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Abstract 

Background The mechanisms by which parental early life stress can be transmitted to the next generation, in some 
cases in a sex-specific manner, are unclear. Maternal preconception stress may increase susceptibility to suboptimal 
health outcomes via in utero programming of the fetal hypothalamic–pituitary–adrenal (HPA) axis.

Methods We recruited healthy pregnant women (N = 147), dichotomized into low (0 or 1) and high (2+) adverse 
childhood experience (ACE) groups based on the ACE Questionnaire, to test the hypothesis that maternal ACE history 
influences fetal adrenal development in a sex-specific manner. At a mean (standard deviation) of 21.5 (1.4) and 29.5 
(1.4) weeks gestation, participants underwent three-dimensional ultrasounds to measure fetal adrenal volume, adjust-
ing for fetal body weight (waFAV).

Results At ultrasound 1, waFAV was smaller in high versus low ACE males (b = − 0.17; z = − 3.75; p < .001), but females 
did not differ significantly by maternal ACE group (b = 0.09; z = 1.72; p = .086). Compared to low ACE males, waFAV was 
smaller for low (b = − 0.20; z = − 4.10; p < .001) and high ACE females (b = − 0.11; z = 2.16; p = .031); however, high 
ACE males did not differ from low (b = 0.03; z = .57; p = .570) or high ACE females (b = − 0.06; z = − 1.29; p = .196). At 
ultrasound 2, waFAV did not differ significantly between any maternal ACE/offspring sex subgroups (ps ≥ .055). Per-
ceived stress did not differ between maternal ACE groups at baseline, ultrasound 1, or ultrasound 2 (ps ≥ .148).

Conclusions We observed a significant impact of high maternal ACE history on waFAV, a proxy for fetal adrenal 
development, but only in males. Our observation that the waFAV in males of mothers with a high ACE history did not 
differ from the waFAV of females extends preclinical research demonstrating a dysmasculinizing effect of gestational 
stress on a range of offspring outcomes. Future studies investigating intergenerational transmission of stress should 
consider the influence of maternal preconception stress on offspring outcomes.

Highlights 

• Three-dimensional ultrasound serves as a non-invasive way to measure fetal adrenal volume as a proxy for 
development of the fetal hypothalamic–pituitary–adrenal axis.
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• Weight-adjusted fetal adrenal volume (waFAV) differed between subgroups based on offspring sex and the moth-
er’s history of adverse childhood experiences (ACEs).

• In males of mothers with a high ACE history, waFAV was significantly smaller than in males of mothers with a 
low ACE history but indistinguishable from the waFAV of females from either maternal ACE group; however, 
males of mothers with a low ACE history had larger waFAV than females from either maternal ACE group.

• These findings suggest male vulnerability to dysmasculinization of waFAV in response to maternal preconception 
stress in line with previous animal studies showing a dysmasculinizing effect of gestational stress on a range of 
offspring outcomes.

Keywords Maternal early life stress, Preconception stress, Fetal hypothalamic–pituitary–adrenal axis, Fetal adrenal 
gland, Dysmasculinization, Sex differences

Introduction
Mothers with a history of adverse childhood experiences 
(ACEs)—such as abuse, neglect, and family dysfunc-
tion—are more likely to have offspring with poorer men-
tal health outcomes across the lifespan [1, 2]. Although 
rodent models suggest that maternal preconception 
stress impacts offspring through epigenetic changes 
to oocytes or in utero exposures [3–6], no studies have 
tested the effect of maternal ACEs on human fetal devel-
opment despite its impact being theoretically plausible 
[7]. Presumably, dysregulated maternal stress physiology 
associated with maternal ACEs [8–15] could alter com-
munication with the maternal–placental–fetal unit in a 
manner that leads to intergenerational transmission of a 
stress phenotype [16–20].

Although no human or animal studies have tested for 
an effect of maternal preconception stress (occurring 
before pregnancy) on fetal hypothalamic–pituitary–
adrenal (HPA) axis, studies have examined this in the 
context of prenatal stress (occurring during pregnancy) 
or hormonal proxies of prenatal stress (glucocorticoid 
administration). In humans, ACEs impact maternal 
glucocorticoids in complex ways during pregnancy 
[17] and increase placental corticotropin releasing hor-
mone (pCRH) [16]. In turn, higher maternal cortisol 
and placental pCRH levels during gestation have been 
linked to fetal growth restriction [21], earlier birth [22], 
lower birthweight [23], and enhanced offspring stress 
response [24, 25]. Although maternal cortisol is largely 
inactivated by placental 11β-hydroxysteroid dehydroge-
nase type 2 (11β-HSD-2), maternal cortisol levels still 
explain a third of the variation in fetal cortisol levels 
[26]. In animal models, maternal HPA axis function 
altered by administration of either ACTH or dexameth-
asone provide direct evidence of the impact of high 
glucocorticoid exposure on fetal brain regions involved 
in stress responsivity [18, 19] and the fetal HPA axis, 
including the weight of the adrenal glands [18]. In an 
animal model of prenatal stress focusing exclusively 

on male offspring, male rats of stress exposed mothers 
exhibited decreased weight of the fetal adrenal glands 
relative to control males [20].

To our knowledge, the current study is the first to 
examine the volume of the human fetal adrenal gland as 
a proxy for the impact of maternal ACEs on fetal HPA 
axis development. We chose to focus on the fetal adre-
nal for three reasons. First, the adrenals are an essential 
stress-responsive organ of the HPA axis and the earli-
est and fastest growing organ in the fetal HPA axis [27]. 
Second, in animal models, its volume varies based on 
gestational stress exposure, at least in males [20], sug-
gesting that high maternal ACEs and their potential to 
disrupt maternal HPA axis function during gestation 
could impact fetal adrenal development. Third, techno-
logical advances in three-dimensional (3-D) ultrasound 
have made it possible to measure fetal adrenal volume 
(FAV) noninvasively in humans [28, 29], with good 
intra- and interrater reliability [30].

We designed this study (1) to evaluate the relation-
ship between maternal ACEs and fetal body weight-
adjusted FAV (waFAV) and (2) to consider fetal sex as 
a potential moderator. In animal models, the impact 
of gestational stress exposure on fetal adrenal gland 
development has not been studied in females and, in 
humans, prenatal stress exposure impacts offspring 
outcomes in a sex-dependent manner (e.g., [23, 31–38, 
40, 42]). Our sample included psychiatrically and medi-
cally healthy women, with the intention of isolating the 
effect of maternal ACEs on waFAV without the con-
founding impact of maternal mental health or medi-
cal problems during gestation. Despite the absence of 
robust data on the relationship between maternal child-
hood adversity and fetal outcomes, we predicted that 
the fetuses of pregnant women with higher exposure 
to childhood adversity versus those low or no expo-
sure would exhibit differences in waFAV—particularly 
for males, given a review of clinical studies suggesting 
greater male vulnerability to gestational stress [41].



Page 3 of 11Duffy et al. Biology of Sex Differences            (2023) 14:7  

Methods and materials
Participant recruitment and screening
Women 18+ years old (at 8–17  weeks gestation) were 
recruited and screened while waiting for a perinatal care 
visit at three obstetrics and gynecology clinics affili-
ated with an academic health system. Participants were 
required to have a singleton pregnancy, be fluent in writ-
ten and spoken English, and be willing to give written 
informed consent. Exclusions included reporting a seri-
ous medical or neurological illness, an active psychiat-
ric illness, or a history of drug or alcohol abuse within 
the previous two years; feeling sad most days over the 
past two weeks; using steroid drugs or antihyperten-
sives during pregnancy; having a history of fetal loss 
or preterm birth; or having a known abnormality with 
the current pregnancy or fetus. Eligible women were 
invited to undergo full screening for a longitudinal study 
that spanned pregnancy to 6 months postpartum. We 
recruited equal numbers of women reporting 0–1 and 
2 + ACEs based on previous research demonstrating that 
2+ ACEs increase risk for preterm birth [42], depression 
[43], cognitive complaints [44], and gut microbiota asso-
ciated with inflammation [45] in women during repro-
ductive transitions. All analyses in this paper focus on 
the sample of 147 participants who had waFAV data from 
at least one of the two ultrasounds (both ultrasounds: 
N = 128; only one ultrasound: N = 19; first ultrasound: 
N = 140; second ultrasound: N = 138), which occurred on 
average (SD) at 21.5 (1.4) weeks gestation and 29.5 (1.4) 
weeks gestation. The timepoints were chosen based on 
precedent for measuring fetal adrenal gland size [29, 46], 
physiological relevance as indicated by previous studies 
[47, 48], and feasibility constrained by when women typi-
cally present for their first perinatal visit as well as when 
FAV can be most accurately visualized by 3D ultrasound. 
The University of Pennsylvania’s institutional review 
board approved all research activities. Our data are pub-
licly available at Open Science Framework (https:// osf. io/ 
bp7as/). For participant characteristics, see Table 1.

Study procedures
Self‑report measures at initial and full screening (Table 2)
At initial screening, participants completed the Adverse 
Childhood Experiences Questionnaire (ACE-Q) [49], the 
Edinburgh Postnatal Depression Scale (EPDS) [50], and 
a questionnaire assessing demographics as well as medi-
cal/obstetrics history. At full screening, participants were 
administered the Structured Clinical Interview for DSM-
IV-TR (SCID) [51] to rule out current psychiatric illness 
and the Hamilton Depression Rating Scale (HAM-D) [52] 
to assess subclinical depressive symptoms. At this visit, 
they also completed the EPDS and the Spielberger State‐
Trait Anxiety Inventory (STAI) [53]. At the full screening 

and at each ultrasound visit, participants completed the 
Perceived Stress Scale (PSS) [54].

Fetal adrenal volume
For each ultrasound, either the right or left adrenal gland 
was selected to be measured based upon which adrenal 
had the clearest boundaries. Two raters (GE, EW) then 
measured the adrenal gland in replicate, repeating the 
measurement either two or three times. The replicates 
were averaged within rater and then between raters. The 
intraclass correlation coefficients were excellent for both 
ultrasounds within rater (ultrasound 1, rater 1: 0.899, 
95% CI: [0.875, 0.920]; ultrasound 1, rater 2: 0.902, 95% 
CI: [0.878, 0.923]; ultrasound 2, rater 1: 0.859, 95% CI: 
[0.825, 0.888]; ultrasound 2, rater 2: 0.912 95% CI: [0.891, 
0.931]) and between raters (ultrasound 1: 0.973, 95% 
CI: [0.964, 0.980]; ultrasound 2: 0.979, 95% CI: [0.971, 
0.984]). Fetal body weight was estimated using a formula 
that included abdominal circumference, femur length, 
and head circumference [55]. We then divided FAV  (cm3) 
by fetal body weight (kg) to yield weight-adjusted FAV 
(waFAV  cm3/kg). See Additional file  1: Tables S1 and S2 
for gestational age, adrenal volume, fetal body weight, 
and body weight-adjusted fetal adrenal volume data strat-
ified by maternal ACE group and offspring sex for ultra-
sounds 1 and 2. See Additional file 1: Figures S1 and S2 in 
supplementary materials for histograms of fetal adrenal 
volumes overall and separately by sex. For details on 3-D 
ultrasound methods, see supplementary materials and 
Kim et al. [30]. During a postpartum visit, fetal sex was 
confirmed.

Statistical plan
Rationale for ACE as a dichotomous variable
Through visualization of the data, we determined that 
the relationship between maternal ACE and waFAV was 
not linear. To assess the validity of our a priori hypothesis 
that 2+ ACEs would indicate the risk group in this sam-
ple, we tested whether continuous ACEs versus dichoto-
mized ACEs (at all possible cutoff points) produced the 
best fitting model. As such, we modeled the three-way 
interaction of maternal ACEs, offspring sex (male vs. 
female), and time (ultrasound 1 vs. 2) on waFAV in a lin-
ear mixed effects model with a random intercept for each 
participant. We found that dichotomizing ACE by a low 
(0–1 ACEs) and high (2+ ACEs) group led to the best fit-
ting model based on having the lowest Akaike Informa-
tion Criterion (AIC) (Additional file 1: Table S3).

Testing for covariates
We included the maternal and offspring demographic 
variables (listed in Table  1) as covariates in subsequent 
models if the covariate was associated with maternal 

https://osf.io/bp7as/
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ACE group and at least one of the ultrasound measures 
of waFAV with a p < 0.10. Although offspring sex is listed 
under offspring demographics in Table 1, we did not con-
sider it for inclusion as a covariate given that we included 
it as a moderator.

Modeling the effect of maternal ACE group, offspring sex, 
and time on fetal adrenal volume
To determine whether a three-way interaction existed 
between maternal ACE group (low vs. high), offspring 
sex (male vs. female), and time (ultrasound 1 vs. 2) on 

Table 1 Participant characteristics overall and by maternal ACE group

Maternal and offspring characteristics for women who had at least one ultrasound measuring fetal adrenal volume. Continuous variables are summarized with means 
and standard deviations, and differences between maternal ACE groups are tested using two-sample t-tests. Categorical variables are summarized with frequencies 
and percentages, and differences between maternal ACE groups are tested using Fisher’s exact tests. Tests with significant p-values are bolded. Values are summarized 
overall and stratified by maternal adverse childhood experiences (ACE) group: low = 0–1 ACEs; high = 2 + ACEs. PSS = Perceived Stress Scale; EPDS = Edinburgh 
Postnatal Depression Scale; STAI = State-Trait Anxiety Inventory

N with data Overall (N = 147) Low ACE (N = 71) High ACE (N = 76) P-value

Maternal demographics

 Maternal age 147 28.4 (5.3) 28.7 (5.0) 28.1 (5.5) .480

 BMI 143 .012
  Normal/underweight 72 (49%) 43 (60.6%) 29 (38.2%)

  Overweight/obese 71 (48.3%) 27 (38%) 44 (57.9%)

  Missing 4 (2.7%) 1 (1.4%) 3 (3.9%)

 Race 147 .032
  African American/Black 72 (49.0%) 28 (39.4%) 44 (57.9%)

  Caucasian/other 75 (51.0%) 43 (60.6%) 32 (42.1%)

 Ethnicity 147 1

  Non-Hispanic/unknown 136 (92.5%) 66 (93.0%) 70 (92.1%)

  Hispanic 11 (7.5%) 5 (7.0%) 6 (7.9%)

 Marital status 147 .008
  Married/domestic partner 76 (51.7%) 45 (63.4%) 31 (40.8%)

  Single/divorced 71 (48.3%) 26 (36.6%) 45 (59.2%)

 Education 147 .001
  High school education or less 37 (25.2%) 14 (19.7%) 23 (30.3%)

  Some education after high school 40 (27.2%) 12 (16.9%) 28 (36.8%)

  College degree or more 70 (47.6%) 45 (63.4%) 25 (32.9%)

 Income 145  < .001
  $25K or less 52 (35.4%) 20 (28.2%) 32 (42.1%)

  $25K to $75K 38 (25.9%) 11 (15.5%) 27 (35.5%)

  $75K or more 55 (37.4%) 38 (53.5%) 17 (22.4%)

 Parity 120 0.7 (0.9) 0.6 (0.7) 0.8 (1.0) .175

Maternal psychological measures

 Baseline PSS score 145 14.0 (6.3) 13.7 (5.7) 14.3 (6.8) .562

 Ultrasound 1 PSS score 144 10.8 (6.7) 10.6 (6.0) 11.6 (7.1) .148

 Ultrasound 2 PSS score 143 10.0 (6.8) 9.7 (6.8) 10.4 (6.9) .504

 Baseline EPDS score 146 4.4 (4.1) 3.7 (3.3) 5.2 (4.6) .023
 Baseline STAI state score 147 28.9 (9.4) 30.2 (10.3) 27.5 (8.2) .080

 Baseline STAI trait score 147 31.6 (8.4) 33.2 (9.7) 29.9 (6.4) .016
Offspring demographics

 Offspring sex 147 .070

  Male 78 (53.1%) 32 (45.1%) 46 (60.5%)

  Female 69 (46.9%) 39 (54.9%) 30 (39.5%)

 Gestational age (weeks)

  Ultrasound 1 142 21.5 (1.4) 21.8 (1.4) 21.3 (1.4) .039
  Ultrasound 2 141 29.5 (1.4) 29.8 (1.3) 29.2 (1.4) .018

 Birthweight (g) 115 3270 (515) 3220 (557) 3317 (471) .317
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waFAV, we modeled the effect of maternal ACE group, 
offspring sex, time, and all combinations of their inter-
actions using a linear mixed effects model with a ran-
dom intercept for each participant. This allowed us to 
model data even if participants were missing one of the 
two ultrasounds. Within this larger model, we tested 
for pairwise comparisons of the offspring sex/maternal 
ACE subgroups at ultrasounds 1 and 2 as these were 
our primary outcomes of interest.

Results
Sample characteristics
The sample consisted of 147 participants (age: 
M = 28.4, SD = 5.3), roughly balanced between the 
low and high maternal ACE groups (low ACE: N = 71; 
high ACE: N = 76), who differed on several partici-
pant characteristics, such as BMI, race, marital status, 
education, and income (see Table 1). Compared to the 
low ACE group, the high ACE group had lower trait 
anxiety (STAI-trait; t = 2.44; df = 130.97; p = 0.016) 
but higher depressive symptoms (EPDS; t = 2.30; 
df = 135.76; p = 0.023)—although their average was far 
below the cutoff of ≥ 14 that indicates possible clinical 
depression [56]. Perceived stress (PSS) did not differ 
between maternal ACE groups at baseline (t = − 0.58; 
df = 142.18; p = 0.562) or ultrasound 1 (t = − 1.46; 
df = 141.05; p = 0.148) or 2 (t = − 0.67; df = 140.55; 
p = 0.504).

Testing for covariates
The only two demographic variables that met crite-
ria to be included as covariates were race (maternal 
ACE group: p = 0.032; waFAV  [cm3/kg] at ultrasound 1: 
t = 2.28, df = 134, p = 0.024; waFAV  [cm3/kg] at ultra-
sound 2: t = 0.14, df = 133, p = 0.89) and gestational age 
at the first ultrasound (maternal ACE group: df = 2.08, 
df = 138.97, p = 0.039; waFAV at ultrasound 1: t = − 2.95; 
df = 133; p = 0.004) but not at the second ultrasound 
(maternal ACE group: t = 2.39, df = 138.99, p = 0.018; 
waFAV at ultrasound 2: t = − 1.88; df = 131; p = 0.062). 
For all analyses involving waFAV as an outcome, race and 
time-varying gestational age were included as covariates.

Three-way interaction of maternal ACE group, offspring 
sex, and time on fetal adrenal volume
We first tested for a three-way interaction of maternal 
ACE group, offspring sex, and time on waFAV  (cm3/kg), 
controlling for race and time-varying gestational age. 
Although the three-way interaction was not significant 
( χ2= 2.48; df = 1; p = 0.115), our primary interest was 
the pairwise comparisons of the maternal ACE/offspring 
sex subgroups at ultrasounds 1 and 2 (Fig. 1 and Table 3), 
particularly given previous data suggesting that males 
would be more vulnerable to maternal early life stress 
[20, 41] and given that we did not necessarily predict 
changes over time in these effects. At ultrasound 1, high 
ACE males had a smaller waFAV (M = 0.625; SD = 0.188) 

Table 2 Descriptions of psychological measures

Adverse Childhood Experiences Questionnaire (ACE-Q) Participants completed the 10-item Adverse Childhood Experiences Questionnaire (ACE-Q) 
[49], which assessed exposures that occurred before age 18: abuse (emotional, physical, and 
sexual), neglect (emotional and physical), and household dysfunction (parental separation or 
divorce, household domestic violence, household substance abuse, parental mental illness, 
and member of household imprisoned). Each exposure counted as one point. ACE scores were 
computed by summing all exposures (0–10)

Perceived Stress Scale (PSS) Participants completed the Perceived Stress Scale (PSS) [54], which assessed how unpredict-
able, uncontrollable, overloaded, and stressful they perceived their life to be. On 10 questions 
related to perceived stress, participants indicated how often they felt or thought a certain way 
over the last month (0 = never, 1 = almost never, 2 = sometimes, 3 = fairly often, 4 = very often). 
PSS scores were calculated by summing all items

Edinburgh Postnatal Depression Scale (EPDS) Participants completed the Edinburgh Postnatal Depression Scale (EPDS) [50], which assessed 
depressive symptomatology over the past week. Although the scale was originally devel-
oped to measure depressive symptoms in postpartum women, it has been validated for 
use in antepartum women as well [83, 84]. On 10 items measuring depressive symptoms, 
participants indicated how often they felt or thought a certain way (e.g., “I have been sad or 
miserable”) on a four-point scale, with higher scores indicating greater frequency of depressive 
symptoms. EPDS scores were calculated by summing all items

Spielberger State-Trait Anxiety Inventory (STAI) Participants completed the Spielberger State‐Trait Anxiety Inventory (STAI) [53]. The trait anxiety 
subscale (STAI-T) asked participants to report how they generally felt on 20 items related to 
their general anxiety, e.g., “some unimportant thought runs through my mind and bothers 
me” (1 = almost never, 2 = sometimes, 3 = often, 4 = almost always). The state anxiety subscale 
(STAI-S) asked participants to report how they felt at the moment on 20 items related to their 
current anxiety, e.g., “I feel nervous” (1 = not at all, 2 = somewhat, 3 = moderately so, 4 = very 
much so). Trait and state anxiety scores were calculated by summing all items
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than low ACE males (M = 0.776; SD = 0.299; b = − 0.17; 
95% CI [− 0.26, − 0.08]; z = − 3.75; p < 0.001), but females 
did not differ significantly by maternal ACE group 
(b = 0.09; 95% CI [− 0.01, 0.19]; z = 1.72; p = 0.086)—
although the effect was marginal with high ACE females 
exhibiting larger waFAV (M = 0.679; SD = 0.188) than low 

ACE females (M = 0.602; SD = 0.199), the opposite pat-
tern from what was observed in males. Low (b = − 0.20; 
95% CI [− 0.10, − 0.29]; z = − 4.10; p < 0.001) and high 
ACE females (b = − 0.11; 95% CI [− 0.21, − 0.01]; 
z = − 2.16; p = 0.031) had smaller waFAV than low ACE 
males. High ACE males did not differ from low (b = 0.03; 

Fig. 1 Fetal adrenal volume by maternal adverse childhood experiences (ACE) group and offspring sex. Although the three-way interaction of 
maternal ACE group (low vs. high), offspring sex (male vs. female), and time (ultrasound 1 vs. 2) on body weight-adjusted fetal adrenal volume 
 (cm3/kg) was not significant ( χ2= 2.48; df = 1; p = .115), our primary interest was in the pairwise comparisons of the subgroups (characterized 
by maternal ACE and offspring sex) at ultrasounds 1 and 2. For ultrasound 1, significant differences emerged in weight − adjusted fetal adrenal 
volumes between low ACE boys and high ACE boys (b = − 0.17, z = − 3.75, p < .001), low ACE boys and low ACE girls (b = 0.20, z = 4.10, p < .001), 
and between low ACE boys and high ACE girls (b = − 0.11, z = − 2.16; p = .031). For the second ultrasound, no significant differences emerged for 
any pairwise comparisons although two findings were marginal: compared to low ACE males, high ACE males (b = − 0.08; 95% CI [− 0.17, 0.02]; 
z = − 1.58; p = .114) and low ACE females (b = − 0.09; 95% CI [− 0.19, 0.00]; z = − 1.92; p = .055) had marginally smaller weight-adjusted FAV. The 
overall model adjusts for race and gestational age at ultrasound. Bar plots display the mean and standard error of weight-adjusted fetal adrenal 
volume stratified by maternal ACE group and offspring sex. Maternal ACE group: low = 0–1 ACEs; high = 2 + ACEs. ***p < .001; **p < .01; *p < .05

Table 3 Pairwise comparisons at the first and second ultrasounds

Maternal adverse childhood experiences (ACE) group and offspring sex pairwise comparisons on fetal body weight-adjusted fetal adrenal volume (waFAV). At the first 
ultrasound, males of mothers from the low ACE group had a larger waFAV than the other three subgroups. No significant pairwise comparisons emerged at the second 
ultrasound although males of mothers from the low ACE group had marginally larger waFAV than males of mothers from the high ACE group and females of mothers 
from the low ACE group. Tests with significant p-values are bolded

Ultrasound Group 1 Group 2 Estimate for group 1—group 2 
(95% CI)

Z value p value

Ultrasound 1 High ACE females Low ACE females 0.09 (− 0.01, 0.19) 1.72 .086

Ultrasound 1 Low ACE males Low ACE females 0.20 (0.10, 0.29) 4.10  < .001
Ultrasound 1 High ACE males Low ACE females 0.03 (− 0.06, 0.11) 0.57 .570

Ultrasound 1 High ACE females Low ACE males  − 0.11 (− 0.21, − 0.01)  − 2.16 .031
Ultrasound 1 High ACE males Low ACE males  − 0.17 (− 0.26, − 0.08)  − 3.75  < .001
Ultrasound 1 High ACE males High ACE females  − 0.06 (− 0.16, 0.03)  − 1.29 .196

Ultrasound 2 High ACE females Low ACE females 0.06 (− 0.04, 0.15) 1.12 .262

Ultrasound 2 Low ACE males Low ACE females 0.09 (0.00, 0.19) 1.92 .055

Ultrasound 2 High ACE males Low ACE females 0.02 (− 0.07, 0.11) 0.44 .662

Ultrasound 2 High ACE females Low ACE males  − 0.04 (− 0.14, 0.07)  − 0.73 .467

Ultrasound 2 High ACE males Low ACE males  − 0.08 (− 0.17, 0.02)  − 1.58 .114

Ultrasound 2 High ACE males High ACE females  − 0.04 (− 0.13, 0.06)  − 0.78 .437
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95% CI [− 0.06, 0.11]; z = 0.57; p = 0.570) or high ACE 
females (b = − 0.06; 95% CI [− 0.16, 0.03]; z = − 1.29; 
p = 0.196) in waFAV. At ultrasound 2, two marginal find-
ings emerged: compared to low ACE males (M = 0.605; 
SD = 0.190), high ACE males (M = 0.560; SD = 0.174; 
b = − 0.08; 95% CI [− 0.17, 0.02]; z = − 1.58; p = 0.114) 
and low ACE females (M = 0.530; SD = 0.130; b = − 0.09; 
95% CI [− 0.19, 0.00]; z = − 1.92; p = 0.055) had margin-
ally smaller waFAV. Sex differences in ACE effects do not 
appear to be due to confounding as males and females 
with the low and high ACE groups did not differ on any 
of the maternal and offspring variables tested in supple-
mental Tables  4S (low ACE group) and 5S (high ACE 
group).

Discussion
In a study examining the association between maternal 
childhood adversity and FAV (as a proxy for fetal HPA 
axis development), we found that, in mid-gestation, 
maternal ACEs were associated with significant differ-
ences in waFAV in males. On average, males of mothers 
with a high ACE history had smaller waFAV than males of 
mothers with a low ACE history. Not surprisingly, males 
of mothers with a low ACE history had larger waFAV than 
both groups of females, in line with previous findings that 
male fetuses have larger fetal adrenal glands than female 
fetuses [30, 57]. In contrast, males of mothers with a high 
ACE history had waFAV that was indistinguishable from 
both female groups. We speculate that high maternal 
ACEs may have dysmasculinized fetal adrenal develop-
ment in males. This is in line with preclinical studies in 
mice and rats showing that prenatal stress or gestational 
exposure to corticosteroids produce male offspring dys-
masculinized across a range of outcomes, such as stress 
responsivity [58, 59], gene expression in the brain [60], 
anogenital distance [20], sexual motivation and behavior 
[61–64], spatial memory [65], as well as play, exploratory, 
and risk-taking behaviors [65, 66]. The underlying mech-
anism for these effects may be stress hormone disruption 
of testosterone production during important early devel-
opmental stages of sex differentiation [67].

Although maternal ACE group effects on waFAV were 
not significant in females, there was a trend towards the 
opposite pattern from what was observed in males. At 
both the first and the second ultrasounds, females of high 
ACE mothers exhibited larger waFAVs than females of low 
ACE mothers. However, high standard deviations pro-
hibited these mean differences from reaching statistical 
significance (see Additional file 1: Tables S1, S2 for means 
and standard deviations).

Because no prior studies have examined the relation-
ship between preconception stress (before pregnancy) 
and adrenal gland development, we rely on studies 

assessing prenatal stress (during pregnancy) to specu-
late on the underlying mechanisms driving these effects, 
with the caveat that prenatal stress may impact the off-
spring differently than preconception stress. One pos-
sible mechanism is that males may be more susceptible 
to maternal ACE effects. Mothers carrying male fetuses 
already exhibit higher cortisol [68], at least during mid-
gestation [69]. Furthermore, prenatal stress decreases 
expression of placental 11β-HSD-2 in preclinical and 
clinical studies [20, 70, 71], particularly when stress is 
chronic rather than acute [72], and some preliminary evi-
dence in humans suggests that this effect may differ by 
sex [73]. Thus, maternal adversity may affect placental 
barriers, which may in turn impact the extent to which 
male fetuses may be exposed to glucocorticoids.

A second possible mechanism that could underlie our 
effects is the placental enzyme O-linked N-acetylglu-
cosamine transferase (OGT), an X-linked gene expressed 
at lower levels in male placentas in mice and humans 
whose expression is further reduced by maternal prenatal 
stress in mice [74]. Lower OGT has been associated with 
reduced testosterone in male placental tissue [75], pos-
tulating a putative mechanism by which prenatal stress 
could result in a dysmasculinized phenotype. Although 
no studies have examined the impact of early life stress 
on OGT or OGT’s potential effects on FAV, it is possi-
ble that maternal early life stress affects OGT expression 
similarly to prenatal stress and could underlie our obser-
vation that high maternal ACE scores are associated 
with a dysmasculinized phenotype in FAV. However, this 
hypothesis will remain speculative until further research 
is conducted. Overall, fetal characteristics, such as sex, in 
addition to maternal factors, such as maternal ACE his-
tory, may influence maternal placental function in ways 
that affect fetal glucocorticoid and androgen exposure 
that could impact the fetal HPA axis development.

Currently, there is little data to guide the timing of 
when to study preconception stress effects on human 
fetal development. However, our study showed that 
findings at the second ultrasound were less robust than 
at the first ultrasound—although the pattern of results 
was the same and trended towards significance. The 
signal may be stronger and/or easier to detect earlier in 
development. One possible explanation for our signifi-
cant effects at the first but not the second ultrasound 
is that fetal organs may become more difficult to accu-
rately visualize using 3-D ultrasound later in gestation 
as the fetal bones become more ossified. This is because 
ossified fetal bones create more acoustic shadowing, 
potentially limiting the borders of fetal organs. Another 
possible explanation is that maternal cortisol exposure 
may differ across gestation depending on offspring sex. 
One study found that maternal cortisol was higher in 
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mid-gestation with male fetuses and higher in late ges-
tation with female fetuses [69]. This crossover effect, if 
it occurred in our sample, could have diminished the 
magnitude of our effects later in gestation.

Limitations
Although our study had unique strengths in terms of 
measuring a novel biomarker of the fetal stress system, 
in retrospect, additional measures could have been 
useful to collect (e.g., hair cortisol in the mother dur-
ing pregnancy, hair cortisol in the offspring at birth, 
placenta levels of 11β-HSD-2 and OGT). Although we 
recently published data from this cohort showing that 
women’s acoustic startle response did not differ by ACE 
during pregnancy but did in the postpartum [76], we 
did not measure any maternal factors that allowed us 
to understand the physiological impact of ACEs on the 
mother during pregnancy. Thus, a next important step 
in this research is to study the mechanisms by which 
maternal ACEs become biologically embedded to influ-
ence offspring development.

Given our focus on pregnant women and their off-
spring, ACEs could not be measured prospectively, nor 
did we rely on external records to confirm the occur-
rence of ACEs (e.g., court records). Although retrospec-
tive reporting is more susceptible to misclassification, a 
previous study assessing the test–retest reliability of an 
8-item version of the ACE-Q [77] found its reliability to 
be “good” as defined by Fleiss [78] and “moderate to sub-
stantial” as defined by Landis and Koch [79].

Perspectives and significance
Research has long established that parental life experi-
ences impact the offspring, with studies indicating effects 
across the lifespan, from the time of conception to adult-
hood [31, 59, 80–82]. However, all previous human stud-
ies investigating outcomes in the fetus have focused on 
the effects of prenatal stress rather than preconception 
stress. To our knowledge, this study is the only one that 
has examined an association between a biological marker 
of risk in the fetus and maternal childhood adversity 
rather than adversity during pregnancy. Even in ani-
mal models, only one study has tested for a relationship 
between maternal stress and fetal adrenal gland size, but 
that study only examined effects of prenatal stress in 
male fetuses. Our finding of sex-specific effects of mater-
nal ACEs on waFAV emphasize the importance of consid-
ering maternal early life stress as well as offspring sex in 
biomedical research. Our significant findings would have 
been obscured if we had excluded either as a factor in our 
statistical analyses.

Conclusions
In a novel study testing for associations between mater-
nal ACEs and waFAV as a marker of fetal HPA axis 
development, we demonstrate that maternal exposure 
to ACEs impacts the development of the fetal adrenal 
gland in a sex-specific manner. The sex differences that 
we observed are consistent with the limited preclinical 
data investigating this [20]. In males of mothers with 
a high ACE history, waFAV was significantly smaller 
than in males of mothers with a low ACE history but 
indistinguishable from the waFAV of females regardless 
of their mother’s ACE history. Importantly, our sam-
ple consisted of psychiatrically and medically healthy 
women, allowing us to isolate the impact of maternal 
ACEs on waFAV without the confounding impact of 
maternal mental and physical health problems dur-
ing gestation. The observed effects were presumably 
not due to maternal ACE effects on prenatal stress as 
perceived stress did not differ between maternal ACE 
groups at baseline or either of the two ultrasounds. 
Overall, our findings suggest male vulnerability to dys-
masculinization of waFAV in response to maternal pre-
conception stress.
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