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Moderating effects of uric acid and sex 
on cognition and psychiatric symptoms 
in asymmetric Parkinson’s disease
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Abstract 

Background Non-motor symptoms are an important early feature of Parkinson’s disease (PD), encompassing a 
variety of cognitive and psychiatric symptoms that seem to manifest differently depending on motor symptom asym-
metry. Different factors, such as uric acid (UA) and sex, seem to influence cognitive and psychiatric expression in PD, 
however their interplay remains to be better understood.

Methods Participants taking part in the Parkinson’s Progression Marker Initiative were studied based on the side of 
motor symptom asymmetry and sex. Three-way interaction modeling was used to examine the moderating effects of 
sex and UA on cognitive functions and psychiatric symptoms.

Results Significant three-way interactions were highlighted at 1-year follow-up between motor symptom asymme-
try, UA and sex for immediate and long-term memory in female patients exhibiting predominantly left-sided motor 
symptoms, and for processing speed and sleepiness in female patients exhibiting predominantly right-sided motor 
symptoms. No significant interactions were observed for male patients. Moreover, female patients exhibiting predom-
inantly right-sided motor symptoms demonstrated lower serum UA concentrations and had overall better outcomes, 
while male patients with predominantly right-sided motor symptoms demonstrated particularly poor outcomes.

Conclusions These findings suggest that in the earliest stages of the disease, UA and sex moderate cognitive func-
tions and psychiatric symptoms differently depending on motor asymmetry, holding important clinical implications 
for symptom management in patients.

Highlights 

• Significant three-way interactions were highlighted at 1-year follow-up between motor symptom asymmetry, 
cognitive–psychiatric symptoms and serum uric acid in female, but not male patients

• Moderation occurred for immediate memory, long-term memory, processing speed and sleepiness
• Uric acid and sex differentially moderated cognitive and psychiatric symptoms depending on the side of motor 

symptom asymmetry
• Female patients with right-sided symptoms demonstrated the most favorable clinical outcomes and displayed 

lower levels of serum uric acid
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• Male patients with right-sided symptoms demonstrated the least favorable neuropsychological outcomes and 
presented with higher levels of serum uric acid

Keywords Parkinson’s disease, Motor symptom asymmetry, Cognition, Psychiatric symptoms, Uric acid, Three-way 
interaction models

Plain Language Summary 

Parkinson’s disease is characterized by motor symptoms that usually manifest in an asymmetrical fashion. Given 
this motor symptom asymmetry, it is possible to distinguish patients that exhibit predominantly right-sided motor 
symptoms from those that exhibit predominantly left-sided motor symptoms. Patients also often develop non-motor 
symptoms, such as cognitive and psychiatric complaints. Recent studies have found that non-motor symptoms can 
manifest differently depending on motor symptom asymmetry. Furthermore, different factors, such as uric acid, a 
natural antioxidant in the human body, and the patient’s sex seem to influence cognitive and psychiatric manifesta-
tions, however their interplay remains to be better understood. The present study aimed to examine the interactions 
between motor symptom asymmetry, serum uric acid and patient’s sex on the manifestation of cognitive and psychi-
atric symptoms. Using regression models, it was found that at 1 year from diagnosis, uric acid and sex moderated cog-
nitive and psychiatric symptoms differently according to motor symptom asymmetry. Indeed, female patients with 
predominantly left-sided motor symptoms had better memory performances with lower concentrations of serum 
uric acid, whereas female patients with predominantly right-sided symptoms presented better psychomotor speed 
and less sleepiness with higher concentrations of uric acid. Moreover, female patients with predominantly right-sided 
motor symptoms had overall better outcomes, while male patients with predominantly right-sided motor symptoms 
demonstrated particularly poor clinical outcomes. These findings suggest that in the earliest stages of the disease, 
uric acid and sex moderate cognitive and psychiatric symptoms differently depending on motor asymmetry, holding 
important clinical implications for symptom management in patients.

Introduction
Motor symptoms in Parkinson’s disease (PD) manifest 
predominantly in an asymmetrical fashion at the onset 
of the disease [1], with most de novo PD patients expe-
riencing unilateral motor signs that reflect a contralat-
eral hemispheric loss of dopamine in the substantia 
nigra [2]. We can thus distinguish patients that exhibit 
predominantly right-sided motor symptoms (RPD; left 
hemispheric loss of dopamine) from those that show 
predominantly left-sided motor symptoms (LPD; right 
hemispheric loss of dopamine). The clinical picture of PD 
patients extends however well beyond their motor defi-
cits, encompassing a wide range of non-motor symptoms 
(NMS) that can manifest years before the onset of motor 
symptoms, becoming more predominant as the disease 
progresses [3].

NMS in PD encompass a variety of features, of which 
cognitive and psychiatric impairments [4], some of 
which seem to differ based on motor symptom asym-
metry [5]. Indeed, from a neuropsychological stand-
point, RPD patients seem to show greater cognitive 
impairment, notably in terms of verbal memory [6, 
7], language [8], attention [9] and executive func-
tions [10, 11]. However, LPD patients seem to be more 
impaired in the visuospatial domain in comparison to 

their RPD counterparts [12, 13]. That said, not all cog-
nitive functions appear to be differentially impaired 
as a function of motor symptom asymmetry, such as 
inhibitory control [14]. Recent studies that have com-
pared PD patients in early and moderate stages of the 
disorder have found no differences between LPD and 
RPD patients [15, 16]. These results were also con-
firmed in advanced patients in pre- and post-deep brain 
stimulation of the subthalamic nucleus, where only 
the bilateral operation restored reactive and proac-
tive inhibitory control [17–19]. Concerning psychiat-
ric symptomatology, different studies have highlighted 
higher depressive symptoms [20], anxiety [21] and emo-
tion recognition deficits [10] in LPD patients as com-
pared to RPD patients. Moreover, RPD patients seem to 
present less motor deficits than LPD patients [22]. Such 
differences in symptoms might be explained in terms 
of hemispheric vulnerability, with studies highlighting 
a greater vulnerability of the left hemisphere for cog-
nitive decline in neurodegenerative diseases [23], and 
a functional insufficiency of the right hemisphere in 
psychiatric conditions, such as depression [24]. Thus, 
different patterns of cognitive deficits and psychiat-
ric symptoms seem to emerge on the side of the larg-
est hemispheric damage due to dopaminergic pathway 



Page 3 of 11Constantin et al. Biology of Sex Differences           (2023) 14:26  

depletion in PD. Nevertheless, discrepancies persist 
in the scientific literature concerning motor symptom 
asymmetry, cognition and psychiatric symptoms, with 
several studies finding reversed patterns of impairment, 
and others failing to report any significant differences 
[4, 25]. Such heterogeneity could reflect a differen-
tial effect of various underlying biological factors that 
interact with symptom expression in the disease.

Recent studies have linked uric acid (UA), a naturally 
occurring antioxidant in the human body, with a poten-
tial neuroprotective role in PD [26]. Serum UA levels 
seem to be significantly lower in PD, with concentrations 
further decreasing as the disease progresses [27]. Thus, it 
has been proposed that higher UA levels in PD patients 
are associated with a decreased risk of dementia and pre-
served cognitive function [26, 28]. Indeed, it has been 
found that baseline serum UA can be a useful marker of 
cognitive deficits and psychiatric symptom progression 
in newly diagnosed PD, with higher values correspond-
ing to preserved attention and memory performances 
[28], as well as diminished symptoms of depression, anxi-
ety [29] and fatigue [30, 31]. Interestingly, UA also seems 
to be associated to different aspects of motor symptoms 
in PD, such as motor fluctuations and motor subtypes 
[31–33]. Notwithstanding, results remain inconclusive, 
as other studies suggest an opposite effect of high serum 
UA on cognitive functions [34–36]. The effect of UA on 
disease symptoms and progression seems to be moder-
ated by participants’ sex, possibly explaining the heter-
ogenous findings of previous studies that didn’t consider 
differences between men and women [37]. Men tend to 
have greater serum UA concentrations than women, 
with higher levels of UA being associated to a lowered 
risk of cognitive impairment, motor fluctuations and dis-
ease progression [38]. However, no such association was 
effectively found in women with PD [26, 32, 39]. Rather, 
it has been suggested that women may be particularly 
more vulnerable to the vascular effects of elevated UA 
[37]. Other than moderating the effects of UA on cogni-
tive outcomes and disease progression, sex-related differ-
ences also seem to be at play in the relationship between 
motor symptom asymmetry, cognition and psychiatric 
symptoms in PD. While data are scarce concerning the 
simultaneous effects of asymmetry and sex on cognition, 
Davidsdottir et  al. [40] found that male RPD patients 
exhibited higher visuospatial impairment compared to 
female RPD patients, with no differences noted between 
male and female LPD patients. Also, Bentivoglio et  al. 
[41] highlighted better performances in language tasks 
for female PD patients, independently of the onset side of 
motor symptoms.

In summary, different clinical factors, such as motor 
symptom asymmetry, UA and sex, seem to influence 

cognitive and psychiatric manifestations in PD; how-
ever, no study has yet examined the interactive effects 
of these factors. Hence, the present study aims to better 
understand the interactions between the effects of UA, 
sex and motor symptom asymmetry on cognition and 
psychiatric symptoms in early-stage PD. The following 
predictions were formulated based on the current state 
of the literature. Using three-way interaction (moder-
ated moderation) models [42], we expected sex and UA 
to significantly moderate the relationship between motor 
symptom asymmetry and cognitive functions, as well 
as psychiatric symptoms. Firstly, we expected stronger 
moderation effects in men, with higher UA concentra-
tions corresponding to better cognitive  and psychiatric 
outcomes [38, 43]. Secondly, we expected lesser mod-
erating effects in women, or even an inverse association 
between UA and cognitive functions as well as psychi-
atric symptoms, with female patients having better pre-
served outcomes in the presence of lowered levels of UA 
[37]. Finally, the effects of sex and UA when taking in 
consideration motor symptom asymmetry were explored.

Methods
Participants
The analyzed data were obtained from the Parkinson’s 
Progression Marker Initiative (PPMI), an international 
and multicenter longitudinal study launched in 2010, 
aiming to identify progression biomarkers of PD [44]. 
The study officially enrolled 426 de novo, untreated PD 
patients [413 asymmetric motor symptom onset, 13 sym-
metric motor symptom onset (not included in this study) 
and 196 healthy controls (HC)]. Baseline, 1-year, 3-year 
and 5-year follow-up measurements were retained for 
the present paper. Inclusion criteria for participants was 
being aged above 30  years old; having newly diagnosed 
PD (2 years or less); being untreated with PD medication; 
having two of the following symptoms: resting tremor, 
bradykinesia and rigidity, or either asymmetric resting 
tremor, or asymmetric bradykinesia; having an imaging 
confirmation of a dopamine transporter deficit. Sex was 
defined as genetically confirmed sex, which was consist-
ent with gender for all participants [45]. The asymmetry 
of motor symptoms was determined by a clinician at the 
time of diagnosis, based on the lateralized items of the 
Movement Disorders Society Unified Parkinson’s Disease 
Rating Scale (MDS-UPDRS) scale [46, 47].

A total of six groups were defined for this study: (1) 
PD patients with predominantly left-sided motor symp-
toms (LPD) at the onset of the disease, divided in male 
(LPDm; n = 105) and female (LPDf; n = 74) subgroups; (2) 
PD patients with predominantly right-sided motor symp-
toms (RPD) at the onset of the disease, divided in male 
(RPDm; n = 163) and female (RPDf; n = 71) subgroups; 
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and (3) HC, both male (HCm; n = 126) and female (HCf; 
n = 70), with no clinically significant neurological dis-
orders (see Table  1). No significant differences were 
observed between the 6 subgroups for sociodemographic 
outcomes, except for race [with a majority of White 
individuals in all subgroups (> 90%);  results seem to be 
driven by a lesser diversity in the RPDm group] and ini-
tial PD symptomatology (LPDf; LPDm; RPDf; RPDm) 
(see Table 1).

Ethics
The PPMI study is registered with ClinicalTrials.gov 
(NCT01141023). All participating sites received approval 
from an ethical standards committee on human experi-
mentation prior to study initiation. The study was con-
ducted in accordance with the Declaration of Helsinki 
and the Good Clinical Practice guidelines following 
approval of the local ethics committees of the partici-
pating sites. Written informed consent for research was 
obtained from all individuals taking part in the study. The 
data used in the preparation of this article were obtained 
from the PPMI open access database. For more informa-
tion regarding the study’s protocol, research documen-
tations and standard operating procedures, including 
ethical submissions and approvals, please visit https:// 

www. ppmi- info. org/ study- design/ resea rch- docum 
ents- and- sops.

Measured outcomes
Participants underwent comprehensive clinical, imag-
ing and biosampling assessments. Regarding clinical 
aspects, the MDS-UPDRS [48] and Hoehn and Yahr scale 
[49] were used to evaluate motor aspects, and Epworth 
Sleepiness Scale (ESS) [50] was used to measure daytime 
sleepiness. Among cognitive assessments, the Montreal 
Cognitive Assessment (MoCA) [51], Hopkins Verbal 
Learning Test (HVLT) [52], Benton Judgment of Line 
Orientation Test (BJLOT) [53], semantic fluency [54] and 
Symbol Digit Modalities Test (SDMT) [55]were used. 
The Geriatric Depression Scale (GDS) [56] and State-
Trait Anxiety Inventory (STAI) [57] were used to assess 
psychiatric symptoms. Blood sampling was used to meas-
ure plasma levels of UA at baseline and at each 12-month 
follow-up visit. Forty milliliters of venous whole blood 
was collected and sent to a central laboratory for analysis, 
thus guaranteeing identical analysis methods and con-
sistent normal ranges.

Data analysis
In order to assess the relationships between UA, sex and 
motor symptom asymmetry on cognitive and psychiatric 

Table 1 Sociodemographic and clinical variables at the baseline for each group (LPDf; LPDm; RPDf; RPDm; HCf; HCm)

f female, HC healthy controls, LPD patients with Parkinson’s disease (PD) who exhibit predominantly left-sided motor symptoms, m male, RPD patients with PD who 
exhibit predominantly right-sided motor symptoms, K–W Kruskal–Wallis test, M–W Mann–Whitney U test, SD standard deviation

LPDf (n = 74) LPDm (n = 105) RPDf (n = 71) RPDm (n = 163) HCf (n = 70) HCm (n = 126) K–W/Chi2

Age in years 
(mean ± SD)

60.16 (± 10.71) 60.53 (± 9.55) 61.13 (± 8.35) 62.79 (± 9.75) 59.37 (± 11.70) 61.62 (± 10.92) 0.103

Education in years 
(mean ± SD)

15.19 (± 3.20) 15.58 (± 2.80) 15.31 (± 3.02) 15.74 (± 3.00) 15.49 (± 2.72) 16.35 (± 2.95) 0.088

Race [White; Black; 
Asian; other] (in %)

91.89; 0; 2.70; 5.41 91.43; 2.86; 3.81; 
1.90

90.14; 2.81; 1.41; 
5.63

95.71; 0; 0; 4.29 91.43; 4.29; 1.43; 
2.86

92.86; 5.56; 0; 1.59 0.031

Age of onset in 
years (mean ± SD)

58.13 (± 10.94) 58.61 (± 9.90) 58.87 (± 8.73) 60.84 (± 9.93) – – 0.070

Age at diag-
nostic in years 
(mean ± SD)

59.58 (± 10.68) 60.05 (± 9.60) 60.52 (± 8.36) 62.22 (± 9.68) – – 0.078

Initial symptom (at diagnosis)

 Resting tremor No: 17.57% No: 26.67% No: 25.35% No: 17.79% No: 100.00% No: 100.00% 0.230

Yes: 82.43% Yes: 73.33% Yes: 74.65% Yes: 82.21% Yes: 0.00% Yes: 0.00%

 Rigidity No: 29.73% No: 19.05% No: 32.39% No: 20.86% No: 100.00% No: 100.00% 0.095

Yes: 70.27% Yes: 80.95% Yes: 67.61% Yes: 79.14% Yes: 0.00% Yes: 0.00%

 Bradykinesia No: 16.22% No: 11.43% No: 22.54% No: 20.25% No: 100.00% No: 100.00% 0.186

Yes: 83.78% Yes: 88.57% Yes: 77.46% Yes: 79.75% Yes: 0.00% Yes: 0.00%

 Postural insta-
bility

No: 91.89% No: 92.38% No: 94.37% No: 94.48% No: 100.00% No: 100.00% 0.833

Yes: 8.11% Yes: 7.62% Yes: 5.63% Yes: 5.52% Yes: 0.00% Yes: 0.00%

 Other No: 79.73% No: 87.62% No: 81.69% No: 84.66% No: 100.00% No: 100.00% 0.500

Yes: 20.27% Yes: 12.38% Yes: 18.31% Yes: 15.34% Yes: 0.00% Yes: 0.00%

https://www.ppmi-info.org/study-design/research-documents-and-sops
https://www.ppmi-info.org/study-design/research-documents-and-sops
https://www.ppmi-info.org/study-design/research-documents-and-sops
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outcomes, we tested a conceptual three-way interaction 
model, also known as moderated moderation model, 
using the Hayes PROCESS macro [42]. The three-way 
moderation model included motor symptom asymmetry 
(multicategorical indicator coding system for RPD and 
LPD) as the predictor variable, cognitive and psychiat-
ric symptoms as outcome variables, UA as the primary 
moderator (M) and sex as the secondary moderator (W; 
Fig. 1). This model was tested for each outcome, namely 
cognitive (MoCA, HVLT immediate and delayed recall, 
BJLOT, SDMT and semantic fluency scores) and psychi-
atric (GDS and STAI scores) variables, at each timepoint. 
Given the impact of age, racial background, levodopa 
medication and education on individuals’ UA serum con-
centrations and NMS [28, 58, 59], we adjusted for these 
three variables by including them as covariates in the 
models. The Davidson–Mackinnon estimator of heter-
oskedasticity-consistent standard error was used in order 
to reduce the possible effects of heteroskedasticity on the 
inference of regression estimates [60]. All data analyses 
were conducted in SPSS 26.

Results
Moderated moderation in the relationship between motor 
symptom asymmetry and cognitive and psychiatric 
symptoms
The three-way interaction models yielded interesting 
results regarding the moderating effects of UA and sex 
on the relationship between motor symptom asymme-
try, clinically measured using the MDS-UPDRS III scores 
at disease onset, and cognitive and psychiatric symp-
toms. A total of four models showed a statistically sig-
nificant interaction between motor symptom asymmetry, 
UA and sex at 1-year follow-up (see Table  2). Model 1 
showed a statistically significant interaction between the 
LPD group, UA levels and sex on immediate memory 
scores. The overall model accounted for 24.46% of the 

total variance of immediate memory recall scores [F(15, 
372) = 8.44, p < 0.001], with the interaction itself account-
ing for 1.63% of the total variance. Model 2 also displayed 
a significant interaction between the LPD group, UA 
levels and sex on delayed memory scores. The overall 
model accounted for 21.73% of the total variance [F(15, 

Fig. 1 Conceptual model of a three-way interaction between motor 
symptom asymmetry, UA and sex. A conceptual representation of 
three-way interaction (moderated moderation) effects of UA and 
sex on the relationship between motor symptom asymmetry and 
cognitive–psychiatric symptoms, extracted from PROCESS macro for 
SPSS (Model 3)

Table 2 Moderated moderation models showing three-way 
interactions between motor symptom asymmetry, UA and sex 
on cognitive and psychiatric outcomes at 1-year follow-up

Model includes the following demographic control variables: age, education, 
levodopa medication and racial background

B Unstandardized regression coefficient, CI Confidence Intervals, ESS Epworth 
Sleepiness Scale, HVLT Hopkins Verbal Learning Test, LPD patients with 
Parkinson’s disease (PD) who exhibit predominantly left-sided motor symptoms, 
RPD patients with PD who exhibit predominantly right-sided motor symptoms, 
SE standard error of the regression, SDMT Symbol Digit Modalities test, UA uric 
acid

Statistically significant relationships where p < 0.05 are reported with an asterisk

B SE 95% CI

Model 1: three-way interactions on HVLT immediate recall

 LPD × UA 0.060 0.031 − 0.002 0.122

 RPD × UA − 0.016 0.034 − 0.083 0.051

 LPD × sex − 2.40 1.99 − 6.31 1.52

 RPD × sex 0.25 2.34 − 4.36 4.86

 UA × sex 0.015 0.010 − 0.004 0.034

 LPD × UA × sex − 0.056 0.026 − 0.107 − 0.005*

 RPD × UA × sex 0.005 0.029 − 0.051 0.062

Model 2: three-way interactions on HVLT delayed recall

 LPD × UA 0.038 0.015 0.009 0.067*

 RPD × UA − 0.008 0.018 − 0.044 0.028

 LPD × sex − 1.137 0.886 − 2.88 0.605

 RPD × sex − 0.244 1.11 − 2.44 1.95

 UA × sex 0.006 0.005 − 0.003 0.016

 LPD × UA × sex − 0.034 0.011 − 0.0553 − 0.012*

 RPD × UA × sex 0.002 0.016 − 0.030 0.033

Model 3: three-way interactions on SDMT

 LPD × UA 0.021 0.060 − 0.097 0.138

 RPD × UA − 0.106 0.060 − 0.224 0.013

 LPD × sex − 2.43 3.30 − 8.93 4.06

 RPD × sex 6.49 3.83 − 1.05 14.03

 UA × sex 0.000 0.027 − 0.053 0.053

 LPD × UA × sex − 0.019 0.043 − 0.105 0.067

 RPD × UA × sex 0.101 0.047 0.009 0.193*

Model 4: three-way interactions on ESS

 LPD × UA 0.003 0.026 − 0.048 0.053

 RPD × UA 0.035 0.022 − 0.008 0.078

 LPD × sex 0.054 1.78 − 3.45 3.56

 RPD × sex − 3.45 1.37 − 6.15 − 0.748*

 UA × sex 0.001 0.008 − 0.015 0.017

 LPD × UA × sex 0.007 0.022 − 0.036 0.050

 RPD × UA × sex − 0.036 0.016 − 0.067 − 0.005*
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372) = 9.11, p < 0.001], with the three-way interaction 
accounting in itself for 2.07% of the total variance. These 
two first models demonstrate that LPDf patients seem to 
be more affected by UA variability than their male coun-
terparts, showing higher memory scores in the presence 
of lower levels of UA (see Fig.  2A, B). Model 3, on the 
other hand, demonstrated a statistically significant inter-
action between the RPD group, UA and sex for process-
ing speed scores. The overall model accounted for 38.89% 
of the total variance of SDMT scores [F(15, 372) = 13.61, 

p < 0.001], with the three-way interaction accounting in 
itself for 0.87% of the total variance. Interestingly, this 
model revealed better processing speed scores in the 
presence of higher UA concentrations in RPDf patients 
(see Fig. 2C). Finally, model 4 showed a statistically signif-
icant interaction between the RPD group, UA levels and 
sex on sleepiness. The overall model accounted for 9.09% 
of the total variance of ESS scores [F(15, 372) = 2.79, 
p < 0.001], with solely the three-way interaction account-
ing for 1.00% of the total variance. This model revealed 

Fig. 2 Three-way interaction plot of motor symptom asymmetry, UA and sex on cognitive and psychiatric outcomes. Significant three-way 
interactions were noted for immediate memory (A), delayed memory (B), processing speed (C) and sleepiness (D). Analyses were performed using 
the PROCESS macro for SPSS (Model 3). Model includes the following covariables: age, education, levodopa medication and racial background. 
HC healthy controls, HVLT Hopkins Verbal Learning Test, LPD patients with Parkinson’s disease (PD) who exhibit predominantly left-sided motor 
symptoms, RPD patients with PD who exhibit predominantly right-sided motor symptoms, UA uric acid
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that RPDf patients seem to show lower daytime sleepi-
ness in the presence of higher UA levels (see Fig. 2D). No 
significant three-way interactions were found for years 
3 and 5. Moreover, PD male patients did not seem to 
exhibit any effect of UA variability on cognitive and psy-
chiatric measurements.

While supporting our hypothesis of significant moder-
ating effects of sex and UA on the relationship between 
motor symptom asymmetry and neuropsychiatric out-
comes, these results do not go in the direction of our 
first prediction of a stronger moderation effect in men. 
Indeed, no significant and positive associations between 
UA concentrations and neuropsychological performances 
were found in male RPD and LPD patients. The results 
do however comfort our second prediction of an inverse 
association between UA and cognitive performances in 
female patients, with better outcomes noted in the pres-
ence of lower UA levels for the LPDf group. The simulta-
neous interaction between motor symptom asymmetry, 
sex and UA was explored, showing an inverse moderat-
ing effect of UA depending on the side of motor symp-
tomatology and the type of NMS in women, with RPDf 
patients showing less sleepiness and improved processing 
speed in the presence of higher UA concentrations.

Cognitive and psychiatric outcomes according to motor 
symptom asymmetry and sex
Secondary analyses were conducted to better character-
ize the profile of each subgroup. Inter-group and intra-
group comparisons with respect to motor asymmetry 
and sex were carried out for cognitive scores (Additional 
file  1: Tables S1.1, S1.2 and S1.3, Fig. S1), psychiatric 
scores (Additional file 1: Tables S2.1, S2.2 and S2.3, Fig. 
S2), as well as motor severity symptoms alongside serum 
UA and Levodopa Daily medication (Additional file  1: 
Tables S3.1, S3.2 and S3.3, Fig. S3).

In brief, female patients had overall better cognitive 
performances compared to their male counterparts, 
for the MoCA (p < 0.05), HVLT immediate and delayed 
recall (p < 0.02), BJLOT (p < 0.008), SDMT (p < 0.03) and 
semantic fluency (p < 0.003). More so, the RPDf subgroup 
demonstrated better cognitive functioning, notably for 
the MoCA (p = 0.002), HVLT immediate and delayed 
recall (p < 0.023) and semantic fluency (p < 0.03), when 
compared to HC and their male counterparts. They also 
showed the least decline over  time (noted only for the 
BJLOT at Year 1, p < 0.007). Similar patterns of results 
were observed for psychiatric measures, with the RPDf 
group demonstrating lesser symptoms and the least 
decline over  time when compared to other groups. It is 
noteworthy that RPDf patients exhibited the lowest con-
centrations of UA at certain timepoints (p < 0.04). When 
compared to the rest of the subgroups, RPDm patients 

were most affected on multiple domains, such as global 
efficiency (p < 0.032), short and long-term memory 
(p < 0.03) as well as processing speed (p < 0.012). The 
RPDm group also displayed the most important decline 
over  time in terms of sleepiness (p < 0.001), depressive 
symptoms (p < 0.004) and sleep disturbances (p < 0.001). 
Finally, significant negative correlations were highlighted 
between the scores of the ESS and the SDMT for the 
whole sample and for each patient subgroup, except for 
LPDf patients (see Additional file  1: Table  S4). Further 
information can be found in the Additional file 1.

Discussion
The present study aimed to better understand the rela-
tionships between UA, sex and motor symptom asym-
metry at disease onset on cognitive functions and 
psychiatric symptoms in early-stage PD patients. To this 
end, we performed three-way interaction models using 
data from the Parkinson’s Progression Marker Initiative. 
We expected sex and UA to significantly moderate the 
relationship between motor symptom asymmetry and 
cognitive–psychiatric symptoms, with stronger mod-
eration effects in men, where higher UA concentrations 
would correspond to better cognitive and psychiatric 
outcomes. Conversely, we expected lesser moderating 
effects in women, or even an inverse association between 
UA and cognitive–psychiatric symptoms, with female 
patients having preserved outcomes in the presence of 
lowered UA levels. Finally, the effects of sex and UA when 
taking in consideration motor symptom asymmetry were 
explored. Results of our three-way interactions partially 
confirmed our predictions regarding certain cognitive 
functions and psychiatric symptoms at 1-year follow-
up, offering strong support for a significant moderation 
of UA and sex on the relationship between motor symp-
tom asymmetry and cognitive-psychiatric symptoms. 
Indeed, as expected, significant three-way interactions 
were found for the LPD and RPD female subgroups. For 
the LPDf subgroup, higher short- and long-term memory 
performances were associated to lower concentrations of 
UA, while for the RPDf subgroup, higher daytime sleepi-
ness and slower processing speed were associated to 
lower concentrations of UA. Finally, the male subgroups 
did not seem to beneficiate from the modulating effects 
of UA.

Three patterns of results seem to stand out from the 
current findings. First, the results of our three-way inter-
actions corroborate previous findings of a deleterious 
effect of elevated UA concentrations on certain cogni-
tive functions, such as episodic memory, in women [37]. 
In this regard, lower serum UA could be an indicator of 
an endogenic capacity to cope with PD-related cerebral 
oxidative stress induced by multiple neuropathological 
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factors, such as protein misfolding, mitochondrial dys-
function, excitotoxicity, etc. [61]. Decreased UA serum 
concentrations in early PD patients would thus reflect an 
efficient mobilization of peripheral antioxidant resources 
to the brain. This phenomenon has also been observed 
in post-traumatic brain injury studies showing that 
decreased UA serum levels concurred with increased UA 
concentrations in damaged brain tissues [62].

Second, the association between UA, sex and cognitive 
and psychiatric outcomes seems to differ depending on 
the side of motor symptomatology and on the nature of 
the evaluated processes. For instance, in contrast to the 
associations found between lower UA levels and better 
cognitive performance in LPDf patients, RPDf patients 
with lower UA levels presented higher daytime sleepi-
ness. Multiple studies have found lower serum UA levels 
to be associated with increased fatigue and sleepiness in 
PD [30, 31] (for review, see [63]), and in other clinical 
populations (e.g., stroke patients [64]). Moreover, previ-
ous findings have also linked lowered levels of UA with 
higher psychiatric manifestations in early PD [29]. Inter-
estingly, secondary analyses highlighted significant nega-
tive correlations between higher daytime sleepiness and 
reduced processing speed in the RPDf group but not in 
the LPDf group, indicating that increased fatigue might 
explain the lower performances on the SDMT in the 
presence of decreased serum UA levels solely for the 
former group. Thus, while lower serum UA seems to be 
beneficial for preserving higher cognitive functions (such 
as memory) in female patients with predominantly left-
sided symptoms, it might predispose to higher sleepiness, 
and thus reduced processing speed, in female patients 
with predominantly right-sided symptoms.

Third, and finally, certain cognitive functions and psy-
chiatric assessments were not significantly associated 
with UA, sex nor motor symptom asymmetry. This could 
be explained by the fact that a substantial part of cogni-
tive and affective processes is underpinned by bilateral 
neuronal networks, implicating thus a potential influ-
ence of compensatory processes at the beginning of the 
pathology [65]. Moreover, complex interactions with 
other biomarkers (e.g., total-tau; α-synuclein; Aβ42), for 
which distinct profiles have been recently highlighted 
between LPD and RPD patients [66, 67] might explain 
these results. Therefore, there seem to be distinct mecha-
nisms through which UA moderates cognitive and psy-
chiatric symptoms in early PD, notably depending on sex 
and motor symptom asymmetry.

Secondary analyses (detailed in Additional file  1) 
allowed us to further understand the clinical profiles of 
the subgroups. In essence, the RPDf group showed the 
least cognitive and psychiatric symptoms, while LPDf 
patients seemed more impaired in terms of cognitive 

functions and displayed higher psychiatric symptoms 
over  time. Both male patient groups had overall lower 
cognitive performances, not to mention more significant 
pejoration in time, especially for the RPDm subgroup. 
These results comfort previous studies that found greater 
cognitive impairment in PD men than women [68], as 
well as recent longitudinal studies in early and advanced 
asymmetric PD that found a greater progression of cog-
nitive impairment in RPD, specifically for global cogni-
tive efficiency and memory function, alongside higher 
levels of apathy, suggesting a potential risk factor for 
dementia associated with PD. Conversely, results for LPD 
patients have revealed higher psychiatric symptoms, such 
as depression and anxiety, as well as emotional recogni-
tion disorders [10, 66, 69–71]. One explanation could 
reside in sex-related differences in hemispheric lateraliza-
tion that might further allow to understand the observed 
cognitive and psychiatric discrepancies between sub-
groups. Indeed, studies tend to show greater hemispheric 
lateralization in men than women, with men demonstrat-
ing greater rightward connectivity, and women showing 
greater leftward connectivity [57]. Greater rightward 
lateralization in men could translate in weaker leftward 
plasticity, leaving the RPDm subgroup more vulnerable 
to the effects of pathological aging [58]. This is of particu-
lar importance as the left hemisphere has been shown 
to present an important vulnerability in neurodegenera-
tive diseases, such as PD [17, 59]. On the contrary, lesser 
hemispheric lateralization in female PD patients, along-
side a higher leftward cognitive reserve, would enable 
RPDf patients to better compensate for the effects of 
their prevalent left-hemispheric neurodegeneration.

Several limitations are noted for the present study. 
First, while we aimed to control for pertinent confound-
ing variables in order to improve robustness, multiple 
other factors can influence purine metabolism and UA 
synthesis, notably diet and sex hormones [72]. It would 
be pertinent for future studies to better understand the 
interactions between sex-specific hormones, UA and ali-
mentation in PD. Second, the models were established 
by yearly follow-up, transversally limiting data inter-
pretation. It would be interesting for future studies to 
investigate the effects of sex and UA on the evolution of 
NMS using longitudinal approaches, such as generalized 
estimating equation modeling. Third, limitations regard-
ing cognitive and psychiatric symptom testing should be 
mentioned. Notably, not all neuropsychological functions 
were assessed, such as inhibitory control or language. 
Also, assessments of psychiatric symptoms were done 
using only questionnaires. Fourthly, quality of life, an 
outcome that might also be influenced by sex and motor 
symptom asymmetry [69], was not assessed. Finally, 
as the association between serum UA and neurologic 
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dysfunction appears to be non-linear (possibly U-shaped 
[34]), the changes in the dynamic relationship between 
UA and NMS throughout the course of the disease merit 
further investigation.

Perspectives and significance
In summary, three-way interaction modeling was used 
in the present work, highlighting significant moderation 
of serum UA and sex on cognitive and psychiatric symp-
toms, depending on motor symptom asymmetry. Indeed, 
while lower serum UA appears to be associated with 
better memory performances in LPDf patients, it might 
predispose to higher sleepiness and reduced psychomo-
tor speed in RPDf patients. Male patients, however, did 
not seem to beneficiate from the modulating effects of 
UA. Furthermore, RPDf patients displayed overall the 
most preserved cognitive and psychiatric outcomes, 
while RPDm patients were particularly impaired in these 
realms. Thus, the evolution of the disease in its early 
stages seems to differ between male and female patients 
according to motor symptom asymmetry, owing to physi-
ological and cerebral differences between the two sexes. 
These findings point out to a growing body of literature 
addressing sex-based differences in the pathophysiol-
ogy, treatment and clinical outcomes of patients with PD. 
Future studies will allow to better untangle the interac-
tions occurring between biological processes in asym-
metric Parkinson’s disease, and how they differentially 
impact male and female patients during the disease’s 
course.

Conclusion
The present study helps provide a better understanding 
of the interactions occurring between UA, sex, and motor 
symptom asymmetry in the manifestation of cognitive 
and psychiatric symptoms in early PD. To our knowl-
edge, it is the first study providing compelling evidence 
of different profiles in early PD based on motor symptom 
asymmetry at disease onset and sex, while accounting for 
the moderating role of serum UA. This may hold impor-
tant clinical implications for NMS management in early-
stage PD patients, with RPDm patients presenting greater 
vulnerability compared to their female counterparts.
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