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Sex-dependent variation in cartilage 
adaptation: from degeneration to regeneration
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Abstract 

Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications 
for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has 
been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to 
the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms 
behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to 
summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones’ effect on cartilage, 
and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem 
cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this 
paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment 
efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; tak-
ing sex into account could be a big factor in developing more effective and personalized treatments. The compilation 
of this information emphasizes the importance of investing further research in sex differences in cartilage biology.

Highlights 

• Evidence indicates males and females respond differently to cartilage degeneration and regeneration.
• Few review articles available provide comprehensive information referencing clinical and laboratory research.
• This review offers an update on sex-dependent variation in knee anatomy and sex hormones’ effect on cartilage 

degeneration and regeneration as well as potential application in stem cell therapy.
• Understanding sex differences in cartilage biology contributes to personalized treatment in cartilage diseases.
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Introduction
Adult cartilage defects present a challenge in orthopaedic 
medicine, as cartilage possesses limited intrinsic healing 
capacity. Onset of cartilage degeneration increases with 
age, leading to prevalent diseases such as osteoarthritis 

(OA) in the elderly. Cartilage degeneration is accompa-
nied by pain and discomfort, hindering activities of daily 
living. These difficulties have prompted a mass accumu-
lation of research in cartilage repair and regeneration. 
Stem cell-based therapy becomes a promising approach 
to healing cartilage in which patient-derived stem cells 
are rejuvenated and grown in  vitro to be injected or 
implanted into cartilage defects. This therapy has the 
potential to reduce morbidity, mortality, and economic 
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costs from complications of traditional surgical tech-
niques [1].

Increasing evidence indicates that males and females 
differ in cartilage characteristics and risk of degeneration 
through sex-dependent gene expression [2], which neces-
sitates consideration of sex differences when designing 
preclinical studies and clinical trials for cartilage repair 
[3]. For example, males have thicker articular cartilage 
and greater knee cartilage volume than females [4, 5]. 
Accordingly, females have a higher chance of develop-
ing OA than males, specifically in the knee after meno-
pause [6]. Females also tend to experience more severe 
cases of knee arthritis and are more than three times 
more likely to be candidates for total knee or hip replace-
ment surgery than males [5]. Despite increased scientific 
awareness of sex differences in cartilage development, 
degeneration, and repair, many studies continue to assign 
sex arbitrarily, as a comprehensive review of the differ-
ences in male versus female cartilage adaptation has not 
been presented. This review focuses on sex-dependent 
variation in cartilage degeneration and regeneration with 
an emphasis on stem cell-based therapies.

Chondrocyte biology overview
This section provides a brief introduction of articular 
cartilage development and maintenance as well as associ-
ated signaling pathways.

Development of articular cartilage
During fetal development and early neonatal life, articu-
lar cartilage does not have the same properties as adult 
cartilage and must progress through additional devel-
opmental stages. Early articular cartilage consists of 
matrix-poor tissue with an irregular and uneven distri-
bution of cells; however, by 6  weeks of age, it increases 
in thickness through both chondrocyte hypertrophy and 
increases in matrix secretion [7]. As articular cartilage 
develops, it also establishes zonal organization consist-
ing of the surface zone, medial zone, and deep zone. The 
surface zone consists of flat articular chondrocytes that 
produce and secrete lubricating proteoglycans encoded 
by the proteoglycan 4 (PRG4) gene for joint protection 
during movement. Both the medial and deep zones con-
tain large, round, vertically oriented chondrocytes that 
excrete extracellular matrices. There is some uncertainty 
regarding the exact mechanisms underlying chondrocyte 
expansion in the neonate, but some studies suggest that 
PRG4-positive cells in the surface zone are responsible 
for cartilage growth and transformation [7]. Growth and 
differentiation factor 5 (GDF5), Wingless/integrated gene 
9a (WNT9A), Doublecortin (DCX), SRY Box transcrip-
tion factor 9 (SOX9), and ETS-related gene (ERG) are 
all genetic markers of cells in the interzone, which is the 

primitive joint during fetal development. The interzone 
consists of flat mesenchymal stem cells (MSCs) required 
for joint formation. By regulating expression of the above 
genes and others, the fate of interzone cells is deter-
mined [7]. For example, SOX9 is expressed throughout 
the interzone cells during early development, but by day 
14, expression is limited only to the outer regions of the 
interzone and the flanking outer chondrocytes; the inter-
mediate zone, on the other hand, ceases expression of 
type II collagen (COL2A1), leading to its involvement in 
the formation of cruciate ligaments. Finally, transforming 
growth factor beta (TGFβ) receptor 2 (TGFBR2)-express-
ing interzone cells are found only in the dorsal and ven-
tral regions of joints in mature cartilage, indicating that 
expression is either induced in these regions or deleted 
in other regions to form adult articular cartilage [8]. 
GDF5 is expressed in all of these cells and, therefore, is a 
broad marker associated with multiple cell types within 
the interzone that give rise to not only articular carti-
lage, but also synovial tissue and intra-joint ligaments [7]. 
However, interzone cells alone are not sufficient for nor-
mal articular cartilage development. Interzone cells were 
found to be mitotically quiescent, while flanking cells of 
non-interzone origin were mitotically active, indicating 
that the underlying proliferative cells that get recruited 
by interzone cells to the flank area play a major role in the 
thickening of developing articular cartilage [7].

Maintenance and repair of articular cartilage
Articular cartilage in the adult is considered a permanent 
tissue, meaning it has little-to-no turnover throughout 
adult life. This property differs from cartilage in other 
locations, such as growth plate cartilage. ERG expression 
persists only in the superficial cells of the articular carti-
lage after 6 months of age and is responsible for the per-
manent quality of articular cartilage. In the case of ERG 
deficiency, Friend leukemia integration 1 (FLI1), another 
transcription factor, provides redundancy to maintain 
the permanent nature of articular cartilage [7]. Although 
articular cartilage exhibits limited capacity for cell turn-
over and regeneration, there are progenitor cells that 
exist within fully developed articular cartilage; however, 
under normal conditions, these cells do not proliferate 
in the case of injury or degeneration, such as in OA [7]. 
These progenitor cells have been targeted as a mecha-
nism of OA treatment through the surgical movement of 
these cells to the cartilage surface and induction of their 
proliferation. Several proteins and hormones have been 
indicated in the maintenance and protection of articular 
cartilage, including parathyroid hormone (PTH), PTH 
related protein, and PRG4; in addition, the Hedgehog 
signaling pathway as well as A disintegrin and metallo-
proteinase with thrombospondin motifs 5 (ADAMTS5) 
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and metalloproteinase have been indicated in cartilage 
pathogenesis, as ablation and elimination have shown 
increased resistance to OA development in mice [7].

Signaling pathways involved in articular cartilage 
anabolism and/or anti-catabolism include TGFβ1, insu-
lin-like growth factor I (IGFI), hypoxia-inducible factor 
(HIF) 1 alpha (HIF1α), and bone morphogenetic pro-
tein 7 (BMP7) [9]. Catabolic signals involve interleukin 1 
(IL1), IL6, HIF2α, and fibronectin fragments. Conflicting 
information exists regarding the role of fibroblast growth 
factor 2 (FGF2) in articular cartilage maintenance. These 
mechanisms are highlighted throughout the discussions 
in the “Inflammatory biomarkers” and “Molecular mech-
anisms” sections [9].

Sex differences in knee anatomy and cartilage 
degeneration
There are observed anatomical differences in cartilage 
growth and knee structure between sexes, which could 
contribute to the sex-related differences in cartilage 
degeneration [10]. The rate of cartilaginous degeneration 
in an individual is multifactorial, and several mechanisms 
influencing risk of OA and cartilage injury are sex-
dependent in nature [10].

Knee anatomy and articular cartilage thickness 
and degeneration
In the distal femur and proximal tibia, the mean aspect 
ratio (mediolateral distance versus anteroposterior dis-
tance) of the male femora is larger than the female femora 
[11]; the plateau aspect ratio (tibial medial anteroposte-
rior dimension versus tibial mediolateral dimension) of 
the male is also larger than the female [12]. With a high 
degree of variation between individuals, sex-specific 
designs of total/unicompartmental knee arthroplasty 
have been developed to accommodate anatomical differ-
ences between sexes [11, 13].

In healthy children, cartilage thickness in the knee dif-
fers significantly between sexes, with girls having thinner 
cartilage than boys [14, 15]. Weight, height, and body 
mass index  (BMI) contribute to cartilage thickness, but 
age is the leading contributor among school age children 
[14]. Physical activity benefits tibial cartilage volume [16]. 
In adults, males have substantially higher cartilage thick-
ness and volume than females [17]. Both sexes exhibit a 
clear decrease in cartilage with increasing age, but the 
decrease is more drastic for females [15, 18]. Females 
have a higher incidence rate of obesity in most countries, 
which has been linked to increased risk of OA through 
increased weight on joints [19]. A high BMI was closely 
related to both knee and hand OA rather than hip OA 
[20]. Weight reduction becomes an important part of 
OA treatment [21]. Similar to obesity, ethnicity is also 

a co-variable that influences OA incidence and severity. 
Elderly Chinese women in Beijing have a higher knee OA 
incidence than women in Framingham, Massachusetts; 
however, the incidence in men was comparable [22]. 
African–Americans have a higher prevalence of knee 
OA than Caucasians in the U.S., but this rate may vary 
according to sex [23]. Despite the progress in some racial 
differences in OA incidence and severity, more attention 
should be put on under-studied racial and ethnic groups 
and joint groups (e.g., foot, spine), emphasizing potential 
analytical factors, including but not limited to genetic, 
anatomical, environmental, and biomechanical features 
[23].

Inflammatory biomarkers
In both healthy individuals and OA patients, females 
have higher levels of inflammatory biomarkers [24]. For 
example, healthy women tend to have higher serum lev-
els of leptin, an adipokine with pro-inflammatory proper-
ties [25]. As an essential hormone for bone development, 
high leptin levels in older adults are associated with 
lower cartilage volumes, and therefore, this hormone is 
thought to contribute to the increased OA susceptibility 
in women [25, 26]. Extreme obesity caused by impaired 
leptin signaling leads to changes in subchondral bone 
morphology, but does not increase the incidence of knee 
OA, suggesting that obesity due to leptin-impaired sign-
aling is insufficient to induce systemic inflammation 
and knee OA in female C57BL/6J mice [27]. As a link 
between obesity and OA [28], the use of leptin might be a 
potential approach for therapy in bone and joint diseases 
[29], especially for obese patients. In OA patients, pro-
inflammatory chemokine CC chemokine ligand 3-like-1 
(CCL3L1) is also found in higher levels in females than 
males, along with several inflammatory cytokines [30]. 
Interestingly, females with OA also tend to have higher 
serum levels of anti-inflammatory adipokines, such as 
apelin and adiponectin [31], suggesting that sex differ-
ences in cartilage degeneration are not perfectly aligned 
with the level of inflammation in the joint.

When comparing the synovial fluid composition in 
male and female OA patients, women had less 25-hydrox-
yvitamin D3 [25(OH)D3], a metabolite of Vitamin D that 
protects against cartilage degeneration [32], which may 
explain why men with OA typically have lower inflamma-
tory markers. Dehydroepiandrosterone (DHEA), the pre-
cursor for both estrogen and testosterone, is one agent 
with promising anti-inflammatory effects for both sexes. 
DHEA injection into arthritic joints of male and female 
rabbits resulted in decreased expression of inflamma-
tory response elements, such as matrix metalloprotein-
ase 3 (MMP3) and increased tissue inhibitor of matrix 
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metalloproteinase 1 (TIMP1), indicating that DHEA 
treatment may protect against further cartilage degrada-
tion in both men and women by reducing inflammation 
[33]. Interestingly, male rats have higher sensitivity to 
anti-inflammatory agents, such as parecoxib and dexa-
methasone, while female rats exhibited higher levels of 
IL6 after dexamethasone treatment, which likely explains 
the limited response of females to anti-inflammatory 
treatment [34]. IL1, another catabolic pro-inflammatory 
cytokine, may be upregulated by FGF2, which is corre-
lated with expression of estrogen receptors (ERs) [35, 36]. 
According to a study published in Clinical and Experi-
mental Rheumatology, the articular cartilage of female 
rats was found to be more sensitive to IL1-mediated inhi-
bition of proteoglycan synthesis, increasing risk of carti-
lage damage [35].

Extracellular matrix biomarkers
It has been observed that there are differences between 
sexes on extracellular matrix (ECM) biomarker expres-
sion following the onset of cartilage degeneration. Varia-
tions in ECM composition can significantly influence cell 
behavior. In healthy females, ECM of articular cartilage is 
likely to have higher spontaneous loss of glycosaminogly-
cans (GAGs) along with reduced levels of proteoglycan 
and collagen when compared to males [35]. Structural 
change to ECM proteins is a classic indicator of early OA, 
supporting the clinical findings of female predisposition 
to OA development [37]. Another sex disparity in OA is 
the rate of collagen turnover. Female OA patients tend 
to have genetic upregulation of type I collagen, indicat-
ing that OA females lose collagen at a faster rate than OA 
males and, therefore, require more collagen transcription 
to compensate [38]. Female chondrocytes are also more 
susceptible to the inhibition of proteoglycan production 
by IL1, indicating that females are less likely to synthesize 
new proteoglycan than males [35].

Another OA biomarker found in synovial fluid, carti-
lage acidic protein 1 (CRTAC1), is induced by inflamma-
tory cytokines, such as IL1 [39]. As female chondrocytes 
are more sensitive to IL1, CRTAC1 tends to exist at 
higher levels in the female population than in males [39]. 
Therapeutic research using murine models is beginning 
to look into the feasibility of CRTAC1 gene knockout in 
the prevention of female OA development [39].

When comparing men and women with clinical OA, 
C-terminal telopeptide of type I collagen (CTX-I) and, to 
a lesser degree, CTX-II, are both found in higher serum 
concentrations in females [40]. CTX is a product of car-
tilage degradation, so higher serum CTX levels indicate 
increased damage to articular cartilage; in addition, levels 
of CTX-II are associated with pain intensity, suggesting 
that OA females likely perceive more pain related to their 

cartilage loss than males with the same condition [41]. 
Increased serum CTX also illustrates the predisposition 
to OA susceptibility in females found in clinical studies.

Serum values of cartilage oligomeric matrix protein 
(COMP) also vary based on sex, with healthy Caucasian 
males having higher serum COMP on average compared 
to healthy Caucasian females [42]. COMP expression 
also varies by ethnicity, as COMP levels were found to 
be higher in African–American women than Caucasian 
women with corresponding ages; no significant COMP 
differences were found between African–American men 
and women or between Caucasian and African–Ameri-
can men [42]. In all groups, increasing age and BMI were 
directly associated with elevated serum COMP [42]. 
Increased COMP levels predict subsequent cartilage loss, 
but the degree of association is only around 60 percent; 
nevertheless, elevated serum COMP is a mild predictor 
of cartilage degradation, so this finding contrasts from 
the majority of other degenerative biomarkers in which 
women typically present with higher levels [43]. There 
is some contradictory evidence, however, regarding the 
sex differences of COMP levels. COMP levels increase 
acutely with physical activity, and women with thinner 
anterior femoral cartilage have greater resting COMP 
levels [44].

Protective effect of sex hormones on cartilage 
degradation
Cartilage growth regulation is complex. Several factors 
act on chondrocytes during their proliferation and dif-
ferentiation, such as IGF-I and -II, FGF2, TGFβ, epider-
mal growth factor (EGF), platelet-derived growth factor 
(PDGF), and sex hormones (estrogens and androgens) 
[45]. Estrogens promote chondrocyte proliferation, and 
androgens affect chondrocyte proliferation via conver-
sion to estrogen by aromatase [45]. Male and female dif-
ferences in these factors, especially sex hormones, could 
be crucial for developing specific treatments targeting 
cartilage degradation (Table 1).

Effect of estrogen on cartilage
Estrogen is a steroid hormone existing in the body in 
three different subtypes: estrone (E1), estradiol (E2), 
and estriol (E3) [46]. E2 is the most prevalent and has 
the highest bioactivity. These estrogen subtypes sig-
nal through three main ERs: nuclear ERα and ERβ, and 
membrane G-protein coupled ER (GPER/GPR30) [46]. 
Availability of aromatase, the enzyme responsible for 
conversion of testosterone to estrogen, directly cor-
responds to estrogen levels in both males and females. 
Granulosa cells in the female ovary contain aromatase, 
as well as bone, breast, brain, and adipose tissue in both 
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sexes. Therefore, obesity increases the availability of 
estrogen in both sexes. Consideration of aromatase avail-
ability must be taken into consideration while evaluating 
the impact of estrogen on cartilage [47].

Estrogen receptors and cartilage
In 1999, Ushiyama et al. identified the gene expression of 
both ERα and ERβ in human articular chondrocytes [48]. 
They found that, despite the fact that women have higher 
estrogen levels, men show a significantly higher level of 
gene expression for both ER paralogs than women. All 
women in the study were postmenopausal and had never 
had estrogen replacement therapy (ERT), which is linked 
to decreased estrogen levels. Expression of ERα in articu-
lar cartilage decreases with age, which can be linked to 
cartilage degeneration and increased OA severity [49]. 
Selective ER modulators have clinical utility in the con-
text of osteoporosis,  ER+ breast cancer, and other estro-
gen-related pathologies to mediate stimulation and/or 
antagonism of site-specific ERs in the body. Raloxifene, 
often prescribed for osteoporosis, has been observed to 
activate ERs and the extracellular signal-regulated kinase 
1/2 (ERK1/2) signaling pathway in human chondrocytes, 
preventing tumor necrosis factor alpha (TNFα)-induced 
caspase-3-dependent apoptosis [50]. In addition, estro-
gen via an ERβ-dependent mechanism inhibits cell pro-
liferation and ERα expression, while estrogen via an 
ERβ-independent mechanism regulates chondrogenesis 
[51]. ERβ deficiency has been documented to increase 
condylar growth in female mice by inhibiting the turn-
over of fibrocartilage [52]. Overall, studies point to 
increased ERα expression having both a chondroprotec-
tive effect and an inhibitory role in ERβ expression dur-
ing chondrogenesis.

The estrogen-related receptor (ERR) family of orphan 
nuclear receptors related to ERα, composed of ERRα, 
ERRβ, and ERRγ, has been shown to potentially play a sig-
nificant role in OA pathogenesis [53, 54]. Despite sharing 
sequence homology to the ERα and ERβ, ERRα is unable 
to bind estrogen [53]. ERRα could have dual contrasting 
roles in the induction and progression of OA. ERRα is 
essential for cartilage formation by regulating its target 
gene SOX9 expression [54]. One study has shown, similar 
to its effect on ERα, 17β-E2 increased mRNA and subse-
quent protein expression of ERRα, which in turn led to an 
increase in SOX9, GDF5, and CYP19A1 (aromatase) dur-
ing in vitro mandibular condylar chondrocyte cultivation 
[55]. SOX9 and GDF5 contribute to chondrocyte prolif-
eration, differentiation, and maturation. When XCT790, 
a synthetic inverse agonist of ERRα, was used to inhibit 
ERRα expression, the proliferative capacity of the man-
dibular condylar chondrocytes was reduced [55]. Fur-
thermore, knockdown of ERRα has resulted in impaired 

expression of genes including SOX5/SOX6/SOX9, 
COL2A1/COL10A1, and RUNX2 (runt-related transcrip-
tion factor 2) and ectopic expression of SOX9 rescued 
defective formation of cartilage, indicating that ERRα 
is involved in chondrocyte growth by regulating SOX9 
expression [56]. However, ERRα-mediated degradation of 
cartilage has also been observed. Increased expression of 
ERRα has been linked with IL1β treatment in human OA 
chondrocytes via the PGE2 (prostaglandin E2)/cAMP 
(cyclic Adenosine 3′,5’-monophosphate)/PKA (protein 
kinase A) signaling pathway [57]. ERRα could upregu-
late IL1-induced MMP13 expression in OA chondro-
cytes. In addition, XCT790 decreased MMP13 gene level 
[57]. These results point to ERRα involvement in IL1β-
mediated OA cartilage degradation and loss.

Of the ERR subtypes, ERRγ has significantly increased 
expression in humans and various models of mouse OA 
cartilage. Overexpression of ERRγ in cartilage is con-
nected to chondrodysplasia and reduced chondrocyte 
proliferation [57]. ERRγ contributes to cartilage destruc-
tion through the IL6-mediated mitogen-activated protein 
kinases (MAPK), such as the ERK1/2 pathway [58]. As a 
downstream transcription factor of ERK1/2, upregula-
tion of ERRγ leads to ECM degradation and angiogen-
esis in osteoarthritic temporomandibular joints (TMJ) 
[59]. Overexpression of ERRγ in chondrocytes directly 
upregulates MMP3 and MMP13 expression. Moreover, 
GSK5182, a small-molecule ERRγ inverse agonist, has 
promising therapeutic potential by inhibiting pro-inflam-
matory cytokine-induced catabolic factors [60]. As ERRγ 
is involved in the catabolic modulation of OA pathogen-
esis, it has strong potential to be a therapeutic target for 
OA [61].

During early puberty, GPER1/GPR30 positively regu-
lates chondrocyte proliferation at the growth plate, con-
tributing to the longitudinal growth of long bones [62]. 
GPER1/GPR30 has been observed to alleviate mechani-
cal stress-mediated apoptosis of chondrocytes in OA 
through suppression of Piezo1, a mechanosensitive ion 
channel ubiquitously expressed in adipose tissue that, 
when upregulated, has been linked to chondrocyte apop-
tosis [63]. E2 works with GPER1/GPR30 to suppress 
acid-sensing ion channel 1a (ASIC1a) and ASIC1a can 
overregulate intracellular calcium levels, resulting in 
articular chondrocyte damage [64]. E2’s suppression of 
the channel protects rat cartilage with adjuvant arthritis 
from acidosis-mediated injury and autophagy [64].

Estrogen and cartilage
Estrogen is an attractive candidate for cartilage engineer-
ing due to evidence that local estrogen production is cru-
cial for chondrocyte proliferation and protection from 
spontaneous cell death [65]. Chondrocytes have been 
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observed to be capable of both in vivo and in vitro estro-
gen synthesis [66], which appears to increase COL2A1 
gene expression [67].

Growth factors, such as TGFβ, BMP, FGF, PDGF, 
growth hormone (GH), and IGF-I, are integral for carti-
lage development and healing. Observations suggest that 
E2 may interact with the synthesis and secretion of these 
growth factors, specifically TGFβ and IGF-I. TGFβ1 has 
been observed to be a modulator in 17β-E2 activity on 
costochondral chondrocytes from female rats in a sex-
specific manner [68]. IGF promotes the production of 
matrix as well as the proliferation and inhibition of apop-
tosis in chondrocytes [69]. IGF regulation could be influ-
enced by estrogen action [70]. Research demonstrates 
that E2 has an indirect effect of priming IGF-I activity in 
cartilage metabolism [71]. The interaction between the 
IGF-I receptor and ERα has been observed to promote 
proliferation and suppress inflammation in nucleus pul-
posus cells [72].

Catabolic cytokines such as IL1 have detrimental 
effects on the composition and mechanical properties of 
articular cartilage. Research suggests estrogen deficiency 
can increase cytokine receptor numbers and cofac-
tors of cytokine action, which enhances cell response to 
cytokines [73]. β-Ecdysterone, an estrogen analog, has 
demonstrated anti-apoptosis and anti-inflammation abil-
ity in IL1β-induced rat chondrocytes [74].

Estrogen has been documented to suppress MMPs. 
MMP1, MMP3, and MMP13 are intimately involved in 
the process of articular cartilage degeneration [75]. One 
study observed 17β-E2 suppressed MMP13 expression 
in human articular chondrocytes [76]. The use of 17β-E2 
in physiological doses can improve the MMP and TIMP 
imbalance in articular chondrocytes, suggesting a poten-
tial chondroprotective effect of hormone replacement 
therapy [77, 78]. Current findings demonstrate that estro-
gen can be modulated to reduce the effect of reactive 
oxygen species (ROS). In rat nucleus pulposus cells, the 
interaction between E2 and ER has interfered with the 
ROS/nuclear factor kappa-B (NF-κB) pathway, reducing 
TNFα-induced premature senescence [79]. Pretreatment 
with 17β-E2 not only decreased acid-induced damage, it 
also inhibited apoptosis and helped to restore mitochon-
drial function. Specifically, studies have shown that 17β-
E2 is capable of decreasing levels of ASIC1a through the 
ERα and the autophagy–lysosomal pathway [80].

While estrogen can play a protective role in cartilage 
through the many factors discussed above, it has been 
documented to have detrimental effects as well. 17β-
E2 stimulation has also resulted in the loss of ECM and 
increased expression of TNFα, IL1, HIF2α and its 
downstream OA-related cytokines [MMP13, vascular 
endothelial growth factor (VEGF), and type X collagen] 

in primary condylar chondrocytes via ERβ [81]. Estro-
gen has been reported to be chondrodestructive in ani-
mal models; specifically, increased activity of ERs has 
been suggested as a factor in initiating osteoarthritic 
changes in a rabbit model [82]. High E2 concentration 
has been linked to increased IL1β stimulated proteogly-
can degradation and MMP production in chondrocytes 
[83]. Interestingly, E2 has been observed to reduce nerve 
growth factor (NGF) expression in chondrocytes signifi-
cantly, even after stimulation by TGFβ1 or IL1β, indicat-
ing estrogen can play a role in regulating NGF, which is 
integral to the development of OA pain, suggesting that 
E2 is associated with decreased OA pain [84]. The con-
tradictory results make it difficult to understand the role 
estrogen plays in cartilage degradation and further dem-
onstrates more research is needed.

Protective effect of androgens on cartilage
Androgens are steroid hormones with the most preva-
lent being testosterone, dihydrotestosterone (DHT), and 
androstenedione. In addition, androgens are the precur-
sors for estrogen. Like estrogen, research suggests that 
androgens play a role in cartilage protection [85]. Andro-
gen levels are high in males and low in females, which 
could be a reason why males have less risk of OA. How-
ever, 17β-E2 has been observed to have a greater impact 
in chondrocyte functionality and gene expression pro-
files, which is particularly apparent in chondrocytes from 
females [86]. Regardless, understanding the relationship 
between chondrocytes and androgens is a crucial step 
in determining OA risk differences between males and 
females.

Androgen receptors and cartilage
Androgen receptor (AR) is a steroid hormone receptor 
that influences the transcription of androgen-respon-
sive genes by binding their respective DNA sequences 
[87]. Moreover, AR can affect cell physiological activi-
ties, such as proliferation, apoptosis, and migration 
[88]. AR is expressed in human primary articular 
chondrocytes [89]. Testosterone receptors have been 
discovered in rat chondrocytes from growth zone and 
resting zone cartilage in both sexes [90]. Additionally, 
in rabbits, AR overexpression has resulted in a reduced 
apoptosis rate and has maintained the phenotype 
of chondrocytes through inhibition of the mamma-
lian target of rapamycin (mTOR) pathway to improve 
autophagy [88].

Androgen and cartilage
Androgens are related to cartilage tissue maintenance. 
Testosterone at physiological concentrations increases 
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chondrogenic potential of chondrogenic progenitor cells 
in male arthritic tissue in  vitro [91]. In male interver-
tebral disc (IVD) cells, testosterone has effectively 
enhanced chondrogenesis in  vitro but does not affect 
female IVD cells or mesenchymal stem cells (MSCs) from 
either sex similarly [92]. In chondrocytes of mice and 
rabbits, testosterone stimulates growth and local produc-
tion of IGF-I [71, 93], suggesting that testosterone has an 
indirect priming effect on the response of chondrocytes 
to IGF-I.

Studies have also shown DHEA has a protective role 
against OA, specifically with inflammation [33, 94, 95]. 
A rabbit study concluded that DHEA has a cartilage-
protecting effect during OA development following bilat-
eral anterior cruciate ligament transection [96]. In male 
and female mice, DHEA treatment has demonstrated 
the ability to delay onset and decrease the severity of 
collagen-induced arthritis [97]. In human osteoarthritic 
knee chondrocytes, DHEA treatment has been shown 
to significantly reduce MMP1 but increase TIMP1 gene 
expression and protein levels [98]. In rats with synovial 
arthritis, DHT treatment has reduced TNFα and MMP2 
levels [99]. These data indicate that DHEA is associated 
with reduced inflammation and modulation of collagen 
breakdown in both rats and humans.

Androgens could play a role in cartilage inflamma-
tion through cytokines. Androgens stimulate articular 
cartilage integration. Low concentrations of IL1β could 
influence this effect favorably [100]. In female animals, 
testosterone has been shown to have a protective influ-
ence on IL1-induced cartilage breakdown [101]. Moreo-
ver, testosterone has decreased the effect of IL1 on both 
proteoglycan loss and synthesis, which are crucial parts 
of cartilage ECM. Androgens also have demonstrated 
a protective role in the development of adolescent idi-
opathic scoliosis, potentially by inhibiting IL6-induced 
abnormal chondrocyte development [102]. The mecha-
nisms behind the association between androgens and 
cytokines could be numerous, involving direct immu-
nomodulatory effects and interaction of glucocorticoid 
response to inflammation [100].

Effect of sex hormone on subchondral bone 
and adjacent synovium
Strong evidence supports a connection between sub-
chondral bone changes and cartilage damage and loss 
[103]. Estrogen has been investigated as an influence 
in this relationship, because it has been documented 
to increase cartilage alteration [104]. In OA, increased 
production of synovial fluid results in swelling of the 
synovium [105]. Understanding the influence of sex hor-
mones on these structures is crucial to understanding the 
differences in male and female OA prevalence.

Protective effect of sex hormones on subchondral bone
Multiple studies point to estrogen modulating OA by 
increasing subchondral bone structure. Bone remodeling 
has been connected to estrogen depletion by ovariec-
tomy, affecting the subchondral trabecular bone of joints 
[106, 107]. Estrogen deficiency led to subchondral bone 
resorption and articular cartilage degeneration in an ova-
riectomized (OVX) rat model of postmenopausal OA 
[108]. Estrogen replacement treatment in a cynomolgus 
macaque model protects subchondral bone mass from 
remodeling [109]. Estrogen treatment in elderly women 
has been observed to lessen subchondral bone weaken-
ing in the OA knee [110]. ERs are also commonplace in 
bone tissue and help to regulate bone turnover, which is 
relevant to OA pathophysiology. In murine models, ERα 
knockout has led to development of larger osteophytes 
and a thinner lateral subchondral plate [111, 112]. No 
studies currently exist examining the influence of andro-
gen on subchondral bone.

Effect of sex hormones on adjacent synovium/synovial 
fluid
Synovial fluid is made up of a myriad of cellular metab-
olites, one of which are extracellular vesicles (EVs). 
Exosomes are 40–100  nm diameter packaged vesicles 
comprised of lipid, protein, and small RNA [113]. Syno-
vial fluid-derived EVs have demonstrated the ability to 
change microRNA (miRNA) cargo with sex-specific 
alterations. Within the synovial fluid of OA patients, 
exosomal miRNA content can be altered, and in females, 
there exist some estrogen responsive miRNAs that 
are capable of targeting toll-like receptor (TLR) path-
ways [114]. In female OA EVs, studies have observed 
increases in haptoglobin, orosomucoid, and ceruloplas-
min levels and a decrease in apolipoprotein; in male OA 
EVs, β-2-glycoprotein and complement component 5 
proteins have been observed to increase, and Spt-Ada-
Gcn5 acetyltransferase (SAGA)-associated factor 29 has 
decreased [115]. The sex-specific alteration in synovial 
fluid EV protein content with OA patients could be a 
mechanism behind the high OA prevalence and severity 
in women.

In the TMJ, fibroblast-like type B synoviocytes could be 
affected by expression of ERα-immunoreaction, indicat-
ing that TMJ can be influenced by estrogen and resulting 
in higher prevalence of temporomandibular disorders in 
females than males [116]. Interestingly, compared to ERα, 
normal human synovia regularly expresses large amounts 
of ERβ [117]. Arthritic synovium also demonstrates 
expression of ERs, linking estrogen as a modulator in 
synovial inflammation [118]. Estrogens have been shown 
to aggravate TMJ inflammation and pain, potentially by 
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amplifying the expression of cadherin-11 and release of 
pro-inflammatory cytokines in synoviocytes [119]. It 
has also been suggested that E2 aggravates TMJ inflam-
mation by the NF-κB pathway, which similarly results in 
pro-inflammatory cytokine release [120]. In a rat study, 
male TMJ particularly was found to be an estrogen target 
especially for ERα [121]. Additionally, estrogen regulates 
the IGF system and cytokines, which act in the synovial 
fluid [70]. In addition to the prophylactic impact estro-
gen has through inhibiting the synovial inflammation and 
articular cartilage degeneration seen in OA, estrogens are 
suspected to also partially regulate sensory neuropeptide 
expression in the synovium of experimental OA models 
(anterior cruciate ligament transection rat models), for 
instance substance P and calcitonin gene-related peptide 
[122].

Chondrocytes from human OA synovium and intra-
articular injection in rabbit OA knee joints have dem-
onstrated suppressed MMP3 expression and enhanced 
TIMP1 level when treated with DHEA, indicating a pro-
tective role of androgens in cartilage degradation and 
synovial inflammation [33, 98]. DHEA has also been 
observed to have a protective effect in the synovial tissue 
of TMJ, potentially through increasing fibromodulin for-
mation, which could prevent IL1β-induced inflammation 
and TGFβ1-induced hyperplasia of fibrous tissue [123].

Molecular mechanisms
Joint tissue biology is heavily influenced by estrogen, 
which helps to regulate the expression of key signaling 
molecules and their activity in several distinct pathways. 
Molecularly, the ERs are transcription factors that bind 
to the DNA either directly or indirectly; they are then 
able to signal through one of four pathways, three ligand-
dependent and one ligand-independent [124, 125]. 
Increasing evidence indicates that interaction between 
estrogen and ERs as well as related signaling pathways 
contributes to sex-dependent variation in cartilage adap-
tation (Fig. 1).

Wnt signaling pathway
During cartilage development and regeneration, Wnt14 
is upregulated [126]. By binding to cell surface frizzled 
receptors (FZD) and low density lipoprotein receptor-
related protein (LRP) co-receptors [9], Wnt14 inhib-
its β-catenin phosphorylation by glycogen synthase 
kinase 3 (GSK3). The unphosphorylated β-catenin then 
travels into the chondrocyte nucleus to act as a tran-
scription factor [9], stimulating tissue breakdown typi-
cally consistent with the OA phenotype [127–129]. 
Since β-catenin is found in higher concentrations in 

OA tissue, the promotion of β-catenin degradation 
protects cartilage from damage [127, 128]. Interest-
ingly, E2 upregulates the expression of the SOST gene, 
which codes for an inhibitor of Wnt14 called sclerostin 
[130]. By inhibiting Wnt14, β-catenin gets phosphoryl-
ated and tagged for degradation. Though E2 promotes 
sclerostin expression, this Wnt inhibitor is still found 
in higher concentrations in males than females, which 
may be a factor in the increased clinical incidence of 
OA in females [60]. Evidence indicates that DHEA 
decreases the expression of β-catenin [131] and inhibits 
MMP13 expression and increases TIMP1 and COL2A1 
expression in IL1β-induced rabbit chondrocytes [95]. 
Following treatment with DHEA after the transfec-
tion of β-catenin, rabbit chondrocytes showed signifi-
cantly elevated expression of MMP13 and depressed 
expression of TIMP1 and COL2A1; meanwhile, after 
inactivating Wnt/β-catenin signaling with DKK1, the 
expression of MMP3, MMP13, and TIMP1 were sug-
gestive of enhanced protective effects of DHEA [131].

The β-catenin signaling pathway is activated by 
chronic dysregulation of circadian rhythm due to 
downregulation of brain and muscle ARNT-Like 1 
(BMAL1) [132]. BMAL1 is a protein that helps generate 
circadian rhythms in cartilage; dysfunctional BMAL1 
in OA results in increased expression of β-catenin, 
MMP3, MMP13, ADAMTS4, and subsequent cartilage 
degeneration [132]. Circadian rhythm dysregulation is 
also associated with dysregulation of TGFβ signaling 
in chondrocytes, which is an essential signaling path-
way for cartilage homeostasis [133]. Though the exact 
mechanism is unknown, murine castration studies indi-
cate that estradiol is an important factor for the modi-
fication of circadian rhythms during development in 
both sexes [134]. Therefore, alterations in estrogen level 
are a likely influence of OA development due to circa-
dian rhythm dysregulation, especially during meno-
pause when estrogen levels decrease significantly [134].

TGFβ signaling pathway
Like the Wnt pathway, cartilage development and 
maintenance are highly regulated by TGFβ signals. 
TGFβ signals through type II receptors that recruit 
and subsequently activate type I receptors. Two main 
types of type I receptors, activin-like kinase 1 (ALK1) 
and ALK5, exist in cartilage and result in contrasting 
outcomes. Activation of ALK1 leads to the stimulation 
of terminal hypertrophic differentiation, character-
ized by increased production of COL10A1, MMP13, 
VEGF, OPN (osteopontin), BGLAP (osteocalcin), and 
ALP (alkaline phosphatase). On the other hand, E2 
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upregulating the expression of ALK5 results in the 
inhibition of hypertrophic differentiation and type II 
collagen and aggrecan production and maintains the 
quiescent stage of chondrocytes [9, 135, 136], indicat-
ing that E2 promotes chondrocyte development and 
homeostasis through the TGFβ pathway [75]. In OA, 

cartilage typically has a dramatic reduction of ALK5 
receptors, indicating the protective role of E2 against 
cartilage degradation [9, 136].

This signaling pathway interacts with other signal-
ing molecules such as BMPs and transcription fac-
tors such as HIFs. BMP7 exhibits both anabolic and 
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Fig. 1 Main signaling pathways of sex hormones on chondrocytes. Wnt signaling pathway (A): Wnt14 binding inhibits the phosphorylation of 
β-catenin by GSK3, and the unphosphorylated β-catenin then travels into the chondrocyte nucleus to act as an OA phenotype transcription 
factor [9]. E2 upregulates the expression of SOST, which codes for an inhibitor of Wnt14 called sclerostin [130]. DHEA decreased the expression of 
β-catenin, resulting in upregulation of MMP13 and downregulation of TIMP1 and COL2A1 [131]. TGF-β signaling pathway (B): E2 upregulates the 
expression of ALK5 receptors, promoting ACAN and COL2A1 production and inhibiting COL10A1, MMP13, VEGF, OPN, BGLAP, and ALP expression [9, 
135, 136]. Cellular energy and survival related pathways (C): PI3K/AKT signaling pathway is downregulated in human cartilage tissues with OA or in 
OA-like chondrocytes exposed to IL1, TNFα [153, 154]. E2 could function through the PI3K/AKT/NF-κB pathway by inhibiting chondrocyte apoptosis 
[229], through the PI3K/AKT/FOXO3 pathway by downregulating MMP3 expression and preventing ECM degradation [156]. Upregulated PI3K/AKT/
mTOR in OA cartilage is linked to decreased expression of autophagy-related genes [158]. Overexpression of androgen has been shown to promote 
chondrogenesis and prevent degradation and apoptosis, potentially through mTOR-related signaling inhibition [88]. In addition, E2 inhibited 
autophagy upregulation to protect chondrocytes via the SIRT1-mediated AMPK/mTOR pathway [165]. Acid environment and cellular inflammation 
related pathways (D): E2 can increase the mRNA and protein expression levels of ERRα, which in turn led to an increase in SOX9, GDF5, and CYP19A1. 
Through the ERRα–AMPK–ULK1 signaling pathway, E2 could support autophagy–lysosome pathway-dependent ASIC1a protein degradation and 
defend against acidosis-induced cytotoxicity [168]. IL1/6 and TNFα activate NF-κB signaling pathways through receptor binding and ultimately help 
to upregulate expression of ASIC1a. Activation of ASIC1a could aggravate the effects of IL1/6 and TNFα on ECM metabolism by increasing MMP3/13 
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silencing information regulator 2 related enzyme 1, AMPK AMP-activated protein kinase, mTOR mammalian target of rapamycin, ULK unc-51-like 
kinase, ERRα estrogen-related receptor α, GDF5 growth and differentiation factor 5, GPER1/GPR30 G-protein coupled estrogen receptor, PI3K 
phosphatidylinositol 3-kinase, AKT protein kinase B, NF-κB nuclear factor kappa-B, FOXO3 forkhead box O-3, IL1 interleukin 1, ASIC1a acid-sensing 
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anti-catabolic effects on cartilage. For example, BMP7 
induces the production of ECM to help protect against 
damage from IL1, IL6, and fibronectin fragments; 
BMP7 is also involved in the preservation of chondro-
genic potential [9]. On average, males consistently have 
higher BMP7 expression in cartilage, which is consist-
ent with the lower incidence of OA in males versus 
females [137]. BMP2 exhibits both anabolic and cata-
bolic effects on cartilage by inducing type II collagen 
and aggrecan production, promoting proteoglycan syn-
thesis, and elevating MMP13 expression. BMP2 is typi-
cally elevated in cartilage injury or OA, suggesting that 
its primary role is likely regulation of MMP13. HIF1α 
and HIF2α are also elevated in degenerative conditions, 
but the two transcription factors have contradicting 
functions. Elevated HIF1α plays a compensatory role 
in damaged cartilage, as it promotes transcription 
of type II collagen and aggrecan. HIF2a, contrarily, 
increases the expression of MMP13 and ADAMTS4 for 
a catabolic effect. E2 downregulates HIF1a, RUNX2, 
and BMP2, all of which help maintain cartilage integ-
rity [138–140]. In pathologic conditions, such as OA, 
the usual hypoxic conditions of articular cartilage are 
exacerbated, which stimulates the increased expression 
of HIFs [140]. Therefore, HIF1a is overexpressed in OA 
cartilage, leading to discoordination of type II collagen 
and aggrecan production, since HIF1α indirectly regu-
lates COL2A1 transcription [140]. E2 helps limit this 
discoordinate expression by reducing the expression 
of HIF1a in pathologically hypoxic conditions [140]. 
Similarly, the downregulation of BMP2 limits overex-
pression of COL2A1 and ACAN genes while also reduc-
ing BMP2-induced expression of MMP13 [9]. RUNX2 
coordinating with TGFβ signaling via ALK1 phospho-
rylation is typically upregulated in OA, so limiting its 
expression also reduces levels of MMP13, COL10A1, 
and VEGF, indicating hypertrophic differentiation and 
cartilage damage [9, 139].

Notch signaling
Notch signaling pathways, highly conserved in mam-
mals, require careful regulation for maintenance of 
healthy cartilage. Downstream, Notch upregulates 
expression of MMP13 while downregulating the syn-
thesis of type II collagen. Therefore, Notch signaling 
is chondrodestructive in nature. This mechanism was 
demonstrated by an experimental mouse model in 
which one group received treatment with a γ-secretase 
inhibitor, an inhibitor of Notch, while the other 
group did not. In the group that did not receive the 
γ-secretase inhibitor, the mice exhibited greater sever-
ity of articular cartilage degeneration due to upreg-
ulated MMP13 and decreased synthesis of type II 

collagen [141]. Estrogen has been shown to upregulate 
Notch1, indicating a connection between female sex 
hormones and a chondrodestructive signaling pathway 
[142]. Further exploration of the relationship between 
biological sex and cartilage-specific Notch signaling is 
needed to better determine the specific mechanisms 
and interactions, as four types of Notch proteins exist, 
each with unique functions.

Fibroblast growth factor
FGFs are important growth factors involved in the 
development and maintenance of articular cartilage. 
FGF18 serves an anabolic role in cartilage, acting as 
an inducer of chondrocyte proliferation and ECM syn-
thesis. In a murine model, injection of FGF18 in OA 
joints resulted in increased cartilage formation [143]. 
Unlike FGF18, the exact role of FGF2 in cartilage 
maintenance is unclear; FGF2 seems to serve a com-
bination of anabolic and catabolic functions. In the 
presence of existing cartilage defects, FGF2 was found 
to have a regenerative effect much like FGF18 [144]. 
However, while FGF2 effectively induced proliferation 
in these studies, it failed to induce ECM production 
[145]. This growth factor was also found to upregu-
late several metalloproteinases, such as MMP13, 
ADAMTS4, and ADAMTS5, leading to the stimulation 
of pro-inflammatory cytokines and the inhibition of 
anabolic molecules, such as BMP7 [9]. Since BMP7 is 
typically expressed at higher concentrations in males, 
male cartilage may be better equipped to override the 
inhibitory effects of FGF2 [137]. While limited data 
exist regarding the relationship between sex hormones 
and FGFs in cartilage, a study of bovine ovarian tis-
sue concluded that FGF18 decreased the synthesis of 
estrogen and progesterone production, indicating a 
negative correlation between female sex hormones and 
FGF18 in female reproductive organs [146]. Whether 
this effect is limited to ovarian tissue warrants further 
exploration.

Retinoic acid
Retinoic acid is well-known to influence chondrocyte-
specific gene expression through interaction with reti-
noic acid receptors (RARs) in the nucleus [147]. Vitamin 
A metabolites act as ligands for RARs and are found to 
be elevated in OA patients [148]. As observed in a recent 
in  vitro study, activated RARs have an inhibitory effect 
on chondrogenesis, especially RARα and RARγ [147]. 
Specificity protein 1 is a transcription factor present in 
chondrocytes that can form complexes with ERs, induc-
ing the activation of RARα [125]. Therefore, the presence 
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of ERs in chondrocytes directly relates to inhibition of 
chondrogenesis [125].

Cellular energy and survival related pathway
E2 loss correlates with the increased incidence of knee 
and hip OA. Interestingly, in rat OA model chondro-
cytes, E2 mediated activation of PI3K (phosphoinositide 
3-kinase)/AKT (protein kinase B) markedly stimulates 
cell proliferation [149]. Through this signaling, admin-
istration of E2 also elevates proliferation and viability 
of ATDC5 chondrocytes [150]. High expression levels 
of GPER1/GPR30 in the hypertrophic zone have been 
indicated as regulating longitudinal bone growth as the 
expression decreases during puberty [151]. GPER1/
GPR30 also plays a role in chondrocyte proliferation and 
has been demonstrated as required for a normal estro-
genic response in the growth plate [152].

Typically involved in ECM synthesis, the PI3K/AKT 
pathway is downregulated in human OA cartilage or in 
OA-like chondrocytes exposed to IL1 or TNFα [153, 
154]. Chondrocyte apoptosis is negatively regulated by 
PI3K/AKT signaling through inhibition of NF-κB [155]. 
17β-E2 could function through the PI3K/AKT/FOXO3 
(forkhead box O-3) pathway by downregulating MMP3 
expression and preventing ECM degradation [156]. A key 
suppressor of autophagy, the mTOR pathway is regulated 
through upstream PI3K/AKT and AMPK (adenosine 
5′-monophosphate-activated protein kinase) pathways 
[157]. In OA cartilage, upregulated mTOR signaling has 
been shown to lead to increased chondrocyte apopto-
sis and decreased autophagy-related gene expression; as 
such, cartilage-knockdown of mTOR reduces apoptosis 
and upregulates autophagy, shifting cartilage homeostasis 
in mice [158]. Furthermore, mTOR-regulated autophagy 
is linked to the inflammatory response, serving as an 
integral link between inflammation and autophagy in OA 
pathogenesis.

AMPK is critical to maintaining cell energy metabo-
lism and survival. Given their reciprocal enhancement 
of each other’s activity, silencing information regulator 
2 related enzyme 1 (SIRT1) and AMPK interact closely 
to regulate energy, metabolism, and aging [159]. In OA 
chondrocytes, pharmacologic AMPK activation not 
only improved mitochondrial biogenesis and function 
but also stimulated SIRT1-peroxisome proliferator-acti-
vated receptor gamma (PPARγ) coactivator-1α (PGC1α) 
signaling, ultimately delaying chondrocyte aging [160]. 
One study showed that SIRT1 and mTOR play a role in 
regulating cell aging by adjusting the autophagy func-
tion [161]. Specifically, SIRT1 restored oxidative stress-
induced autophagy impairment and improved embryonic 
stem cell (ESC) survival by blocking the mTOR pathway 
[162]. In contrast, SIRT1 inhibition activates the mTOR 

pathway, resulting in autophagy injury [163]. In a mouse 
OA model, E2 inhibited the mTOR pathway via activat-
ing ERK, promoting chondrocyte autophagy to protect 
AMPK mutant mice from OA [164]. In vitro, E2 given to 
ATDC5 chondrocytes at a pharmacological concentra-
tion is capable of inducing SIRT1 expression through the 
AMPK/mTOR pathway in mitophagy [165]. These data 
culminated in a new appreciation for 17β-E2 signaling 
in OA and point to the SIRT1-mediated AMPK/mTOR 
signaling pathway as a potential target for OA therapy.

Acidic environment and cellular inflammation related 
pathways
In vivo, there is increased expression of ASIC1a co-
localized with NF-κB expression in articular cartilage 
of rat adjuvant arthritis [166]. NF-κB signaling path-
ways are activated by IL6, IL1β, and TNFα signaling, 
leading to ASIC1a upregulation. Extracellular acid acti-
vation of ASIC1a could exacerbate the TNFα- and IL1β-
mediated impact on ECM metabolism by increasing 
MMP3/MMP13 and ADAMTS5 mRNA expression in 
articular chondrocytes [166]. Extracellular acidification 
also increases intracellular  Ca2+ influx, culminating in 
articular chondrocyte apoptosis, autophagy, pyroptosis, 
and necroptosis [167].

17β-E2 can increase the mRNA and protein expression 
levels of ERRα, which in turn led to an increase in SOX9, 
GDF5, and CYP19A1 during in vitro mandibular condy-
lar chondrocyte cultivation [55]. Additionally, estrogen 
treatment activates the AMPK/ULK1 (unc-51-like kinase 
1) signaling pathway, which was abrogated by ERRα-
silencing. 17β-E2 has been linked to ASIC1a protein 
degradation through the ERRα, resulting in protection 
against acidosis-induced cytotoxicity in chondrocytes 
[80]. The estrogen-mediated downregulation of ASIC1a 
expression was mitigated by methyl-piperidino-pyrazole, 
an inhibitor of ERRα, suggestive of the involvement of 
ERRα in the estrogen regulating expression of ASIC1a. 
AMPK–ULK1 signaling activation promotes protein 
degradation of ASIC1a by the autophagy–lysosome path-
way [168]. DHEA reduced COX2 (cyclooxygenase-2) and 
iNOS (inducible nitric oxide synthase) gene expressions 
[169]. These findings all point to the role of estrogen in 
promoting the autophagy–lysosome pathway-dependent 
degradation of ASIC1a and protecting against acidosis-
induced cytotoxicity, which is thought to be influenced 
by the ERRα–AMPK–ULK1 signaling pathway [168].

MicroRNA related signaling pathway
In the postmenopausal rat model, miR-203 has been sug-
gested to have critical involvement in OA onset and wors-
ening, indicating that inhibiting the miRNA may reduce 
cartilage degradation [170]. MiR-203 has been shown to 
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increase cellular inflammation and injury. IL1β stimula-
tion increased miR-203 expression, which inhibited ERα 
expression and decreased ACAN and COL2A1 [171]. 
This finding indicates that miR-203 is especially critical 
in estrogen deficiency and ERα instability-induced OA 
[171]. Interestingly, estrogen treatment increased miR-
140 level and suppressed MMP13 expression in human 
articular chondrocytes; miR-140 knockdown mitigated 
this inhibitory influence of estrogen; further, the estro-
gen/ER/miR-140 pathway inhibited IL1β-induced car-
tilage matrix degradation [76]. In idiopathic condylar 
resorption (ICR), an aggressive form of OA in adolescent 
female patients, the E2-miRNA-101-3p–HAS2 pathway 
has been considered important. It has been theorized 
that E2 targets miRNA-101-3p in synovial fibroblasts of 
ICR patients, which regulates HAS2 expression [172]. 
The connection between estrogen and miRNAs presents 
a sex-related mechanism that could provide a more spe-
cific treatment approach for OA.

Regeneration and prevention
While sexual dimorphism has been well-documented 
in cartilage degeneration, cartilage regeneration may 
also exhibit variations between males and females. Sex-
dependent differences in stem cell regenerative capacity 
must be considered when evaluating the effectiveness of 
OA treatment options. This section will review current 
findings on how sex influences the outcomes of cartilage 
regeneration therapy.

Surgical methods
Currently, the most common form of cartilage repair is 
surgical intervention. While there are advantages to uti-
lizing surgical methods, such as microfracture to treat 
cartilage defects, these practices are invasive and often 
lead to poor clinical responses, such as fibrocartilage for-
mation [173]. Interestingly, current responses to surgical 
techniques for cartilage repair exhibit observable sex dif-
ferences; however, further investigation is still needed to 
best apply this information in practice.

Microfracture is a procedure in which holes are 
drilled into areas of a cartilage defect in an attempt to 
circulate the healthy MSCs from deep within the car-
tilage to the surface, leading to cartilage regeneration 
[174]. While this procedure is considered less inva-
sive than traditional surgical implantation, it can only 
be performed for small defects and thus has limited 
applicability [174]. Notably, microfracture does have 
some success in alleviating chondral degradation [174]. 
Males tend to have better microfracture outcomes than 
females, scoring higher on assessments for symptom 
relief and functional improvement [175]. Compared to 
female patients, more males also undergo microfracture 

treatments, along with chondroplasty and osteochon-
dral allografts [176].

Autologous chondrocyte implantation (ACI) is a tech-
nique that harvests chondrocytes from a patient’s intact 
articular cartilage to be implanted at the patient’s site of 
defect or degeneration. This procedure is not ideal, as 
it disturbs healthy cartilage and may lead to donor site 
morbidity. However, some positive outcomes have been 
recorded, including pain reduction, tissue repair, and 
improvement of function [177]. Studies show that males 
typically display better responses to ACI treatment than 
females [177–179]. Compared to males, females who 
underwent ACI were found to have a higher rate of post-
operative revision or arthroplasty [178, 180]. In a study 
that followed patients after ACI surgery, results revealed 
that defect location affects regeneration in females but 
not in males; males with defects on the femoral condyles 
had much better postoperative results than females with 
defects in the patellofemoral compartment [181]. Despite 
the documented sex differences in procedure results, 
there is still dispute regarding the significance of these 
disparities. Several studies suggest a lack of significant 
difference in ACI outcomes between males and females 
[182, 183]. These studies indicate that ACI has the poten-
tial to benefit both sexes indiscriminately and that sex 
does not influence the success of ACI [184].

Autologous matrix-induced chondrogenesis (AMIC) is 
a cartilage defect treatment that combines techniques of 
both ACI and microfracture, inserting a collagen scaffold 
and fibrin glue over the hole produced by microfracture 
[185]. This sort of treatment results in better cartilage 
regeneration for males than females [185]. However, 
recent studies reported conflicting results in which no 
significant differences in postsurgical prognosis were 
found between sexes, suggesting that both males and 
females have the same potential for successful AMIC out-
comes [186, 187]. Since females tend to have worse pre-
liminary defects, sex-related repair outcomes may falsely 
appear to have observable differences [184]. However, 
when compared over a long-term postoperative period, 
males and females exhibit similar levels of healing, espe-
cially when comparing younger populations [184].

Sex hormone treatment
Since cartilage degeneration is closely linked to hormonal 
influences, as previously mentioned, sex hormone ther-
apy has the potential to help prevent degeneration and 
enhance regeneration (Table 2). Studies have shown that 
estrogen and estrogen receptors may play a functional 
role in chondrocytes [188, 189]. ERs on female chondro-
cytes have higher estrogen affinity than those on male 
chondrocytes [190]. It is theorized that this observation 
may contribute to the increased female incidence of OA 
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compared to males. Levels of estrogen decrease after 
menopause, and accordingly, OA becomes more promi-
nent in postmenopausal females. As such, modulation of 
ERs may help treat collagen degradation [6].

Kinney et  al. found that chondrocytes from healthy 
females respond to E2 treatment; however, a lack of 
response to E2 is observed in males [190]. Another study 
done on a murine model similarly confirmed estrogen’s 
chondroprotective effect in female mice but not in male 
mice [111]. Oral and transdermal E2 treatment resulted 
in a decrease in levels of urine CTX-I and CTX-II in 
women; since urine CTX is a product of cartilage deg-
radation, this finding supports estrogen therapy as a 
promising treatment for women in the field of cartilage 
repair and regeneration [191]. Females with low serum 
estrogen concentrations are more likely to develop OA 
[192]. Therefore, menopausal women have a higher risk 
of cartilage degeneration because of estrogen decline [6]. 
In postmenopausal women, ERT seems to have a benefit 
in increasing cartilage thickness [193]. In an in vivo study, 
postmenopausal women having taken ERT for more than 
5 years were observed to have more articular tibial car-
tilage than women without hormone replacement [193]. 
The Framingham Study also observed preventative and 
protective results against cartilage degradation in post-
menopausal women on ERT; participants on ERT expe-
rienced less OA progression compared to the control, 
indicating cartilage protection resulted from estrogen 
supplementation [194]. ERT was also found to increase 
expression of IGF binding protein 2, proteoglycans, and 
collagen in articular cartilage, demonstrating some of 
the chondroprotective mechanisms of this therapy [189]. 
However, risks of hormone replacement may outweigh 
the benefits [195]. Therefore, additional therapies should 
continue to be considered for OA in postmenopausal 
women.

Sex steroids may help enhance the chondrogenic 
potential of human chondrogenic progenitor cells (CPCs) 
in a sex-dependent manner, improving the regeneration 
capacity of late-stage OA tissue [91]. Koelling and Miosge 
found that SOX9 was highly expressed in the CPCs from 
women treated with E2 and CPCs from men treated with 
testosterone; CPCs from women responded better to 
steroid treatment, which may be explained by the higher 
concentration of sex hormone receptors in females than 
males [91].

Unlike the strong body of research on ERT, not as much 
information exists on sex variation regarding testoster-
one replacement therapy. One study assessed the asso-
ciation between OA pain progression and total serum 
testosterone levels among patients who had undergone 

total knee replacement surgery and found that both 
sexes reported less pain with higher testosterone levels; 
interestingly, all females that reported less disability had 
higher levels of serum testosterone [196]. These findings 
suggest that testosterone levels are positively correlated 
with OA improvement in both sexes. However, a study 
led by Alessandro Bertolo concluded that male IVD cells 
exposed to testosterone experience an increase in expres-
sion of aggrecan and types I and II collagen, while the 
female cells experience no effect, suggesting that testos-
terone only influences chondrogenesis for male cells [92]. 
Another in  vitro experiment in which male and female 
rat chondrocytes were treated with testosterone yielded 
similar results; testosterone treatment increased colla-
gen production in male cells but not in female cells [197]. 
Current evidence points to testosterone being positively 
associated with cartilage health in males, but its role in 
females is less certain. More research investigating the 
potential of testosterone treatment is needed to fully 
understand if it can play a meaningful role in cartilage 
repair.

An alternative approach to sex hormone therapy is 
using isoflavone, a soy phytoestrogen from legumes. Soy-
bean isoflovane can have estrogenic effects on tissues 
[198]. In OVX rats, soybean isoflavone has been observed 
to limit cartilage degeneration [199]. Another study 
observed arctigenin, a dietary phytoestrogen, worked as 
a cartilage protector in human chondrocytes and mouse 
OA models [200]. Similarly, another phytoestrogen, daid-
zein, had anti-inflammatory and anti-oxidant effects in a 
rat OA model, especially when in combination with hya-
luronic acid therapy [201]. In human chondrocytes, daid-
zein has had comparable results, having positive effects 
on ECM formation and pheotype regulation [202]. These 
studies demonstrate using phytoestrogen as a therapy 
method could be a promising approach to treat OA.

Stem cell therapy
Stem cell-based tissue engineering is a promising 
approach for repairing adult cartilage defects. Specifi-
cally, MSCs are at the forefront amongst stem cells for 
cartilage regeneration and repair given their high prolif-
eration rate and chondrogenic potential [1]. MSCs can be 
found in different areas of the body, such as bone mar-
row, adipose tissue, synovium, and muscle, and can be 
differentiated into chondrocytes and other types of cells 
(Fig. 2) [203]. MSCs display sex differences in prolifera-
tion and differentiation [204], indicating that stem cell 
therapy can be enhanced by taking these differences into 
account.
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Optimization of stem cell therapy
Given the integral role sex hormones play in cartilage 
maintenance and regulation, testosterone, DHT, and E2 
have the ability to influence stem cell proliferation and 
differentiation and may be used to optimize stem cell 
therapy as a cartilage regeneration method. Studies on 
the influence of testosterone on stem cell proliferation 
have mixed results, indicating a need for further experi-
mentation [205]. In a castration study, elimination of 
testosterone suppressed DNA synthesis of male bone-
marrow-derived stem cells (BMSCs), implying testos-
terone has the capacity to stimulate proliferation [206]. 
However, testosterone was found to have the opposite 
effect in  vitro, limiting the cell count of male chondro-
cytes [197]. In contrast, a study on ESCs concluded that 
testosterone had neither a positive nor negative influence 
on proliferation [207]. These mixed results indicate that 
cell type is a probable factor in the influence of testoster-
one on cell expansion. The same study also suggests that 
DHT is a more influential hormone on proliferation than 
testosterone, as DHT exposure demonstrated marginal 
inhibitory effects on stem cell proliferation [207]. The 
impact of testosterone on differentiation is more clearly 
established, with both in  vivo and in  vitro experiments 
concluding that testosterone exposure helps induce 
chondrogenic differentiation of BMSCs [197]. Further-
more, testosterone has been observed to increase ECM 
deposition in male IVD cells during differentiation, fur-
ther supporting its role in promoting chondrogenesis 
[92]. While testosterone may stimulate chondrogenesis, 

sex of the stem cell donor must be considered, as tes-
tosterone likely has greater capacity to influence cells 
derived from male donors [197]. Further evaluation is 
needed to conclusively determine the impacts of andro-
gens on proliferation and differentiation, but DHT may 
encourage proliferation, while testosterone promotes 
chondrogenic differentiation of BMSCs.

Contrary to male sex hormones, female sex hormones 
have remarkable evidence supporting their effects on 
stem cells, overall promoting proliferation and inhibit-
ing differentiation. An in  vitro study concluded that E2 
promotes proliferation of ESCs by increasing cyclin D1, 
cyclin E, cyclin dependent kinase 4 (CDK4), and CDK2, 
therefore, promoting cell cycle progression [208]. Like 
ESCs, the proliferation rate of other stem cell types is 
also promoted by estrogen. The proliferation of BMSCs is 
mediated by estrogen in a concentration-dependent and 
sex-dependent manner [209]. Peak proliferation rate was 
produced by exposure of E2 at  10–12 M in female BMSCs 
and between  10–8 and  10–12 M in male BMSCs [209, 210]. 
Mouse adipose-derived stem cells (ASCs) also respond 
to E2 treatment by increasing proliferation rate through 
ERα [211]. In vivo, both BMSCs and ASCs isolated from 
female donors divide more rapidly compared to those 
from male donors, indicating that the effect of estrogen 
on proliferation is greater than that of testosterone at 
physiologic concentrations [212, 213]. Since menopause 
reduces estrogen production, resulting decreases in pro-
liferative capacity of BMSCs contributes to the rise in 
incidences of OA and osteoporosis [214]. Estrogen hor-
mone therapies may be considered for treatment options, 
but only for females, as only chondrocytes from female 
donors respond to E2 [190]. While estrogen stimulates 
stem cell proliferation, it has the opposite effect on dif-
ferentiation. In  vitro studies concluded that E2 has an 
inhibitory effect on chondrogenic differentiation of both 
ASCs and BMSCs [215, 216].

Similar to endogenous hormones, exogenous factors 
such as dietary metabolites also influence properties of 
stem cell growth and may be used to optimize stem cell 
therapies. Metabolites of Vitamin D impact differen-
tiation, with 24,25-(OH)2D3 increasing the size of the 
hypertrophic zone of cartilage at the growth plate in both 
sexes [217]. 1-Alpha,25(OH)2D3 was found to induce 
expression of E2 in female, but not male, chondrocytes, 
which may be partially responsible for the chondropro-
tective role of Vitamin D in females [32]. While Vitamin 
D is generally chondroprotective in both sexes, estrogen 
promotes Vitamin D accumulation and upregulation 
of Vitamin D receptors, indicating it may have a greater 
impact in females [218]. Another metabolite impacting 
chondrogenic differentiation and proliferation is mater-
nal β-hydroxy-β-methyl butyrate (HMB), a product of 

Fig. 2 Origin and differentiation of MSCs including ASCs, MDSCs, 
SDSCs, and BMSCs. Upper hemisphere shows MSC origin and lower 
hemisphere shows MSC differentiation
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leucine metabolism. In vivo, prenatal HMB treatment of 
pregnant sows increased proteoglycan content in articu-
lar cartilage, especially in female offspring [219]. HMB 
treatment also increased IGF-I concentration, prolifera-
tion, and survival in both sexes of offspring. In HMB-
pretreated female offspring, the temperature at which 
collagen denatured was observed to be significantly 
higher compared to that in the control group, suggesting 
that prenatal HMB treatment may yield female offspring 
with stronger, more resistant cartilage [219]. Male car-
tilage has a higher abundance of cross-linking proteins, 
such as lysyl oxidase-like protein 2 and fibulins, which 
likely contributes to the greater impact of HMB treat-
ment on female offspring compared to males [220].

Other treatments yield sex-specific responses in stem 
cells as well, such as exposure to hypoxia and ROS. After 
undergoing lipopolysaccharide dose treatment followed 
by hypoxia treatment for 1 h, female-derived MSCs con-
sistently produced more VEGF than male-derived cells 
and also exhibited a decrease in TNFα expression, while 
male donor cells did not [221]. These findings further 
support the notion that male and female stem cell prop-
erties differ and can be enhanced with more specialized 
cultivation techniques to advance stem cell therapy.

Sex differences in stem cell therapy
Currently, few studies distinctly focus on the potential 
differences between sexes in MSC cartilage regeneration. 
This review aims to summarize the overall sex-depend-
ent trends and implications they have for future clinical 
applications. Human BMSCs have been identified as a 
good source for articular cartilage repair because of their 
great chondrogenic capacity [222]. Increasing research 
supports that human BMSCs display sexual dimorphisms 
in regenerative ability. Specifically, studies have pointed 
to male-derived BMSCs exhibiting greater chondrogenic 
potential than female cells [223]; male BMSCs decrease 
in chondrogenic potential with age, while female BMSCs 
do not [224]. However, a recent study found no substan-
tial differences in adipogenic and chondrogenic differ-
entiation potential of human BMSCs from healthy male 
donors as compared to healthy female donors [225].

Another promising cell candidate for stem cell-based 
therapy is muscle-derived stem cells (MDSCs). MDSCs 
display good chondrogenic potential and cartilage regen-
eration properties [226]. Like BMSCs, this cell type 
also exhibits variation in regenerative ability between 
male and female donors. An in vitro study revealed that 
human and murine MDSCs from male donors might 
have a greater chondrogenic potential than that of female 
donors [227]. Sex not only influences MDSC proliferation 
and rejuvenation potential, but also that of ASCs; ASCs 
from male donors also demonstrate greater chondrogenic 

potential compared to female donors [223, 228]. Overall, 
current studies point to donor sex as a major determi-
nant of stem cell properties, conclusively establishing the 
need to disclose donor sex in all future studies. With this 
measure in place, sexual dimorphisms of stem cells will 
not be a confounding variable.

Interestingly, the sex of the treatment recipient has 
also been shown to influence treatment response. Some 
experiments have demonstrated that males respond 
better to stem cell treatment. For example, an in  vivo 
experiment implanted BMSCs into human subjects with 
articular cartilage defects in the knee and found that 
outcomes were sex-dependent. Results revealed signifi-
cant differences between sexes up to 10  years postop-
eratively, with males experiencing greater response to 
the method in terms of physical ability, repair, and heal-
ing after implantation [177, 179]. This finding may relate 
to the high incidence of OA in postmenopausal women 
with low estrogen levels which is linked to increased OA 
susceptibility and may hinder their ability to respond to 
treatment. Women also tend to develop worse cases of 
OA compared to men, which could also contribute to 
decreased responses to treatment [184].

Discussion/conclusion
This review aims to highlight and summarize the sex 
differences in the field of cartilage repair and regenera-
tion, specifically in regard to cartilage degeneration treat-
ment with stem cell-based therapy. It is well-known 
that women have a higher likelihood of developing OA 
compared to men, but the mechanisms underlying this 
clinical finding are still being investigated. A decrease in 
estrogen following menopause seems to be an underly-
ing trend in women with OA, leading to the conclusion 
that estrogen is a big factor in cartilage degradation and 
can be supplemented for treatment and prevention of 
OA in women. However, men may also develop cartilage 
degeneration. Though males do not respond to estrogen 
treatment  like women, males have responded to testos-
terone treatment, indicating that androgens also play a 
role in OA. These distinctions in sex-based response to 
hormone therapies indicate the presence of variation in 
treatment options between sexes.

Biomarkers also are integral to the prevention of 
cartilage degeneration. Increasing evidence points to 
sex-dependent differences between cartilage biomark-
ers, suggesting that signs of OA in males and females 
present differently. Understanding the sex differences 
between biomarkers may lead to earlier diagnosis and 
the development of sex-specific treatment options.

In regard to stem cell therapies, the role of donor sex 
in MSC-based treatments is still being investigated. 
Currently, there is contradictory evidence, meaning 
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further experimentation must be done to accurately 
determine the influence of donor sex on the regen-
erative potential of MSCs. Some studies conclude that 
male donors have healthier MSCs with more chondro-
genic potential, making them more ideal candidates for 
stem cell treatment. However, other studies found no 
significant difference in the quality of MSCs between 
healthy male and healthy female donors.

The impact of recipient sex on cartilage repair 
method efficacy is also up for debate. In the case of 
BMSCs for stem cell treatment, males seem to expe-
rience better postoperative results than females. The 
difference in male and female responses to receiving 
stem cell treatment has not been extensively studied 
and needs more research. ACI treatment also seems to 
benefit males more, with females having less success-
ful post-ACI outcomes. However, this finding may be 
skewed by the increased likelihood of women to have 
more severe cartilage defects than men going into these 
procedures, as there are some studies that show a lack 
of significant differences in the outcomes of surgical 
treatments.

This study focuses on sex differences at the molecu-
lar level and the implications on cartilage health and 
therapeutic strategies. Obesity and ethnicity factors in 
sex-related differences are not heavily discussed as they 
can be influenced by lifestyle and economic elements. 
However, there is merit for studying these factors, and 
future studies should focus on such elements to truly 
optimize clinical strategies for cartilage health.

In conclusion, there are clear sex-based variances 
in cartilage degeneration and regeneration, and the 
underlying mechanisms and exact effects still need fur-
ther exploration. Additional research is critical to fully 
understand the role of sex in cartilage repair. Currently, 
most studies do not adjust their designs for sex vari-
ability and comparisons, resulting in a lack of statistical 
evidence on the influence of sex [2]. By fully under-
standing the sex differences in cartilage degeneration 
and regeneration, future studies can more intention-
ally select a target demographic. The development of 
sex-specific approaches to cartilage tissue engineering 
aims to provide more personalized and effective clinical 
treatments.
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