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Abstract 

Background As the housekeeping genes (HKG) generally involved in maintaining essential cell functions are typi‑
cally assumed to exhibit constant expression levels across cell types, they are commonly employed as internal con‑
trols in gene expression studies. Nevertheless, HKG may vary gene expression profile according to different variables 
introducing systematic errors into experimental results. Sex bias can indeed affect expression display, however, up to 
date, sex has not been typically considered as a biological variable.

Methods In this study, we evaluate the expression profiles of six classical housekeeping genes (four metabolic: 
GAPDH, HPRT, PPIA, and UBC, and two ribosomal: 18S and RPL19) to determine expression stability in adipose tissues 
(AT) of Homo sapiens and Mus musculus and check sex bias and their overall suitability as internal controls. We also 
assess the expression stability of all genes included in distinct whole‑transcriptome microarrays available from the 
Gene Expression Omnibus database to identify sex‑unbiased housekeeping genes (suHKG) suitable for use as internal 
controls. We perform a novel computational strategy based on meta‑analysis techniques to identify any sexual dimor‑
phisms in mRNA expression stability in AT and to properly validate potential candidates.

Results Just above half of the considered studies informed properly about the sex of the human samples, however, 
not enough female mouse samples were found to be included in this analysis. We found differences in the HKG 
expression stability in humans between female and male samples, with females presenting greater instability. We 
propose a suHKG signature including experimentally validated classical HKG like PPIA and RPL19 and novel potential 
markers for human AT and discarding others like the extensively used 18S gene due to a sex‑based variability display 
in adipose tissue. Orthologs have also been assayed and proposed for mouse WAT suHKG signature. All results gener‑
ated during this study are readily available by accessing an open web resource (https:// bioin fo. cipf. es/ metaf un‑ HKG) 
for consultation and reuse in further studies.
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Conclusions This sex‑based research proves that certain classical housekeeping genes fail to function adequately as 
controls when analyzing human adipose tissue considering sex as a variable. We confirm RPL19 and PPIA suitability as 
sex‑unbiased human and mouse housekeeping genes derived from sex‑specific expression profiles, and propose new 
ones such as RPS8 and UBB.

Highlights 

• A computational strategy based on massive data analysis revealed that an accurate experimental design for adi-
pose tissue requires the adequate selection of a sex-unbiased housekeeping genes (HKG).

• The extensively used 18S gene displays sex-based variability in adipose tissue, although PPIA and RPL19 do not, 
and hence, represent robust HKG.

• New sex-unbiased human and mouse candidate HKG: RPS8 and UBB.
• metafun-HKG (https:// bioin fo. cipf. es/ metaf un- HKG): a freely available web tool to allow users to review stable 

expression levels of candidate HKG along the large volume of FAIR data.

Keywords Housekeeping genes, Meta‑analysis, Transcriptomics, Sex bias, Adipose tissue

Plain English Summary 

Housekeeping genes (HKG) are involved in the maintenance of essential cellular functions. They usually present 
constant expression levels and are relevant because of their usefulness as internal controls in gene expression studies. 
However, HKG can vary the gene expression profile depending on different variables such as sex, introducing errors 
in the experimental results. In this study, we have performed an exhaustive systematic review and applied a massive 
analysis of expression data to check which HKG presents this bias and which do not. The results confirm that certain 
classical HKG do not perform adequately as controls when analyzing human adipose tissue considering sex as a vari‑
able. We further confirm the suitability of RPL19 and PPIA as human and mouse HKG without sex bias derived from 
sex‑specific expression profiles, and propose new ones such as RPS8 and UBB. These results will be of great use in 
upcoming studies where expression data need to be normalized without the inclusion of sex bias.

Introduction
Housekeeping genes (HKGs) are a large class of consti-
tutively expressed genes subjected to low levels of regu-
lation under various conditions. They generally perform 
biological actions fundamental to basic cellular functions 
such as the cell cycle, translation, metabolism of RNA, 
and cell transport [1, 2]. Thus, the stable expression of 
HKGs is assumed in all cells of an organism independ-
ent of the tissue, developmental stage, cell cycle state, or 
presence/absence of external signals [3, 4].

The use of internal controls when performing quan-
titative gene expression analysis (such as microarrays, 
RNA-sequencing [RNA-seq], and quantitative reverse 
transcriptase-polymerase chain reaction [qRT-PCR]) 
represents the most common strategy to normalize gene 
expression to correct for intrinsic errors related to sam-
ple manipulation and the technical protocol. The gene 
expression profiles obtained depend significantly on the 
reference genes employed as internal controls; therefore, 
inappropriate controls can lead to inaccurate results.

Given their fundamental roles, HKGs tend to dis-
play medium-high expression levels; this characteristic 

makes these genes especially suitable as internal con-
trols/reference genes to normalize gene expression data 
in quantitative gene expression analysis [2, 5, 6]. Ideally, 
internal controls should exhibit stable gene expression 
across most sample types and experimental conditions 
to minimize undesired experimental variation; however, 
the literature suggests that the expression of commonly 
used HKGs varies depending on the experimental condi-
tions and chosen setup and the analyzed tissue [5–13]. 
Importantly, these limitations do not invalidate the use 
of HKGs as a normalization strategy; instead, they sup-
port the need for a deeper understanding of how HKGs 
behave under different conditions or in distinct tissues. 
The stability of HKG expression must be validated under 
the particular conditions of interest of each study as a 
mandatory step [5], considering all experimental, bio-
logical, or clinical variables [7, 14–16]. Importantly, this 
should include sex as an essential variable.

The role of sex in biomedical studies has often been 
overlooked, despite evidence of sexually dimorphic 
effects in biological studies. Karp et al. recently demon-
strated how sex phenotypically influenced a substantial 

https://bioinfo.cipf.es/metafun-HKG
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proportion of mammalian traits, both in wildtype and 
mutants [17]. Meanwhile, Oliva et al. reported the 
impact of sex on gene expression in various human tis-
sues through metadata analysis by the GTEx platform, 
generating a catalog of sex-based differences in gene 
expression and the regulatory pathways involved [18]. 
The authors revealed ubiquitous effects of sex on gene 
expression; however, they highlighted significant sex-
based differences in human visceral and subcutaneous 
adipose tissue. Sex as an intrinsic variable has not been 
historically considered of immense importance. In a 
recent review of more than 600 animal research studies, 
22% of publications did not specify animal sex [19]. Of 
the reports that specified animal sex, 80% of publications 
included only males and 17% only females, leaving only 
3% that considered animals of both sex [20]. An analysis 
of the number of animal studies revealed a more signifi-
cant disparity—16,152 males vs. only 3,173 females. Only 
seven studies (1%) reported sex-based results. Thus, the 
number of male-only studies and the use of male animals 
have become more disparate over time [20, 21]. Unfor-
tunately, human counterpart studies do not provide any 
encouragement; while international institutions now 
consider sex as a critical variable [22, 23], the male per-
spective predominates in past studies. The lack of consid-
eration of sex as a variable can accentuate/attenuate gene 
expression analysis, which has subsequent implications 
on biological or biomedical interpretations.

The quantitative analysis of gene expression data has 
allowed assessments of gene expression levels within 
different tissues and under various conditions, which 
has identified stable expression profiles/patterns [1, 9, 
12, 24–28]. Public repositories of gene expression data 
have appeared in the last decades. The Gene Expression 
Omnibus (GEO) [29], a well-known international public 
repository, stores and allows access to gene expression 
data generated by different high-throughput technolo-
gies such as microarrays or next-generation sequencing. 
Exploiting and reusing the vast amount of data in these 
repositories has become a powerful tool for those search-
ing for gene expression patterns across many diverse 
types of tissues and conditions.

A survey of 40 studies of human adipose tissue (AT) 
published since 2001 noted that 70% of papers employed 
the ACTB, GAPDH, and 18S HKGs as reference genes 
[14]. Related studies have supported the use of additional 
HKGs (i.e., PPIA, HPRT, RPS18, or RPL19) in human 
AT-based studies [16, 30, 31]. Importantly, these studies 
failed to include sex as a biological variable, suggesting 
that these HKGs may not be as suitable as anticipated. 
In short, there exists an important limitation in gene 
expression studies due to the lack of inclusion of the 
sex perspective. In response, this study determines the 

gene expression variability levels of six HKGs commonly 
used in human and mouse adipose tissue (AT) and genes 
included in various whole-transcriptome microarrays 
available at GEO that consider sex as a covariable. Fur-
ther, we identify novel candidate reference genes that do 
not display sex bias in human AT. We extend this analy-
sis to experimental analyses of mouse models deposited 
in the GEO. Our findings reveal that studies generally 
lack sex specificity or employ mainly male animals; fur-
thermore, certain conventional HKGs fail the requisite 
of being constitutively expressed in both sexes. Also, we 
establish new putative sex-unbiased HKGs (suHKGs) 
for gene expression analysis in male and female human 
AT, and putative orthologs for mouse AT. We present a 
general framework for reference gene selection that may 
be useful in gene expression studies and develop an open 
web tool to select adequate suHKGs according to cus-
tomized experimental designs in AT.

Methods
The bioinformatics analysis strategy was carried out 
using R 3.5.0 [32] and Python 3.0 and is summarized in 
Fig. 1.

Systematic review and data collection
A comprehensive systematic review was conducted to 
identify all available transcriptomics studies with adi-
pose tissue samples at GEO. The review considered the 
fields: sample source (adipose), type of study (expression 
profiling by array), and organism of interest (Homo sapi-
ens or Mus musculus). The search was carried out during 
the first quarter of 2020, with the review period cover-
ing the years 2000-2019. From the returned records, the 
study GSE ID, the platform GPL ID, and the study type 
were extracted using the Python 3.0 library Beautiful 
Soup. The R package GEOmetadb [33] was then used 
to identify microarray platforms and samples from adi-
pose tissue. The top 4 and 5 most used platforms in Hsa 
(Table 1) and Mmu (Table 2), respectively, were selected. 
Given the complex nature of some of the studies, those 
with information regarding the sex of samples were man-
ually determined, and the keywords used to annotate 
them homogenized. Finally, studies not meeting the fol-
lowing predefined inclusion criteria were filtered out: i) 
include at least 10 adipose tissue samples; ii) use one of 
the selected microarray platforms to analyze gene expres-
sion data; iii) present data in a standardized way; and iv) 
not include duplicate sample records (as superseries).

Data processing and statistical analyses
The normalized microarray expression data of the 
selected studies from GEO were downloaded using the 
GEOQuery R package. All the probe sets of each platform 
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were converted to gene symbols, averaging expression 
values of multiple probe sets targeting the same gene to 
the median value.

Three statistical stability indicators were calculated for 
each gene in each study to determine the relative expres-
sion variability: the coefficient of variation (CV), the 
IQR/median, and the MAD/median. The CV, computed 

as the standard deviation divided by the mean, is used to 
compare variation between genes with expression lev-
els at different orders of magnitude; however, extreme 
values can affect this value. Therefore, the interquartile 
range (IQR) divided by the median and the median abso-
lute deviation (MAD) divided by the median (two statis-
tics based on the median) were also considered. These 

Fig. 1 Data‑analysis workflow. This study consisted of seven main block‑steps: 1 The collection of public microarray information located at GEO 
(Gene Expression Omnibus) database with Python and R. 2 Raw data pre‑processing and probe annotation. 3 Statistical data analysis with three 
different statistics to get the gene expression variability in adipose tissue samples of Hsa and Mmu, considering the biological sex as a variable. 4 
Meta‑analysis by Rank Product method. 5 Functional annotation with Gene Ontology (GO) terms. 6 GTEX‑based gene expression filtering, to select 
potential reference genes suitable to compare both sexes in gene expression analyses. 7 Experimental validation by qPCR

Table 1 Processed data sets for selected studies of Hsa

The number of studies that used the platform (eligible studies) is shown for each selected platform, including the number of studies that met the exclusion criteria, 
the number of adipose tissue samples, and the maximum number of genes identified

For each selected platform, the number of studies that used the platform (eligible studies) are shown, including the number of studies that made the cut (refer 
exclusion criteria), the number of adipose tissue samples and the maximum number of genes that were able to be identified

A total of 49 studies and 2724 samples have been included in the statistical analysis

Platform Description Eligible 
studies

Included 
studies

Analyzed 
samples

Identified genes

GPL570 Affymetrix Human Genome U133 Plus 2.0 Array 37 20 1058 22,881

GPL6244 Affymetrix Human Gene 1.0 ST Array transcript (gene) 
version

15 13 343 23,307

GPL10558 Illumina HumanHT‑12 V4.0 expression BeadChip 14 7 498 31,426

GPL6947 Illumina HumanHT‑12 V3.0 expression BeadChip 12 9 825 25,159

Table 2 Processed data sets for selected Mmu studies

The number of studies that used the platform (eligible studies) is shown for each selected platform, including the number of studies that met the exclusion criteria, 
the number of adipose tissue samples, and the maximum number of genes identified

43 studies and 1072 samples have been included in the statistical analysis

Platform Description Eligible 
studies

Included 
studies

Analyzed 
samples

Identified genes

GPL1261 Affymetrix Mouse Genome 430 2.0 Array 34 16 280 21,495

GPL6246 Affymetrix Mouse Gene 1.0 ST Array transcript (gene) version 24 6 133 24,213

GPL6887 Illumina MouseWG‑6 v2.0 expression BeadChip 20 8 183 30,886

GPL6885 Illumina MouseRef‑8 v2.0 expression BeadChip 15 8 375 18,120

GPL16570 Affymetrix Mouse Gene 2.0 ST Array transcript (gene) version 10 5 101 24,647
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measures provide more robustness in skewed distribu-
tions [34]. Both statistics were multiplied by a correction 

female MetaRankings), which averages the three statisti-
cal rankings Eq. (2):

The difference in the ranking positions occupied by 
males and females was also calculated to reveal sex-
based stability differences at a gene level.

Selecting stable suHKG with high levels of expres-
sion, followed several steps—we first (i) downloaded 
the "GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_
gene_median_tpm.gct.gz” file from GTEx; (ii) select the 
adipose tissue samples; (iii) take the gene median tran-
script per million (TPM) value in visceral adipose tis-
sue; (iv) filter out from our sex-specific MetaRankings 
genes with median TPM < 20; (v) select the genes in the 
top 10% positions of each MetaRanking; and (vi) inter-
sect the two top lists to find stable and highly expressed 
genes common to both sexes.

Experimental validation
Study selection and sample processing
Subjects were recruited by the endocrinology and sur-
gery departments at the University Hospital Joan XXIII 
(Tarragona, Spain) in accordance with the Helsinki dec-
laration. Human visceral and subcutaneous AT samples 
were obtained during surgery from lean and obese male 
and female individuals. Total RNA was extracted from 
adipose tissue using the RNeasy lipid tissue midi kit 
(Qiagen Science). One microgram of RNA was reverse 
transcribed with random primers using the reverse 
transcription system (Applied Biosystems) [39].

Mouse AT was obtained from wild type and  Irs2−/− 
[40] (insulin resistance and type 2 diabetes model) 
C57BL/6 littermates. According to the criteria outlined 
in the “Guide for the Care and Use of Laboratory Ani-
mals”, all animals received humane care [22]. Total RNA 
was extracted from abdominal fat using a combined 
protocol including Trizol (Sigma) and RNeasy Mini Kit 
(Qiagen) with DNaseI Digestion. First-strand synthesis 
was performed using EcoDry Premix (Takara).

Gene expression analysis
Quantitative gene expression analysis was performed 
on 50  ng cDNA template. Real time-PCR was con-
ducted in a LightCycler 480 Instrument IIR (Roche) 
using SYBR PreMix ExTaqTM (mi RNaseH Plus, 
Takara). Genes selected as potential HKG in human 
and mouse WAT were 18  s, PPIA and RPL19. Prim-
ers were designed in two consecutive exons, when 

(2)MetaRanking position =
positionCV + positionIQR/median+ positionMAD/median

3
.

factor of 0.75 and 1.4826 to make them comparable to the 
CV in normal distributions. Lastly, the gene variability 
scores per platform were expressed as the median of all 
statistics from the studies analyzed with each platform. 
These median values were ranked by gene variability 
value for each platform, with lower ranks corresponding 
to higher stability levels.

The described analysis pipeline was performed on three 
different sample groups based on sex and species: female 
Hsa, male Hsa, and all Mmu samples. The analysis was 
not performed separately for male and female mice due 
to the lack of female Mmu samples.

Meta‑analysis
The gene variability ranks for each platform were inte-
grated using the Rank Product (RP) method [35, 36], a 
non-parametric statistic identifying the elements that 
systematically occupy higher positions in ranked lists. 
This approach combines gene ranks rather than variabil-
ity scores to create platform independence. The Rank-
Prod package [37, 38] was used to calculate the RP score 
for each gene (Eq. 1, where i is the gene, K the number of 
platforms, and rankij the position of gene i in the ranking 
of platform j). Three final rankings were obtained (one 
for each sample group [Mmu, Hsa female, and Hsa male 
samples]) by sorting the genes in increasing order of RP:

Selection of candidate HKGs
To encounter appropriate sex-unbiased HKG (suHKG) 
candidates, male and female Hsa samples were ran-
domly selected, and the Mmu group was discarded. 
Gene functional information was then incorporated to 
exclude genes involved in metabolic alterations. The 
AnnotationDbi and org.Hs.eg.db annotation packages 
converted Gene Symbol to Gene name. After removing 
pseudogenes and non-coding genes, the associated GO 
terms of the remaining genes were obtained using the 
GO.db annotation package. Related information from all 
three gene ontologies were included (Biological Process, 
Molecular Function, Cellular component). Genes related 
to physiopathological conditions were filtered out, and 
a unique ranking by sex was generated (the male and 

(1)RPi =

K

j=1

rankij

1/K

.
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possible, taking into consideration all reference 
sequences for mRNA in NCBI (https:// www. ncbi. nlm. 
nih. gov/ gene/; https:// www. ncbi. nlm. nih. gov/ nucco 
re/) [41] and aligned to search for common regions 
with Pairwise Sequence Alignment (https:// www. ebi. 
ac. uk/ Tools/ psa/) [42]. Alternative transcript variants 
were analyzed by AceView (https:// www. ncbi. nlm. 
nih. gov/ IEB/ Resea rch/ Acemb ly/ index. html) [43] and 
primers (designed either by Primer3 or PrimerBlast) 
amplifying most represented sequence/s were chosen 
(Additional file  1). All primers used in this study are 
noted in Additional file  2: Table  S1. Crossing point 
(Cp) values were analyzed for stability between sam-
ples and relative quantification using  2^-ΔCt. Statisti-
cal analyses were performed with GraphPad Prism 8 
(Graphpad Software V 8.0). The results are expressed 
as arithmetic mean ± the standard error of the mean 
(SEM). When two data sets were compared, a Student’s 
t-test was used. The differences observed were consid-
ered significant when: p-value < 0.05 (*), p-value < 0.01 
(**) and p-value < 0.001 (***).

Web tool
A freely available web tool, called metafun-HKG 
(https:// bioin fo. cipf. es/ metaf un- HKG) was created 
during this study to allow users to review and share the 
large volume of generated data and results. The front-
end was developed using the Bootstrap library. This 
easy-to-use resource is organized into four sections: 
(1) a quick summary of the results obtained with the 
analysis pipeline in each phase. Then, for each of the 
studies, the detailed results of the (2) exploratory anal-
ysis and (3) variability assessment. Finally, all results 
are integrated and summarized in (4) gene stability 
meta-analysis by sex and organism. The user can inter-
act with the web tool through graphics and tables and 
search information for specific genes.

Results
Classic HKG selection
An extensive bibliographic review revealed that ref-
erence genes chosen for qRT-PCR-mediated analy-
sis of gene expression in human AT or various types 
of adipocytes generally included the metabolic genes 
GAPDH [7, 14–16, 39, 44], HPRT [7, 16], PPIA [14, 
39, 44], UBC [14, 45] and ribosomal genes 18S [7, 14, 
16, 39, 46–48] and RPL19 [49]. As these genes have 
been commonly used to analyze gene expression as 
reference genes in several experimental conditions 
(although the sex variable was generally not consid-
ered), we selected these six classic human AT HKG 

genes for evaluation when considering sex as a vari-
able to assess their suitability as sex-unbiased HKG 
(suHKGs). In the case of 18S, we specifically selected 
18S5 for our analysis.

Systematic review and data collection
We searched the GEO by defining the sample tissue, type 
of study, and organism of interest and obtained a total of 
187 and 214 candidate studies for Homo sapiens (Hsa) 
and Mus musculus (Mmu), respectively. We selected the 
main microarray platforms for each species that con-
tained the greatest number of studies; this provided 4 and 
5 platforms for Hsa (Table 1) and Mmu (Table 2), respec-
tively. We excluded 138 and 171 studies of Hsa and Mmu, 
respectively, as they failed to meet the inclusion criteria. 
Finally, we selected 49 Hsa studies and 43 Mmu studies 
for sex-based evaluations (Fig.  2), which involved 2724 
Hsa and 1072 Mmu samples.

In Hsa, 24 (51%) of the 49 selected studies included 
sample information regarding sex. 10 studies covered 
both sexes in their analysis, while 11 included females 
exclusively, and 3 contained only male samples (Fig. 3A). 
In Mmu, 22 (51%) of the 43 selected studies informed 
about the sex of samples; only 1 study covered both sexes 
while 2 included exclusively female samples and 19 con-
tained only male samples (Fig.  3B). Finally, we selected 
human samples with known sex information (681 male 
and 875 female samples, Additional file  2: Table  S2 and 
Fig. S1) and all mouse samples (1072 samples, 559 known 
to be male and 34 from female, Additional file 2: Table S3 
and Fig. S2) for analysis. Due to the low number of 
known female samples in mice, we excluded Mmu stud-
ies from this sex-based analysis.

Stability data meta‑analysis
After downloading and annotating normalized expres-
sion data sets for the selected studies, we calculated three 
estimators of variability: the coefficient of variation (CV), 
the interquartile range divided by the median value (IQR/
median), and the mean absolute deviation divided by 
the median value (MAD/median). Additional file  2: Fig. 
S3, S4, and S5 summarize the levels of variability of the 
six selected HAT HKGs (UBC, RPL19, RNA18S5, PPIA, 
HPRT1, and GAPDH) for male and female Hsa and Mmu.

We conducted a meta-analysis based on the Rank 
Product (RP) method to integrate statistical results 
from different platforms; this approach combines gene 
ranks rather than variability scores (creating platform 
independence) and identifies the elements that system-
atically occupy higher positions in ranked lists (giving 
to each element in the ranking an RP score). We calcu-
lated the RP score of 41,975 and 47,203 Hsa and Mmu 

https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/nuccore/
https://www.ncbi.nlm.nih.gov/nuccore/
https://www.ebi.ac.uk/Tools/psa/
https://www.ebi.ac.uk/Tools/psa/
https://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html
https://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html
https://bioinfo.cipf.es/metafun-HKG
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genes, respectively, and then sorted all genes—in this 
ranking, lower positions indicate higher expression 
stability. 18S displayed significant variability in Hsa in 
both males and females; however, this gene represented 
the second most stable selected HKG in Mmu. Fig-
ure 4 depicts the positions occupied by the six selected 
HAT HKGs in Mmu, Hsa males, and Hsa females. Sur-
prisingly, HKG stability in humans differed between 
female and male samples, with females displaying 
greater instability. Accessing the Metafun-HKG webt-
ool provides the whole rankings with the positions and 

RP scores of all evaluated genes in each experimental 
condition.

In order to decipher differences in gene expression 
stability between male and female AT samples, we con-
ducted a deconvolution analysis. Overall, we did not 
find consistent differences between the sexes in cellular 
composition across datasets (Additional file 3).

To select sex-unbiased, highly expressed, and stable 
human AT HKG candidates, we combined the scores of 
the three statistical approaches in a unique list of posi-
tions for each experimental condition (metaRanking) and 

Fig. 2 Flow diagram of the systematic review and selection of studies for meta‑analysis according to PRISMA statement guidelines for database 
searches
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filtered out genes with low expression (TPM < 20) in the 
GTEx database. These steps provided a list of 5,315 genes. 
We next intersected the top 10% (532) most stable genes 
in the Hsa male and Hsa female metaRankings separately, 
which resulted in a list of 195 candidate suHKGs (http:// 
bioin fo. cipf. es/ metaf un- HKG/). This analysis revealed 
relative stability and expression values high enough for 
detection by different gene expression analysis technolo-
gies in total Hsa samples (Table 3, Fig. 5). From this list, 
we selected human AT HKGs that included the classi-
cal HKGs PPIA, UBC, RPL19, and RPS18 and the addi-
tional novel candidate suHKGs RPS8 and UBB. We also 
detected stable, highly expressed genes in one sex but not 
in the other (such genes included ANXA2, DDX39B, and 
PLIN4 in males and DNASE2, NDUFB11, and RARA  in 
females (Additional file  2: Table  S4, Fig.  5), which may 
be used as sex-specific reference genes. We failed to 
find the expression of the 18S gene in GTEx, although 
we searched for different aliases (RNA18S5, RNA18S1, 
RNA18SN1, RNA18SN5, RN18S1).

Experimental validation
We selected PPIA, RPL19, and 18S for experimental 
validation according to our computational assessment 
of variability. We analyzed human AT mRNA from 
lean and obese male and female individuals by qPCR 
to validate the previous computational metadata anal-
ysis (Table  3; Fig.  6). Raw crossing point (Cp) value 
coefficient variation (CV) analysis revealed similar 
Cp values between male and female samples, with low 
CV values for PPIA and RPL19 (Fig. 6A); however, 18S 

exhibited significant differences in Cp values between 
male and female samples, which displayed high CV 
values (Fig.  6A). Further, gene expression analysis of 
multiple experimental targets revealed differing pat-
terns when using PPIA or RPL19 compared to 18S as 
a HKG (Fig.  6B). We analyzed several genes involved 
in physiological and metabolic adipose tissue func-
tions (e.g., IRS1, LEPR, and PPARγ) in male and female 
human AT samples under two different physiological 
conditions using potential suHKG candidates. Results 
obtained provided evidence for the suitability of RPL19 
and PPIA as suHKGs and disqualified 18S as a HKG 
when considering sex as a variable (Fig.  6B). Overall, 
the experimental procedures validate the computa-
tional metadata analysis, discarding 18S and selecting 
PPIA and RPL19 as suHKG for HAT analysis.

To circumnavigate the lack of sex-based Mmu data 
to compute a Mmu metaRanking, we experimentally 
evaluated mouse orthologs (Ppia, Rpl19, and 18  s) of 
validated human suHKGs, in wt and in an insulin resist-
ance,  Irs2−/− ko model in male and females. Relative gene 
expression analysis demonstrated that the internal con-
trol affected the relative expression of different experi-
mental targets in different experimental mouse models. 
18 s used as HKG alters relative gene expression of InsR, 
Lepr, and Phb in males and females mouse AT samples, 
while Ppia and Rpl19 succeed as suHKG in mouse AT 
samples (Additional file 2: Fig. S6). These results confirm 
that mouse homologs of suHKG candidates can be used 
in mouse-based gene expression studies.

Fig. 3 Summary of sex as a variable during the review of Hsa and Mmu studies. A Out of 49 Hsa studies, 49% specified the sex of samples, and 
20.5% used samples from both sexes in the experimental procedure. B In Mmu, 51% of studies presented information regarding sex but focused 
mainly on male samples; almost no female samples were found in these studies. Only one study included samples from both sexes

http://bioinfo.cipf.es/metafun-HKG/
http://bioinfo.cipf.es/metafun-HKG/
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Fig. 4 A Ranking of stability levels for classic HKGs evaluated in Hsa females (upper) and males (lower). The position in the ranking for each selected 
gene is described on the X‑axis. This ranking was generated by taking the mean of the obtained RP values for the three statistical approaches 
(CV, IQR/median, and MAD/median) after filtering non‑coding genes. Ranking based on 18,973 genes. B Ranking stability levels for classic HKGs 
evaluated in Mmu. This ranking was generated by taking the mean of the obtained RP values for the three statistical approaches (CV, IQR/median, 
and MAD/median). Ranking based on 47,203 genes

Table 3 Candidate suHKGs for gene expression analysis

Selection of housekeeping candidate genes proposed to be used as a reference to compare both sexes in gene expression analysis

PPIA and RPL19 have been experimentally validated, while RPS8, RPS18, UBB, and UBC are computationally suggested

These genes are proposed based on their sex‑specific values of relative expression stability obtained from the final MetaRanking positions

Expression levels have been extracted from GTEx (given in TPM), which are high enough for detection by different technologies

Gene Relative stability in 
male

Relative stability in 
female

Expression level
(TPM)

Expression level (TPM) in 
female

Expression level 
(TPM) in male

PPIA 873 1589 234.597 236.1 233.6

RPL19 1129.67 137.33 1707.61 1707 1708

RPS8 194.67 178.33 952.191 944.5 957.9

RPS18 119.33 296.33 3173.82 3180 3168

UBB 228 79 252.293 249.8 254.1

UBC 267.33 706.33 432.547 396.9 447.7
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Fig. 5 MetaRanking of HKG stability levels for Hsa females and males. Dot shape indicates classical HKG (star) or new potential HKGs (circle). The 
color indicates if a gene is stable for both sexes (green), only in females (violet), only in males (red), or unstable (black). Dashed line indicates the 
limit position of the top 10% most stable genes with an expression of at least 20 TPM
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Metafun‑HKG web tool
We created the open platform web tool Metafun-HKG 
(https:// bioin fo. cipf. es/ metaf un- HKG) to allow easy access 
to any information related to this study. This resource con-
tains information related to the study samples, systematic 
revision, gene variability scores, and stability rankings. The 
stability indicators for each gene evaluated by platform, 
species, and sex can be freely explored by users to identify 
profiles of interest.

Discussion
Assessment of suHKG candidates
The two main objectives of this work were (i) evaluat-
ing the suitability of a group of six classic HKGs acting 
as human AT suHKGs and (ii) identifying genes with a 
stable, high expression profile that represent new Human 
AT suHKG candidates. Our novel strategy has reviewed 
the role of HKGs by considering sex, species, and plat-
form as variables in evaluated studies.

Fig. 6 Gene expression analysis in HAT from male and female samples using different HKGs. A Coefficient of variation (CV) in the Cp values of 
each candidate gene calculated in male and female for lean and obese samples. B IRS1, LEPR, and PPARγ expression analysis using PPIA, RPL19, and 
18S as reference genes. Male Lean n = 3; Female Lean n = 7; Male Obese n = 10; Female Obese n = 10. Student’s t‑test applied for significance—
*p‑value < 0.05, and **p‑value < 0.01

https://bioinfo.cipf.es/metafun-HKG
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We performed our analysis on three different sam-
ple groups based on sex and species: female Hsa, male 
Hsa, and all Mmu samples. We did not analyze Mmu 
female and male samples separately due to the lack of 
reported female Mmu samples in the selected studies. 
HKGs displayed platform-dependent variability under 
all conditions, given that each microarray platform has 
its probe design and technical protocol. Previous stud-
ies on technology dependence concluded that this fac-
tor has less determining power than the differences in 
transcript expression levels caused by varying cell con-
ditions [24].

Results exhibit considerable differences in gene sta-
bility, including stability differences in the six classical 
selected HKGs between Hsa female and male samples 
showing higher instability in females in general term. 
PPIA, UBC, and RPL19 displayed high stability levels for 
samples from both sexes, while HPRT1 and 18S exhibited 
low stability levels in both sexes. Interestingly, GAPDH 
displayed high stability in male samples and low stabil-
ity in female samples. In apparent contradiction, 18s 
presents high stability levels in Mmu, but this may be 
explained by the overwhelming presence of male sam-
ples in this group and the fact that this gene suffers a sig-
nificant sex bias in mouse (Additional file 2: Fig. S6). The 
common absence of female samples in studies (as further 
evidenced by our systematic review) could explain the 
systematic reports of 18s as a stable HKG.

The results of this work showed a different pattern of 
instability of HKG expression and we wondered whether 
this might be related to a different distribution of cell 
types in males and females. To address this relevant ques-
tion, a deconvolution analysis was performed in each 
study, which allowed us to compare all male and female 
participants in each microarray dataset. Deconvolution 
studies showed a heterogeneous cell panorama charac-
teristic of human adipose biopsies including progenitor 
and differentiated adipocytes, and immune cells lineages 
among others. The joint evaluation of the results of all the 
studies showed that there were no differences in cell com-
position between males and females, so no relationship 
was identified between the patterns of instability in the 
expression of these genes and their cell type distribution 
(Additional file  3). The analysis of single-cell RNA-seq 
data in adipose tissue samples may provide complemen-
tary information of interest to evaluate these differential 
patterns by sex. There are currently few datasets of this 
technology, although its generation is increasing and will 
be an important and accurate source of information.

We propose a list of 195 suHKG candidates suitable 
for use as internal controls in HAT-based gene expres-
sion studies including male and female samples; these 
genes exhibit high expression (TPM > 20) and stability 

levels and a minimal influence of sex on expression pat-
terns. As we could not reproduce the pipeline followed 
with human samples in mouse studies due to the lack of 
female mouse samples, we suggest the orthologs of pro-
posed human suHKGs as mouse suHKGs.

We validated a selection of suHKG candidates experi-
mentally to assess the robustness of our computational 
findings; overall, our gene expression analysis validated 
the in silico results (Table 3). PPIA, a widely used human 
AT HKG, and RPL19, used as a HKG in several cell types 
[30, 31, 50] and occasionally in human AT studies [49], 
have been validated as human AT suHKGs; however, 
experimental validation shows that 18S, which is widely 
used as human AT HKG [7, 14, 16, 39, 46–48], displays 
significant levels of variability in both male and female 
samples and sex-specific expression patterns (Fig.  6). 
These results agree with the findings of other recently 
published studies [51] and correlate with those found in 
mouse adipose tissue. The use of 18 s as a HKG induces 
apparent differences in the relative expression lev-
els of several genes in males and females and wild type 
and  Irs2−/− samples (Additional file  2: Fig. S6); instead, 
we suggest Rpl19 and Ppia as more optimal suHKGs in 
mouse adipose tissue analysis.

We identified several additional genes human AT 
suHKGs from the computational analysis, including 
RPS18, RPS8, and UBB (Table 3), that present character-
istics such as appropriate stable and high expression lev-
els. We also suggest the mouse orthologs of these human 
suHKGs as mouse suHKGs. To this end, we designed 
a web tool to customize the best suHKG for human or 
mouse adipose tissue experimental design.

Strengths and limitations
Massive data analysis of gene expression represents a piv-
otal tool for understanding different biological scenarios, 
which may eventually help elucidate mechanisms affect-
ing basic and biomedical research. Data analyses must 
be assessed in the laboratory by studying relative gene 
expression normalized to an adequately chosen HKG. 
Selection of an ideal HKG remains a challenging process, 
although this choice will help to ensure an accurate result 
and must consider all experimental conditions and bio-
logical variables. Incorporating sex-based analyses into 
research will improve reproducibility and experimental 
efficiency by influencing the outcome of experiments and 
must be accounted for as a critical biological variable. 
Sex must be considered to monitor sex-based differences 
and similarities for all diseases and biological processes 
that affect both sexes, which may help reduce bias, enable 
social equality in scientific outcomes, and encourage new 
opportunities for discovery and innovation, as evidenced 
by several studies analyzing this issue [20, 22, 52–55].
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Numerous lines of evidence suggest that the current 
status quo does not address fundamental issues of sex-
based differences evident in gene expression. Up to date, 
many classic HKGs remain unevaluated when including 
sex as a biological variable; these include those commonly 
used in human AT studies (e.g., ACTB, GAPDH, and 
18S) and additional HKGs such as PPIA, HPRT, RPS18, 
or RPL19. Using a HKG to normalize samples without 
assessing their behavior under the specific experimental 
conditions used in each study (including sex), may lead 
to a biased outcome. HKGs may remain stable in one sex 
but not in the other, as in the case of DDX39B and PLIN4 
(stable in males) or NDUFB11 and RARA  (stable in 
females), or may have stable yet distinct expression levels 
in both sexes, such as for 18 s in mouse. Ignoring sex and 
choosing a non-optimal HKG may introduce confound-
ing variables and the inability to assess whether differ-
ences in the data derived from the experimental design 
or the normalization process. This source of variability in 
the data would reduce statistical power, thereby making it 
more difficult to find significant results. In this study, we 
analyzed the role of six conventional HAT HKG consid-
ering sex as a variable for the first time.

Many published studies do not include a sex-based per-
spective by omitting animal sex from reporting of the ani-
mals or performing studies with animals of only one sex 
(typically males). Our systematic review found that 51% 
of Hsa studies and 49% of Mmu studies failed to include 
information regarding the sex of samples, with just 19% 
of Hsa and a striking 2% of Mmu studies including sam-
ples from both sexes. Of note, Mmu studies including 
only female samples represented just 5% of the total. The 
small number of Mmu studies, including female sample 
information, represented a significant limitation of the 
study and prevented the creation of a Mmu meta-rank-
ing to select highly expressed stable Mmu suHKG candi-
dates as for Hsa. We evaluated the Mmu orthologs of the 
selected Hsa suHKG candidates experimentally to over-
come this limitation, which confirmed their suitability as 
Mmu suHKGs.

Despite the widespread use of 18S RNA as a HKG, 
its annotation represents another limiting factor of this 
study; we failed to encounter this gene in the GTEx 
platform under any proposed alias from GeneCards. 
We also noted that identifiers for this gene are unsta-
ble or not included in reference assemblies. In addition, 
the DNA sequence of the RNA18SN5 gene (Accession 
Number NR_003286.4) has 99–100% identity with 
other ribosomal RNAs such as RNA18SN1, RNA18SN2, 
RNA18SN3, RNA18SN4, and RNA18SP3 (Accession 
Numbers NR_145820.1, NR_146146.1, NR_146152.1, 
NR_146119.1, NG_054871.1, respectively). Furthermore, 
18S rRNA has different copy numbers among individuals 

and varies with age [56]. Considering all these factors, 
and integrating experimental data assessing differential 
expression levels according to sex, makes the 18S gene 
less suitable as a HAT suHKG than other suHKGs pro-
posed in this study.

Other limitations of the study included the filtering 
and pre-processing of biological information located in 
the GEO to identify the published studies with transcrip-
tomic data of adipose tissue, and the classification of the 
samples depending on the sex. A primary limiting fac-
tor involved the absence of standardized vocabulary to 
tag sex in sample records of the studies. Even though the 
gene expression data in GEO are presented as a standard-
ized expression matrix, the metadata (including sample 
source, tissue type, or sample sex) is reported through 
free-text fields written by the researcher submitting 
the study. The absence of standardized vocabulary and 
structured information constrains data mining power on 
large-scale data, and improvements in this regard could 
aid the processing of data in public repositories [57].

For the first time, this study presents a computational 
strategy that includes a massive data analysis capable to 
assess the sex bias in expression levels of classical and 
novel HKGs, over a large volume of studies and sam-
ples. This strategy revealed that an accurate experimental 
design for adipose tissue requires the adequate selection 
of a suHKG, such as PPIA, RPL19, or new options, such 
as RPS18 or UBB. In that context, we could finally avoid 
the common practice of pooling males and females or 
even discard the only male-presence effect. This study 
presents the relative expression stability of six commonly 
used HKGs and the variability levels of other genes cov-
ered by the analyzed microarray platforms. This strat-
egy is aligned with the FAIR principles [58] (Findability, 
Accessibility, Interoperability, and Reusability) to ensure 
the further utility and reproducibility of the generated 
information.

Although limited to adipose tissue, our findings suggest 
that the sex bias in commonly used HKGs could appear in 
other tissues, thereby affecting the normalization process 
of gene expression analysis of any kind. Incorrect nor-
malization may significantly alter gene expression data, 
as shown in the case of 18S, and lead to erroneous con-
clusions. This study highlights the importance of consid-
ering sex as a variable in biomedical studies and provides 
evidence that thorough analyses of HKGs as internal con-
trols in all tissues should be promptly addressed.

Perspectives and significance
Our results focus on the importance of taking into 
consideration sex as a biological variable when choos-
ing the best HKG as reference in HAT gene expression 
analysis. Our novel computational strategy includes 
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massive data analysis capable to assess the sex bias in 
expression levels of classical and novel HKGs to select 
sex-unbiased HKG. Conventionally reported HKG 
genes include several metabolic and ribosomal genes 
such as GAPDH, HPRT, PPIA, UBC, 18S and RPL19. 
However, our novel computational strategy based on 
meta-analysis techniques has proven that certain clas-
sical HKGs, like one of the most extended, 18S, may fail 
to function adequately as the reference gene as it dif-
ferentially expressed in males and females, while oth-
ers like PPIA and RPL19, succeeded as reference genes. 
Further, following selection criteria, several markers, 
like RPS8 and UBB are also proposed and an open web 
resource (https:// bioin fo. cipf. es/ metaf un- HKG) offered 
for customized experimental design.

All these results provide new useful insight in evalu-
ating gene expression analysis in human adipose tissue 
under several experimental conditions and with biomedi-
cal purposes. Using an incorrect HKG may lead to inap-
propriate results interpretation and applications, while 
using a suHKG will always provide a better experimental 
approach, either when taking into consideration male and 
females as separate groups, either included in the same 
experimental group but properly analyzed. This study 
highlights the importance of considering sex as a variable 
in gene expression analyses in human AT and provides 
evidence for future extensive tissues suHKG selection to 
be hopefully, promptly addressed.
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