, ARB angiotensin receptor-blockers, AVC aortic valve calcification, 
CAC  coronary artery calcification, CVD cardiovascular disease, DM diabetes mellitus, hsCRP high sensitivity C-reactive protein, eGFR estimated glomerular filtration, 
GDF-15 growth differentiation factor 15, HbA1c glycated haemoglobin, HDL high-density lipoprotein, IL-6 interleukin-6, MMP-9 matrix metalloproteinase 9, SBP systolic 
blood pressure, SGA subjective global assessment, TNF tumour necrosis factor, YKL-40 chitinase-3-like protein 1
† Gamma regression (identity link) model with age alone given as a reference

CAC score Males (n = 214) Females (n = 107)

Estimate 95% CI p‑value Estimate 95% CI p‑value

Age† 18.62 14.51–22.73  < 0.001 11.27 6.72–15.82  < 0.001
Body mass index, kg/m2 ‑0.02 − 0.41–0.37 0.918 − 3.58 − 5.70 to − 1.46 0.001
SBP, mmHg 0.001 − 0.05–0.06 0.959 − 0.35 − 0.54 to − 0.15 0.001
CVD, yes 1143.3 204.6–2081.9 0.018 805.21 − 1807.5–3418.0 0.548

DM, yes 1188.7 286.6–2090.8 0.011 874.84 − 671.2–2420.8 0.270

Renal replacement therapy 0.05 − 2.54–2.64 0.968 12.52 5.46–19.59 0.001
eGFR, ml/min/1.732 − 0.002 − 0.51–0.51 0.993 − 2.005 − 3.37 to − 0.64 0.006
Malnutrition, SGA > 1 0.01 − 2.40 to − 2.42 0.995 − 11.48 − 17.86 to − 5.10 0.001
ACE‑inhibitors/ARBs − 0.02 − 2.71–2.67 0.988 − 8.49 − 14.29 to − 2.68 0.005
Beta‑blockers − 0.00 − 2.69–2.69 0.999 8.49 2.72–14.26 0.005
Statins − 135.18 − 170.55 to − 99.81  < 0.001 155.33 − 170.18–480.83 0.352

Cholesterol, mmol/L − 13.14 − 16.27 to − 10.00  < 0.001 6.18 2.08–10.28 0.004
HDL, mmol/L 0.02 − 2.36–2.40 0.988 55.99 22.54–89.43 0.001
Triglycerides, mmol/L 0.04 − 1.91–2.00 0.966 − 44.21 − 67.61 to − 20.82  < 0.001
Lipoprotein(a), mmol/L − 0.00 − 0.01–0.01 0.999 0.09 0.02–0.16 0.012
Apolipoprotein‑A1, g/L − 0.05 − 4.09–4.00 0.982 156.64 89.13–224.14  < 0.001
Apolipoprotein‑B, g/L − 0.73 − 8.11–6.65 0.847 19.11 7.05–31.18 0.003
Creatinine, µmol/L − 0.00 − 0.01–0.01 0.999 0.04 0.02–0.06 0.001
Albumin, g/L 0.01 − 0.48–0.50 0.962 − 1.33 − 2.22 to − 0.44 0.004
Haemoglobin, g/L 0.00 − 0.08–0.08 0.994 − 2.50 − 3.99 to − 1.01 0.001
HbA1c, mmol/mol 0.00 − 0.13–0.13 1.000 0.72 0.28–1.16 0.002
hs‑CRP, mg/L 0.09 − 2.32–2.50 0.942 6.24 1.99–10.49 0.005
TNF, pg/mL 0.02 − 0.43–0.47 0.948 1.16 0.41–1.91 0.004
IL‑6, pg/mL 68.39 0.48–136.29 0.052 3.73 1.13–5.62 0.005
AGE, skin AF 16.03 5.21–26.84 0.005 221.21 13.78–428.64 0.042
Homocysteine, µmol/L − 0.22 − 0.33 to − 0.12  < 0.001 − 0.32 − 0.60 to − 0.03 0.034
GDF‑15, ng/mL 0.03 − 1.26–1.33 0.960 − 1.61 − 2.84 to − 0.38 0.013
MMP‑9, ng/mL − 0.00 − 0.00–0.00 0.996 0.02 0.01–0.04 0.014
YKL‑40, ng/mL 0.00 − 0.05–0.05 0.979 − 0.28 − 0.51 to − 0.05 0.021
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understanding sex differences may have implications 
for potential therapeutic targets and interventions. We 
report that in males oxidative stress (measured as AGEs 
in the skin) seems to be predominantly related to CAC 
when compared with females. However, in females, both 
oxidative stress and inflammation are associated with 
CAC. In addition, AVC seems to be driven by chronolog-
ical age and inflammation in males.

AVC and CAC are both associated with increased risk 
for cardiovascular events [17]. Examination of the link 
between AVC and CAC in the Multi-Ethnic Study of 
Atherosclerosis (MESA) study [17] revealed that AVC 
increased as CAC severity increases, and that AVC is 
independently correlated with increased coronary ath-
erosclerosis as assessed by CAC. Aortic sclerosis and 
atherosclerosis share risk factors such as hypertension, 
diabetes mellitus, hypercholesterolaemia, and an elevated 

inflammatory profile [17]. Thus, AVC may be indicative 
of atherosclerotic burden. CAC has been reported to 
correlate with aortic root calcification based on shared 
arterial tissue, which could indicate diffuse arterial dis-
ease, whilst the absence of a link between AVC and CAC 
may reflect a distinct disease [18]. Conversely, a study by 
Dai et al. [19], observed that there is an overlap of AVC 
and CAC in the KF population and AVC was associated 
with increased all-cause mortality regardless of the pres-
ence of CAC, conventional risk factors or inflammation. 
The same group also noted that the amount of AVC and 
CAC in various vascular calcification groups varied sig-
nificantly, indicating that despite comparable risk profiles 
the diverse vascular beds may have distinct underlying 
mechanism of calcification [19]. There is still much to 
understand regarding the shared or differing pathophysi-
ology of AVC and CAC.

Table 3 Gamma regression models showing significant associations of aortic valve calcification (AVC) score with age and 
inflammation in male patients with kidney failure (KF)

Bold p-values signify significance

Gamma regression model (log link), values are presented as relative rates using inverse transformation of each value

ACE angiotensin-converting enzyme, AF autofluorescence, AGE advanced glycation end-products, ARB angiotensin receptor-blockers, AVC aortic valve calcification, 
DBP diastolic blood pressure, DM diabetes mellitus, GDF-15 growth differentiation factor 15, HDL high-density lipoprotein, IL-6 interleukin-6, SBP systolic blood 
pressure, SGA subjective global assessment, TNF tumour necrosis factor, YKL-40 chitinase-3-like protein 1
† Multivariate analysis includes all those significant variables presented in the univariate analyses

AVC score Males (n = 209)

Univariate Multivariate†

Estimate 95% CI p‑value Estimate 95% CI p‑value

Age 1.14 1.11–1.17  < 0.001 1.29 1.07–1.14  < 0.001
Body mass index, kg/m2 0.89 0.84–0.94  < 0.001 – – –

SBP, mmHg 0.96 0.95–0.97  < 0.001 – – –

DBP, mmHg 0.93 0.90–0.97  < 0.001 – – –

DM, yes 0.11 0.07–0.16  < 0.001 – – –

Renal replacement therapy 10.42 6.80–16.00  < 0.001 – – –

Malnutrition, SGA > 1 0.10 0.06–0.17  < 0.001 – – –

ACE‑inhibitors/ARBs 17.63 9.96–31.20  < 0.001 – – –

Beta‑blockers 22.65 12.52–40.97  < 0.001 – – –

Ca2+ channel blockers 2.80 0.93–8.48 0.070 – – –

Statins 0.47 0.20–1.11 0.085 – – –

Cholesterol, mmol/L 5.04 3.64–6.98  < 0.001 – – –

HDL, mmol/L 0.18 0.12–0.29  < 0.001 – – –

Triglycerides, mmol/L 0.41 0.31–0.53  < 0.001 – – –

Lipoprotein(a), mmol/L 0.99 0.997 ‑0.998  < 0.001 – – –

Apolipoprotein‑A1, g/L 0.06 0.03–0.12  < 0.001 – – –

Creatinine, µmol/L 1.01 1.005 ‑1.008  < 0.001 – – –

Haemoglobin, g/L 0.86 0.85–0.88  < 0.001 – – –

TNF, pg/mL 0.90 0.80–1.02 0.109 – – –

IL‑6, pg/mL 2.61 2.29–2.98  < 0.001 1.16 1.04–1.29 0.010
AGE, skin AF 2.56 0.86–7.62 0.093 – – –

GDF‑15, ng/mL 4.47 3.62–5.52  < 0.001 – – –

YKL‑40, ng/mL 1.02 1.02–1.03  < 0.001 – – –
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Coronary artery calcification (CAC) is a proxy of vas-
cular lesions that predicts atherosclerotic CVD in both 
CKD and non-CKD populations [20, 21]. The pooled 
prevalence of CAC among CKD patients has been 
reported to be as high as 60%, whilst in haemodialysis 
and renal transplant patients a pooled prevalence of 65% 
and 51% have been reported, respectively [22]. In addi-
tion, CAC was positively associated with an increased 
risk of all-cause and cardiovascular mortality [22]. Mean-
while, aortic valve calcification (AVC) has a detrimental 
effect on aortic valve function and gives rise to stenosis 
[23] that contributes to left ventricular hypertrophy and 
increased morbidity and mortality in CKD [10]. A recent 
review indicated inconsistencies in the prevalence and 
risk factors for vascular calcification in CKD that might 
be sex-dependent [24]. One study reported that males not 
requiring dialysis treatment have predominantly higher 
CAC scores than females, while other studies report a 
higher prevalence of aortic and carotid artery calcifica-
tion in females [24]. Thus, the impact of sex influence on 
AVC in CKD is underrepresented.

Males presented with more prevalent CVD and greater 
AVC, compared to females, although the CAC score was 

similar in both sexes. Dyslipidaemia, with lower HDL, 
lipoprotein(a), and apolipoprotein A1, might explain the 
higher prevalence of CVD in males since it contributes to 
atherosclerosis [25] and higher CV event risk [26]. Addi-
tionally, the higher prescription of beta-blockers in males 
may also reflect a higher cardiovascular risk. Previous 
reports in the community-based non-CKD population 
showed that the choice of antihypertensive medication 
is sex-dependent [27]. Additionally, pharmacokinetics 
may play an essential role as females has lower oral beta-
blocker (metoprolol) clearance and higher bioavailability 
[27]. Thus, clinicians may be reluctant to prescribe these 
medications to females.

Cardiovascular calcification is an umbrella term that 
includes accelerated vascular ageing typical to CKD [5, 
28, 29]. In this process inflammation and oxidative stress 
are the common triggers for vascular dysfunction and 
remodeling [29–31]. In our study, we find that CAC-
related biomarkers had a sex-specific signature. Females 
with CAC were prone to be more often inflamed, with 
higher IL-6 and TNF levels alongside increased GDF-15 
and YKL-40. These findings concur with our previous 
report [30] and Wang et al. [31] suggesting that chronic 

Table 4 Coronary artery calcification (CAC) is significantly associated with mortality in female kidney failure patients, independent of 
age

Bold p-values signify significance. n/a signifies a lack of appropriate datapoints to perform analysis

Logistic regression was performed using logarithmic coronary artery calcification expressed as ln(CAC + 1)

AF autofluorescence, AGE advanced glycation end-products, CAC  coronary artery calcification, DM diabetes mellitus, GDF-15 growth differentiation factor 15, IL-6 
interleukin-6, SBP systolic blood pressure
† Multivariate analysis includes all those significant variables presented in the univariate analyses

Mortality Males (n = 177) Females (n = 92)

Univariate Univariate

Odds ratios 95% CI p‑value Odds ratios 95% CI p‑value

Age 1.10 1.10–1.14 0.001 1.10 1.03–1.18 0.004
SBP, mmHg 0.96 0.93–0.98 0.001 0.97 0.94 ‑1.00 0.082
DM, yes 2.67 0.96–7.33 0.061 10.35 2.56–41.7 0.001
Smoking, yes 14.10 2.45–80.9 0.003 n/a n/a n/a

Albumin, g/L 0.89 0.82–0.97 0.011 0.81 0.69–0.94 0.007
IL‑6, pg/mL 1.15 1.01–1.32 0.036 n/a n/a n/a

AGE, skin AF 2.67 1.20–5.97 0.017 1.53 0.82–2.84 0.184

GDF‑15, ng/mL 1.22 1.04–1.45 0.018 n/a n/a n/a

ln(CAC + 1) 1.64 1.24–2.18 0.001 1.66 1.15–2.39 0.007

Multivariate† Multivariate†

Odds ratios 95% CI p‑value Odds ratios 95% CI p‑value

Age 1.01 0.88–1.15 0.906 1.05 0.97–1.13 0.276

SBP, mmHg 1.05 0.98–1.11 0.149 0.97 0.94–1.00 0.067

Albumin, g/L 0.93 0.72–1.21 0.601 0.75 0.60–0.95 0.019
GDF‑15, ng/mL 1.35 1.03–1.77 0.032 n/a n/a n/a

ln(CAC + 1) 1.21 0.71–2.05 0.486 1.76 1.12–2.78 0.015
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inflammation among CKD patients is linked to CAC. 
Conversely, males seemed to be subjected to more pro-
nounced oxidative stress, measured by AGE. Whilst 
accumulation of AGEs are a hallmark of normal age-
ing, the overproduction of AGEs may lead to vascular 
dysfunction and structural changes via the activation of 
nuclear factors kappa B (NFκB) signalling [32]. This can 
result in coronary artery disease, even in the absence of 
diabetes [33, 34]. Animal studies reported higher levels 
of AGEs in male rats than in female rats [35]. AGE accu-
mulation in humans may also be associated with non-
traditional variables for CKD and CVD progression [36] 
such as cholesterol, lipoprotein(a), albuminuria, Apo-A1, 
and protein energy wasting as observed in females of the 
current study. Tanaka et al. [36] claims that racial dispari-
ties in AGE accumulation may also occur, perhaps owing 
to darker skin’s increased absorption grade of excitation 
and emission light. Therefore, further investigations are 
required to determine if ethnic disparities or disparities 
in reference values between ethnicities exist among our 
patients, in addition to sex differences.

Despite the higher prevalence of CVD in males in the 
present study, the CAC score was not significantly differ-
ent from that of females. RRT might obliviate the impact 
of sex-related factors on the vascular calcification pro-
cess. The lack of a sex difference in CAC scores in our 
study population suggest that vascular calcification pro-
gresses occur regardless of RRT modality [37]. Owing to 
the small sample size, data from Jansz et al. [38] on the 
influence of different RRT on CAC development remain 
ambiguous. Niu et  al. [39] also reported no significant 
differences in CAC development between haemodialysis 
and peritoneal dialysis patients. Although no sex-disag-
gregated analysis was undertaken their findings confirm 
that age and diabetes were substantially linked with CAC. 
However, we could see that in females RRT was associ-
ated with higher CAC score. This could also be related to 
the observations that haemodialysis and peritoneal dialy-
sis contribute to sex hormone imbalance [40] by causing 
premature menopause in females and a decline in testos-
terone in males [41]. Further examination of the impact 
of various RRT on vascular calcification in different sexes 
is warranted.

It is known that the CAC score predicts all-cause mor-
tality in CKD. CAC score was also found to be dependent 
on age, but not sex, in studies of CKD stages 3 to 5 [42] 
and advanced CKD [43]. Herein, we observe a relation-
ship between CAC score and mortality in both males and 
females. After multiple adjustments this relationship of 
CAC score and mortality was found to be independent 
of age in females, in addition to hypoalbuminemia being 
identified as mortality predictors. However, in males 
after multiple adjustments, CAC score was found not to 

be associated with mortality and GDF-15 was identified 
as a potential mortality predictor, and observation we 
have previously reported [14]. The association of vascu-
lar calcification and KF patient mortality may be asso-
ciated with a cumulative interaction of hazards such as 
vascular stiffness, left ventricular hypotrophy, myocardial 
fibrosis, and/or conductive anomalies [38]. More studies 
are required in larger cohorts to assess the associations 
more accurately between CAC and mortality in males 
and females.

The higher life expectancy of females than males, may 
be partially attributable to a lower frequency of CVD [44]. 
In contrast, females and males with CKD have similar life 
expectancies. After the initiation of RRT the sexes die at 
the same rate and the “cancelled survival advantage” in 
females is not regained even after renal transplantation 
[44]. This phenomenon may explain why despite male 
participants having more CVD than females, there was 
no observed difference in CAC score between the sexes. 
Moreover, the CAC score was associated with mortal-
ity in females in our study. It might be important to note 
that mortality can result from the complex interplay of 
other factors, such as protein energy wasting, the type 
and duration of RRT therapy, variation in types of surgi-
cal vascular access, as well as response and compliance to 
therapy.

Computed tomography is the standard technique in 
assessing AVC, while echocardiography (ECG) evaluates 
valve function. Several studies addressing AVC in CKD 
have used ECG for estimating calcification load and aor-
tic valve stenosis [22, 45]. Neither a haemodialysis cohort 
[45] nor CKD stages 1 to 4 cohort [22] reported sex dif-
ferences in AVC. In contrast, studies performed in the 
general population shows that severe aortic valve stenosis 
is more prevalent in males than females and that males 
are exposed to a faster progression of valvular calcifica-
tion [46]. Additionally, less calcification but more fibro-
sis in valve biopsies is seen in female vs male valves [47, 
48]. As females with AVC were underrepresented (only 
14 cases), we only conducted analysis of males in whom 
we observed that inflammatory markers were associated 
with AVC. Our findings are in accordance with those 
reported in subjects without overt CVD [49].

The main strength of our study is a sex-disaggregated 
approach to the cardiovascular calcification profile in 
KF patients. Additionally, that we used the gold stand-
ard technique–computed tomography—to evaluate CAC 
and AVC. Some limitations should also be considered. At 
first, the low number of females with positive AVC pre-
cludes sex-stratified statistics. Moreover, we did not col-
lect data on sex hormone status. Future investigations 
should include sex hormone levels or menopausal status 
as well as information on racial or ethnic representation. 
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In addition, available oxidative stress markers were 
limited to only AGE and homocysteine in the present 
cohort, expansion with a wider panel of oxidative stress 
markers would be preferential for future investigations to 
properly assess the associations between oxidative stress 
and calcification. These may provide additional insights 
into the disparities or heterogeneity of findings on ure-
mic vascular calcification.

Perspectives and significance
In summary, we report a sex-specific signature of CAC 
and AVC-related biomarkers. Herein, CAC was found to 
be associated with oxidative stress in male KF patients, 
and oxidative stress and inflammation in female KF 
patients. In addition, in male KF patients AVC presented 
with an inflammatory phenotype. Our study highlights 
a sex-specific signature of CAC-related biomarkers that 
may have a potential effect on vascular complications 
associated with KF in males and females. Moreover, CAC 
was associated with mortality in females, although larger 
studies are warranted. Future directions include the 
assessment of RRT outcome concerning the sex origin of 
the donated kidney that may affect amelioration of vascu-
lar calcification and mortality. In addition, the impact of 
biological vs chronological age on the vascular calcifica-
tion process needs attention. Finally, CVD phenotyping, 
particularly in males, should be accompanied by more 
frequent testing to screen for early vascular ageing and 
calcification.
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