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Abstract 

Background:  Habituation to repeated stress refers to a progressive reduction in the stress response following 
multiple exposures to the same, predictable stressor. We previously demonstrated that the posterior division of the 
paraventricular thalamic nucleus (pPVT) nucleus regulates habituation to 5 days of repeated restraint stress in male 
rats. Compared to males, female rats display impaired habituation to 5 days of restraint. To better understand how 
activity of pPVT neurons is differentially impacted in stressed males and females, we examined the electrophysiologi-
cal properties of pPVT neurons under baseline conditions or following restraint.

Methods:  Adult male and female rats were exposed to no stress (handling only), a single period of 30 min restraint or 
5 daily exposures to 30 min restraint. 24 h later, pPVT tissue was prepared for recordings.

Results:  We report here that spontaneous excitatory post-synaptic current (sEPSC) amplitude was increased in males, 
but not females, following restraint. Furthermore, resting membrane potential of pPVT neurons was more depolar-
ized in males. This may be partially due to reduced potassium leakage in restrained males as input resistance was 
increased in male, but not female, rats 24 h following 1 or 5 days of 30-min restraint. Reduced potassium efflux during 
action potential firing also occurred in males following a single restraint as action potential half-width was increased 
following a single restraint. Restraint had limited effects on electrophysiological properties in females, although the 
mRNA for 10 voltage-gated ion channel subunits was altered in the pPVT of female rats.

Conclusions:  The results suggest that restraint-induced changes in pPVT activation promote habituation in males. 
These findings are the first to describe a sexual dimorphism in stress-induced electrophysiological properties and volt-
age-gated ion channel expression in the pPVT. These results may explain, at least in part, why habituation to 5 days of 
restraint is disrupted in female rats.
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Introduction
Habituation to repeated stress refers to a progres-
sive decrease in the stress response following multi-
ple exposures to the same, mild-to-moderately intense 
homotypic stressor [1–3]. Animals that habituate dis-
play reductions in plasma concentrations of adrenocor-
ticotropic hormone (ACTH) and corticosterone as well 
as stress-related behaviors [1–6]. Habituation is phy-
logenetically conserved, occurring in animals ranging 
from rodents [7] to humans [6]. Habituation to stress 
is considered adaptive, because it allows humans and 
animals to filter out irrelevant stimuli and focus selec-
tively on important stimuli [8]. Impaired habituation is 
a hallmark of post-traumatic stress disorder (PTSD) as 
it contributes to the hyperarousal and re-experiencing 
symptom clusters [9–11]. Habituation is also a predic-
tor of PTSD treatment efficacy as habituation to in vivo 
and imaginal exposure of the trauma is associated with 
the success of prolonged exposure therapy [10, 12, 
13]. Effective habituation reduces bioavailable ACTH 
and corticosterone, thus limiting prolonged expo-
sure to stress-related hormones and other responses 
that adversely impact physiological functions. There-
fore, habituation is a fundamental aspect of the stress 
response that plays an important role in stress-related 
disorders. Compared to men, women are approximately 
twice as likely to be diagnosed with stress-related mood 
disorders, such as PTSD, depression, and anxiety in 
Western countries [14–16]. Understanding sex differ-
ences in the mechanisms underlying stress habituation 
may provide insight into the higher prevalence of these 
stress-related disorders in women.

We previously showed that habituation is dependent 
on the paraventricular thalamic nucleus (PVT). Chem-
ogenetic inhibition of the posterior division of the PVT 
(pPVT) or excitatory lesions impair behavioral and 
neuroendocrine habituation in male rats [7, 17]. The 
PVT is an extensive midline thalamic nucleus [18–23] 
that receives afferents from the nucleus tractus solitar-
ius, parabrachial nuclei, locus coeruleus, raphe nuclei, 
prefrontal cortex, amygdala, and the suprachiasmatic 

nuclei [20, 22, 24–28]. Projections differ throughout the 
rostro-caudal axis of the PVT. Anterior (a)PVT projec-
tions are widespread [20, 29–31], whereas pPVT pro-
jections are more limited and primarily target limbic 
structures. Efferent projections from the pPVT include 
the central, basomedial, and basolateral amygdala, 
nucleus accumbens, anterior olfactory nucleus, bed 
nucleus of the stria terminalis (BNST), peri-posterior 
paraventricular nucleus of the hypothalamus (peri-
PVN), but not the PVN, and the infralimbic (IL) and 
prelimbic (PL) divisions of the medial prefrontal cortex 
(mPFC) [20–22, 24, 26, 27, 32]. In addition to habitu-
ation, our previous work has shown that the pPVT 
mediates facilitated hypothalamic pituitary adrenal 
(HPA) responses to repeated stress, mediates anxiety-
related behaviors and that these responses are specifi-
cally mediated by the posterior, but not the anterior, 
division of the PVT.

Male and female rats display fundamental differences 
in regulation of the HPA axis. Compared to males, 
female rats display higher concentrations of corticoster-
one under baseline conditions and in response to stress 
[33]. These differences are driven by estradiol, at least 
in part, as estradiol potentiates adrenocorticotropic 
hormone (ACTH)-mediated increases in plasma cor-
ticosterone concentrations in ovarectomized females 
[34, 35] and HPA responses to stress are higher during 
the proestrus phase of the estrous cycle when estradiol 
concentrations are elevated [36]. Indeed, plasma corti-
costerone concentrations correlate with estradiol pro-
duction throughout the estrous cycle [37]. Conversely, 
androgens inhibit HPA axis activation in gonadecto-
mized males by reducing stress-induced activation of 
the paraventricular nucleus of the hypothalamus (PVN) 
and subsequent increases in corticotropin releasing 
factor in the PVN. Androgen-mediated inhibition of 
the PVN during stress results in reduced plasma ACTH 
concentrations and plasma corticosterone concentra-
tions [38].

We previously reported that female rats dis-
play impaired habituation of plasma ACTH and 
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•	 Male, but not female, pPVT neurons display increases in EPSC amplitude and decay time 24 h following one 
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corticosterone and behavioral habituation compared 
to male rats during a 5-day restraint paradigm [33]. 
To better understand the substrates through which 
habituation may be regulated differently in male com-
pared to female rats, we examined the electrophysi-
ological properties of the pPVT in males and females. 
Sex differences in these properties have not been pre-
viously examined. Here we examined electrophysi-
ological properties of pPVT neurons using whole cell 
patch clamp recordings in male and female rats that 
were either not stressed, restrained once, or restrained 
for 5 consecutive days. We also examined the mRNA 
of ion channels in the pPVT that are relevant to some 
of these electrophysiological properties. Broadly, the 
results suggest differences in pPVT cells under both 
baseline and stressed conditions and in ion channel 
expression that may help to explain why males habitu-
ate to 5 days of restraint, whereas female rats do not. 
Understanding sex differences in habituation, a fun-
damental aspect of the stress response, may provide 
insight into the higher rates of stress-related mood 
disorders in women compared to men.

Methods
Animals
Male and female Sprague–Dawley rats at postnatal 
days 38–45 were ordered from Charles River Laborato-
ries (Wilmington, MA) and allowed to acclimate for 4 
days. All rats within each experiment were purchased 
at the same time and singly housed immediately fol-
lowing delivery. An animal facility employee randomly 
positioned each rat on a cage rack. A lab member 
that was not otherwise involved in these experiments 
randomly assigned a number to each rat, so that they 
could be separated into one of three groups: non-
restrained control, 1-day restraint, or 5-day restraint. 
Rats in all groups were singly housed throughout the 
duration of the 5-day restraint paradigm in polycar-
bonate cages with standard bedding and with food 
and water available ad  libitum. Animals were accli-
mated to a 12-h light–dark cycle with lights on at 06:15 
and lights off at 18:15 in a temperature-controlled 
vivarium for at least 4 days prior to administration of 
any restraint stress protocols. All experiments took 
place during the inactive phase between 1000 and 
1400  h. Experiments were performed in compliance 
with all relevant ethical regulations for animal test-
ing and research. Experiment protocols followed the 
NIH Guide for the Care and Use of Laboratory Ani-
mals and were approved by the Children’s Hospital of 
Philadelphia Research Institute’s Animal Care and Use 
Committee.

Restraint
Rats were randomly separated into one of three groups: 
control, single-restraint, and 5-day restraint. Controls 
rats were singly housed until recordings. Restrained rats 
were placed in a clear, plexiglass tube for 30  min each 
day. Single restraint rats underwent a single 30-min 
restraint stress. Repeated restraint rats underwent 5 con-
secutive, daily 30-min restraints. Restrained rats were 
singly housed in their home cages as control rats were. 
All rats were sacrificed 24 h following their final restraint. 
All restraints were performed at the same time each day 
(10:00 am EST) to avoid confounding variability in circa-
dian rhythms.

pPVT slice preparation
Twenty-four hours following the final restraint session, 
rats were anesthetized using 5% inhaled Isoflurane (Bax-
ter Healthcare) until they no longer responded to a toe 
pinch. Animals were then rapidly perfused intracardially 
with ice-cold artificial cerebrospinal fluid (aCSF) con-
taining 87 mM NaCl, 75 mM Sucrose, 25 mM NaHCO3, 
25 mm glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 0.5 mM 
CaCl2, 7  mM MgSO4 and ventilated with 95% O2/5% 
CO2. The brain was rapidly removed, the frontal lobe 
and cerebellum sectioned off, and the remaining section 
placed on a Leica VT1000S vibratome (Leica Microsys-
tems). Once placed on the sectioning stage, the brain was 
further sectioned, with the cortex trimmed above and on 
both sides. The optic nerves were sectioned off the ven-
tral side. The remaining block of brain containing para-
ventricular nucleus of the thalamus was sliced at 300 µm, 
with a 27° blade angle. Slices were collected once the base 
of the third ventricle was visible, with a distinct “v” shape. 
Slices were then incubated at 37.5  °C for 1 h, ventilated 
with 95% O2/5% CO2, and then stored at room tempera-
ture while bubbling for the remainder of recordings.

Electrophysiological recordings
Slices containing posterior paraventricular nucleus of the 
thalamus (pPVT) were bathed in heated (36–37 °C) Ring-
er’s aCSF containing 125  mM NaCl, 25  mM NaHCO3, 
25 mM glucose, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM 
CaCl2, 1 mM MgCl2, and ventilated with 95%O2/5%CO2. 
Tissue was visualized using differential interference con-
trast on a Leica Axioskop using the Dage-MTI camera 
system. The pPVT was located by finding the base of the 
third ventricle, and searching the butterfly-shaped region 
directly below (Fig. 1). Glass electrodes were pulled using 
the Sutter P-97 and filled with an ice-cold potassium 
gluconate intracellular solution (120  mM K-gluconate, 
6 mM KCl, 0.3 mM GTP, 0.2 mM EGTA, 10 mM HEPES, 
and 4  mM ATP-Mg) containing 0.2% biocytin to label 
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recorded neurons. Whole-cell patching was performed 
and only neurons with a gigaohm seal were selected for 
recording and analysis. The Clampex 10.0 software suite 
(Molecular Devices) was used to write and record pro-
grams, the Multiclamp 700B Commander was used to 
maintain seals and apply current or voltage. For excitabil-
ity studies, cells were held in current clamp. A step cur-
rent protocol of 15 steps in 50pA increments, from − 300 
to 300 pA, was applied, with each sweep lasting 30 s. Pas-
sive membrane properties (input resistance and resting 
membrane potential) were recorded and analyzed, as well 
as number of action potentials, threshold, peak ampli-
tude, half-width of the action potentials, and amplitude 
of afterhyperpolarization, using Clampfit 10.0 (Axon 
Laboratories). Following the step current protocol, cells 
were switched to voltage clamp and held at − 60 mV, and 
spontaneous excitatory postsynaptic currents (sEPSCs) 
were recorded for 5 min to assess synaptic transmission. 
Frequency and amplitude of sEPSCs were recorded and 
analyzed using Clampfit 10.0 (Axon Laboratories).

Ion channel microarrays
Two cohorts of 24 rats, one male and one female were 
randomly separated into one of three groups: control, 
single-restraint, or repeated restraint, with 8 animals 
in each group. Single restraint rats underwent a single 
30-min restraint. Repeated restraint rats underwent 5 
consecutive days of 30-min restraint stress. Twenty-four 
hours after the final restraint, animals were sacrificed, 
brains were rapidly removed and flash-frozen. Frozen 
brains were fixed to a cryostat stage and the pPVT was 
microdissected. RNA was isolated using the RNeasy Plus 
MicroKit (74034, Qiagen) and carried out per the manu-
facturer’s instructions. Approximately 500  ng of RNA 
was collected per pPVT sample. Reverse transcription of 
isolated pPVT RNA was performed using the RT2 First 
Strand Kit (330404, Qiagen). A Rat Neuronal Ion Channel 
RT2 Profiler PCR array (PARN-036ZA, Qiagen) contain-
ing SYBR Green RT PCR assays for 84 genes of interest, 5 
housekeeping genes (Beta-actin, Ribosomal protein large 
P1, hypoxanthine phosphoribosyltransferase 1, lactate 

Fig. 1  Location of electrophysiological recordings in the pPVT. A Schematic showing approximate locations of electrophysiological recordings in 
the pPVT. B Example of biocytin-labeled pPVT neuron used to confirm recording within the pPVT. C Male and female rats were either non-restrained 
controls, restrained once for 30 min, or restrained 30 min each day for 5 consecutive days. Rats were euthanized 24 h following the end of their final 
restraint and tissue was collected for electrophysiology or quantification of voltage-gated ion channel mRNA



Page 5 of 22Corbett et al. Biology of Sex Differences           (2022) 13:51 	

dehydrogenase A, and glyceraldehyde 3-phosphate dehy-
drogenase) and 3 synthetic control genes (reverse tran-
scription control, positive PCR control and rat genomic 
DNA contamination control) was used to run quantita-
tive PCR on an ABI 7500 PCR system. Samples were 
run according to manufacturer’s instructions and ana-
lyzed as previously described [39]. The comparative Ct 
method was used to assess mRNA expression differences 
for genes of interest. This generated a fold change value 
with the expression of 1-day restraint and 5-day restraint 
groups relative to non-restrained controls. These fold 
change values were then normalized to the mean expres-
sion levels of the five housekeeping genes for each rat, so 
that relative levels of each transcript could be estimated.

Data analysis
All raw electrophysiology data were analyzed using 
Clampfit 10.0. For analysis of electrophysiology data, 
two-way ANOVAs were run to compare male and 
female non-restrained control, 1-day restraint, and 5-day 
restraint rats. Sex, stress, and the interaction of sex and 
stress were used as variables. Post hoc comparisons 
were performed using Tukey’s multiple comparisons test 
unless otherwise noted. For analysis of mRNA expres-
sion, males and females were analyzed separately as they 
were restrained in different cohorts. To identify poten-
tially significant effects of restraint on mRNA expression, 
Student’s t test was used to identify restraint group differ-
ences within each sex at p < 0.05 for each transcript. These 
potentially significant differences were then subjected to 
an ordinary one-way ANOVA with p-corrected post-hoc 
testing. An ordinary one-way ANOVA was used to detect 
differences among non-restrained, 1-day restraint, and 
5-day restraint groups within each sex. Dunnett’s mul-
tiple comparisons test was used to determine whether 
1-day restraint and/or 5-day restraint groups were differ-
ent from non-restrained controls. Alpha was adjusted to 
0.01 to account for multiple comparisons. Any data that 
were not within three standard deviations from the mean 
were discarded.

Results
Effects of sex and restraint on excitatory postsynaptic 
currents in the pPVT
A trend for a restraint effect on EPSC amplitude was 
observed (F(2,106) = 2.8, p = 0.0653), but no sex effect 
was observed. A significant interaction for sex and 
restraint was observed for EPSC amplitude in pPVT 
neurons (F(2,106) = 6.471, p = 0.0022) (Fig.  2A, B). 
Post-hoc analysis revealed that this effect was primar-
ily driven by the non-restrained male group. Compared 
to non-restrained males, an increase in EPSC amplitude 
was observed in males restrained for 1 (p = 0.008) or 5 

(p = 0.0101) days. Non-restrained females also displayed 
greater EPSC amplitudes compared to non-restrained 
males (p = 0.0118). Restraint stress had no effect on 
EPSC amplitude in the pPVT in female rats. Though 
both acutely and repeatedly restrained females exhib-
ited higher EPSC amplitudes than the control males, 
these were not significant. Together, these findings 
demonstrate that EPSC amplitude is higher in females 
than males under non-stress conditions, both acute and 
repeated restraint significantly increase EPSC amplitude 
in males, so that they are similar to the EPSC amplitudes 
of females, but neither acute nor repeated restraint stress 
impacts EPSC amplitude of pPVT neurons in female rats.

A main effect of restraint effect was observed for EPSC 
decay time (F(2,106) = 3.359, p = 0.0385). An overall sex 
effect was also observed (F(1,106) = 33.1, p < 0.0001) 
with females displaying longer EPSC decay times in 
pPVT neurons compared to males. A significant interac-
tion effect for sex and restraint was observed for EPSC 
decay time in pPVT neurons of male and female rats 
(F(2,106) = 35.01, p < 0.0001) (Fig. 2C). Post-hoc analysis 
revealed that in males, 1 and 5 days of restraint increased 
EPSC decay time compared to non-restrained con-
trols (p < 0.0001 for both comparisons). Non-restrained 
females displayed longer EPSC decay times compared 
to non-restrained males (p < 0.0001). Compared to 
non-restrained female controls, 1 (p = 0.0008) and 5 
(p = 0.0275) days of restraint reduced EPSC decay time 
in female rats. No effects of stress, restraint, or their 
interaction were observed for EPSC frequency (Fig. 2D). 
Together, our findings indicate that pPVT neuron EPSC 
decay times are longer in non-restrained females com-
pared to non-restrained males. Furthermore, pPVT neu-
ron EPSC decay time is increased by restraint in males, 
but decreased by restraint in females. Thus, in male and 
female rats, pPVT neuron EPSC decay times are differ-
ent at baseline and oppositely affected by restraint stress. 
Together, these findings demonstrate that EPSC ampli-
tude in pPVT neurons is higher in females compared to 
males at baseline. One or 5  days of restraint increased 
EPSC amplitude in male rats, but not in female rats. In 
addition, restraint increased pPVT neuron EPSC decay 
times in males, but restraint decreased EPSC decay times 
in females.

Effects of sex and restraint on passive membrane 
properties of pPVT neurons
We observed a significant main effect of sex for pPVT 
neuron resting membrane potential but no other effects. 
pPVT neurons were hyperpolarized in females com-
pared to males (F(2,127) = 8.166, p = 0.005) (Fig. 3B). For 
input resistance, a significant sex effect was observed 
as males displayed higher input resistance of pPVT 
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neurons across all restraint groups compared to females 
(F(1,26) = 8.74, p = 0.0037). A restraint effect was also 
observed (F(2,126) = 8.171, p = 0.0005). A significant 
interaction effect for sex and restraint was observed 
(F(2,126) = 3.324, p = 0.0392) (Fig.  3C). Male rats that 

were restrained for 1 (p = 0.0002) or 5 (p = 0.0472) day 
displayed increased input resistance of pPVT neurons 
compared to non-restrained males. No significant post-
hoc differences in input resistance among restraint 
groups were observed within the female group. Together, 

Fig. 2  Males and females display differences in sEPSCs in the pPVT at baseline and following restraint. A Representative traces of sEPSCs in male 
and female pPVT neurons 24 h following no restraint, 1 day of restraint, or 5 days of restraint. B Amplitude of sEPSCs in the pPVT was reduced 
in non-restrained males compared non-restrained females. Restraint increased sEPSC amplitude in males, but not females. C sEPSC decay time 
was different between males and females as sex and interaction effects were observed. Post-hoc analysis revealed that sEPSC decay time in 
non-restrained males was significantly lower than all other groups. D No effects of sex or stress were observed on sEPSC frequency. Bars indicate 
mean ± SEM. For B, horizontal lines indicate groups significantly different from non-restrained males following post-hoc analysis. For C, horizontal 
lines indicate sex effect, asterisks indicate differences from other restraint groups within each sex. *p < 0.05, **p < 0.01, ***p < 0.0001. For B–D, male 
no restraint n = 21, male 1-day restraint n = 17, male 5-day restraint n = 16, female no restraint n = 24, female 1-day restraint n = 17, female 5-day 
restraint n = 17
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these findings demonstrate that pPVT neuron resting 
membrane potential is hyperpolarized in female rats. In 
addition, 1 or 5  days of restraint increased input resist-
ance in male, but not female, rats.

Effects of sex and restraint on active membrane properties 
of pPVT neurons
We characterized the firing patterns of pPVT neurons as 
sustained, bursting, single, or reluctant (Fig. 4A) in male 
and female rats that were either non-restrained controls, 
restrained for 1 day, or restrained for 5 consecutive days. 
An overall difference in firing pattern among all six groups 
was detected (Fig.  4B–G, χ2(15) = 26.57, p = 0.033). 
Within each restraint group, males displayed a higher 
percentage of pPVT neurons that were either single 
spiking (non-restrained: male = 31.6%, female = 20.8%; 
1-day restraint: male = 37.5%, female = 11.8%; 5-day 
restraint: male = 28.6%, female = 11.76%) or burst-
ing (non-restraint: male = 39.5%, female = 16.7%; 
1-day restraint: male = 43.75%, female = 29.4%; 5-day 
restraint: male = 42.9%, female = 11.76%) compared to 
females (Fig.  4). Compared to male rats, females dis-
played a higher percentage of pPVT neurons that dis-
played sustained firing within each restraint group 
(non-restrained: males = 18.4%, females = 54.2%; 1-day 
restraint: males = 18.75%, females = 47%; 5-day restraint: 
males = 23.8%, females = 70.6%). Only a small percent-
age of pPVT neurons in each group were reluctant to 
fire (0–11.8%). Percentages of pPVT neuron subtype 
were generally unaffected by restraint in male rats. In 
females, the percentage of sustained firing PVT neu-
rons was higher in 5-day restrained rats compared to 

non-restrained controls and rats restrained for 1  day 
(70.6% compared to 54.2% and 47%, respectively). 
Restraint reduced the percentage of single spiking pPVT 
neurons in females as non-restrained, 1-day restraint, 
and 5-day restraint females exhibited 20.8%, 11.8%, and 
11.76% of pPVT neurons classified as single spiking, 
respectively. Females restrained for 1  day displayed a 
higher percentage of bursting pPVT neurons compared 
to non-restrained controls and females restrained for 
5  days (29.4% compared to 16.7% and 11.76%, respec-
tively). Together, these findings suggest that males display 
higher percentages of single spike and bursting pPVT 
neurons compared to females, whereas females display 
higher percentages of sustained firing pPVT neurons. 
In addition, restraint has little effect on firing pattern 
changes in the pPVT neurons of males, whereas restraint 
alters the firing patterns of PVT neurons in females.

Main effects for restraint (F(2,116) = 3.076, 
p = 0.0499) and sex (F(1,116) = 6.074, p = 0.0152) and 
a significant sex × restraint interaction were observed 
(F(2,116) = 3.176, p = 0.0454) were observed for action 
potential firing threshold (Fig. 5A, B) in male or female 
rats that were either non-restrained controls, restrained 
for 1 day, or restrained for 5 days (Fig. 5B). Post-hoc anal-
ysis revealed the only significant difference within sex or 
restraint groups was that action potential firing threshold 
was more depolarized in male rats restrained for 1  day 
compared to non-restrained male controls (p = 0.0350). 
In general, females displayed a more hyperpolarized 
action potential firing threshold, although no post-hoc 
sex differences were observed within any restraint group. 
For action potential half width, main effects for restraint 

Fig. 3  Males and females display differences in passive membrane properties in the pPVT at baseline and following restraint. A Schematic of resting 
membrane potential, a change in resting membrane potential during a hyperpolarizing current used to calculate input resistance, and membrane 
potential during action potential firing. B Females display a more hyperpolarized resting membrane potential compared to males regardless of 
restraint. C input resistance is increased by 1 or 5 restraints in males, but not females, causing a sex effect with males displaying greater input 
resistance. Bars indicate mean ± SEM. Horizontal bars over each sex represent sex differences. For C, horizontal bars within the male group represent 
post-hoc differences. *p < 0.05, **p < 0.01, ***p < 0.001. For B and C, male no restraint n = 38, male 1-day restraint n = 16, male 5-day restraint n = 21, 
female no restraint n = 24, female 1-day restraint n = 17, female 5-day restraint n = 17



Page 8 of 22Corbett et al. Biology of Sex Differences           (2022) 13:51 

(F(2,117) = 5.529, p = 0.0051) and sex (F(1,117) = 30.11, 
p < 0.0001) and a significant interaction were observed 
(F(2,117) = 11.26, p < 0.0001) (Fig. 5C). Post-hoc analysis 
revealed that action potential half-width duration was 
longer in male rats restrained for 1 day compared to all 
other male and female restraint groups (p < 0.0001 for 

all comparisons). For afterhyperpolarization potentials, 
a significant sex effect was observed (F(1,117) = 35.93, 
p < 0.0001) with females displaying greater afterhyper-
polarization potentials compared to males (Fig. 5D). No 
restraint or interaction effects were observed for afterhy-
perpolarization potential. No effects of sex, restraint, or 

Fig. 4  Effects of restraint stress and sex on pPVT neuron firing patterns. A Traces of action potential firing patterns in PVT neurons that are 
characterized as sustained, burst, single, or reluctant firing. The percentage of PVT neurons characterized as sustained, burst, single, or reluctant 
firing in B non-restrained males, C 1-day restraint males, D 5-day restraint males, E non-restrained females, F 1-day restraint females, and G 5-day 
restraint females. Male no restraint n = 38, male 1-day restraint n = 16, male 5-day restraint n = 21, female no restraint n = 24, female 1-day restraint 
n = 17, female 5-day restraint n = 17
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their interaction were observed for peak action potential 
amplitude (Fig. 5E). Together, these findings indicate that 
a single restraint in male, but not female, rats increases 
the membrane depolarization required for action poten-
tial firing and action potential half-width but this effect 
in males is not apparent after 5  days of restraint. Fur-
thermore, afterhyperpolarization potential is increased 
in females compared to their respective male groups 
regardless of restraint. Therefore, pPVT neurons of males 
and females display different active membrane properties 
at baseline and in response to restraint.

Effects of a single or repeated restraint on voltage‑gated 
ion channel expression in the pPVT of males and females
We quantified the mRNA transcripts of voltage-
gated ion channels in the pPVT of male (Table  1)  and 
female  (Table  2) rats that were either not restrained, 
or in animals at 24  h after a single restraint or after 5 
daily restraints. In male rats, mRNA of the voltage-
gated potassium channel Kcnj6, which encodes the 

G-protein rectifier potassium channel 2, was decreased 
24  h following 5 restraints compared to non-restrained 
males (Fig.  6A, F(2,20) = 6.322, p = 0.0079; post-hoc 
p = 0.0054). Expression of Kcnh3, which encodes the 
voltage-gated potassium channel subunit Kv12.2, was 
increased in male rats 24 h following a 5th restraint com-
pared to non-restrained males (Fig.  6B, F(2,20) = 5.055, 
p = 0.0167; post-hoc p = 0.0093). Expression of Kcnk1, 
which encodes a 2-pore domain subfamily K potassium 
channel, was decreased 24 h following a single restraint, 
but not 5 restraints, compared to non-restrained males 
(Fig. 6C, F(2,20) = 5.294, p = 0.0149; post-hoc p = 0.0092).

Compared to non-restrained controls, female rats 
that were restrained for 5  days displayed increased 
mRNA of Kcnb2, which encodes the second mem-
ber of the voltage-gated potassium channel subu-
nit subfamily B (Fig.  6D, F(2,20) = 6.666, p = 0.0057; 
post-hoc p = 0.0029). Expression of Kcnk1 mRNA 
was increased 24  h following a 5th restraint compared 
to non-restrained females (Fig.  6E, F(2,20) = 5.435, 

Fig. 5  Males and females display differences in active membrane properties in the pPVT at baseline and following a single restraint A Schematic 
showing the aspects of the action potential related to firing threshold, half-width, and afterhyperpolarization potential (AHP). B Action potential 
firing threshold is depolarized 24 h following a single restraint in male pPVT neurons and more hyperpolarized in females compared to males. 
C Action potential half-width is increased in male pPVT neurons 24 h following 1, but not 5, restraints. D AHP is increased in female pPVT 
neurons compared to males regardless of restraint. E Peak action potential amplitude is not affected by sex or restraint in the pPVT. Bars indicate 
mean ± SEM. Horizontal bars over each sex represent sex differences. For B, horizontal bar within the male group represents post-hoc difference. 
For C, asterisks above the 1-day restraint male group represent post-hoc differences from all other groups. *p < 0.05, **p < 0.0001. Male no restraint 
n = 34, male 1-day restraint n = 16, male 5-day restraint n = 20, female no restraint n = 22, female 1-day restraint n = 15, female 5-day restraint n = 16
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Table 1  Voltage-gated ion channel mRNA expression in male rats following restraint

Males Mean SEM p value

Gene NR 1D 5D NR 1D 5D NR vs. 1D NR vs. 5D 1D vs. 5D

Accn1 0.0676 0.0658 0.0716 0.0039 0.0035 0.0045 0.7373 0.5103 0.3196

Accn2 0.0781 0.0786 0.0798 0.0029 0.0050 0.0046 0.9282 0.7687 0.8703

Accn3 0.0014 0.0014 0.0013 0.0002 0.0001 0.0001 0.8903 0.6661 0.4797

Best1 0.0038 0.0038 0.0038 0.0002 0.0002 0.0003 0.7875 0.8777 0.9623

Cacna1a 0.0178 0.0156 0.0153 0.0020 0.0021 0.0013 0.4675 0.2942 0.8986

Cacna1b 0.0195 0.0168 0.0163 0.0019 0.0020 0.0011 0.3468 0.1586 0.8366

Cacna1c 0.0523 0.0386 0.0386 0.0050 0.0030 0.0028 0.0311 0.0285 0.9938

Cacna1d 0.0367 0.0347 0.0380 0.0023 0.0027 0.0023 0.5958 0.6913 0.3691

Cacna1g 0.1123 0.0869 0.0797 0.0142 0.0115 0.0085 0.1832 0.0633 0.6223

Cacna1i 0.0671 0.0608 0.0563 0.0056 0.0039 0.0041 0.3697 0.1402 0.4418

Cacnb1 0.0610 0.0476 0.0587 0.0056 0.0061 0.0033 0.1331 0.7243 0.1302

Cacnb2 0.1410 0.1249 0.1196 0.0088 0.0103 0.0070 0.2626 0.0760 0.6807

Cacnb3 1.6532 1.5990 1.7831 0.1878 0.1588 0.1252 0.8278 0.5660 0.3782

Cacng2 0.0822 0.0649 0.0624 0.0081 0.0092 0.0059 0.1891 0.0653 0.8211

Cacng4 0.2373 0.2242 0.2128 0.0143 0.0180 0.0125 0.5876 0.2185 0.6114

Clcn2 0.0554 0.0556 0.0518 0.0030 0.0048 0.0026 0.9761 0.3670 0.4966

Clcn3 0.2162 0.2086 0.2116 0.0125 0.0212 0.0209 0.7723 0.8604 0.9211

Clcn7 0.1178 0.1054 0.1055 0.0040 0.0056 0.0035 0.1044 0.0362 0.9904

Hcn1 0.0159 0.0130 0.0121 0.0014 0.0018 0.0015 0.2377 0.0919 0.6971

Hcn2 0.1661 0.1463 0.1408 0.0115 0.0124 0.0110 0.2692 0.1369 0.7426

Kcna1 0.0180 0.0154 0.0156 0.0012 0.0028 0.0024 0.4306 0.4047 0.9633

Kcna2 0.4879 0.4318 0.4557 0.0358 0.0238 0.0289 0.2041 0.4919 0.5335

Kcna5 0.0179 0.0156 0.0231 0.0018 0.0011 0.0015 0.2701 0.0448 0.0013

Kcna6 0.1564 0.1455 0.1361 0.0093 0.0106 0.0064 0.4573 0.0885 0.4631

Kcnab1 0.0510 0.0465 0.0390 0.0087 0.0110 0.0052 0.7581 0.2422 0.5439

Kcnab2 0.1595 0.1456 0.1324 0.0134 0.0157 0.0091 0.5197 0.1117 0.4795

Kcnab3 0.0270 0.0266 0.0249 0.0021 0.0011 0.0013 0.8638 0.4124 0.3519

Kcnb1 0.1371 0.1303 0.1288 0.0068 0.0051 0.0054 0.4362 0.3586 0.8446

Kcnb2 0.0650 0.0587 0.0584 0.0054 0.0032 0.0039 0.3209 0.3355 0.9611

Kcnc1 0.0774 0.0617 0.0597 0.0096 0.0098 0.0056 0.2756 0.1233 0.8597

Kcnc2 0.1879 0.1375 0.1223 0.0336 0.0285 0.0156 0.2707 0.0877 0.6472

Kcnd2 0.4252 0.4100 0.3910 0.0206 0.0173 0.0120 0.5774 0.1619 0.3822

Kcnd3 0.1127 0.1053 0.1161 0.0071 0.0055 0.0080 0.4157 0.7654 0.2885

Kcnh1 0.0191 0.0199 0.0226 0.0018 0.0018 0.0022 0.7410 0.2390 0.3551

Kcnh2 0.0342 0.0287 0.0320 0.0033 0.0030 0.0036 0.2297 0.6604 0.4897

Kcnh3 0.0003 0.0007 0.0011 0.0001 0.0002 0.0002 0.1108 0.0092 0.1241

Kcnh6 0.0141 0.0147 0.0152 0.0012 0.0017 0.0010 0.7631 0.4673 0.8038

Kcnh7 0.0568 0.0465 0.0475 0.0041 0.0041 0.0044 0.1003 0.1539 0.8661

Kcnj1 0.0005 0.0006 0.0006 0.0000 0.0001 0.0001 0.2627 0.3344 0.8005

Kcnj11 0.0240 0.0208 0.0237 0.0021 0.0013 0.0018 0.1963 0.9101 0.2121

Kcnj12 0.0491 0.0425 0.0559 0.0056 0.0037 0.0069 0.3299 0.4714 0.1106

Kcnj13 0.0403 0.0258 0.0155 0.0171 0.0107 0.0076 0.4751 0.1894 0.4446

Kcnj14 0.0145 0.0167 0.0158 0.0006 0.0014 0.0012 0.1869 0.3671 0.6338

Kcnj15 0.0007 0.0005 0.0015 0.0001 0.0002 0.0008 0.6058 0.3390 0.2512

Kcnj16 0.1199 0.1195 0.1114 0.0104 0.0138 0.0092 0.9822 0.5481 0.6309

Kcnj2 0.0051 0.0054 0.0057 0.0003 0.0003 0.0004 0.3667 0.2099 0.5206

Kcnj3 0.0735 0.0676 0.0603 0.0055 0.0073 0.0044 0.5360 0.0807 0.4098

Kcnj4 0.0032 0.0032 0.0033 0.0006 0.0005 0.0003 0.9778 0.9063 0.9284
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p = 0.01; post-hoc p = 0.0072). Female rats also displayed 
increased expression of the calcium-activated potas-
sium channels Kcnn1 (Fig. 6F, F(2,20) = 8.786, p = 0.0017; 
post-hoc p = 0.0009) and Kcnn2 (Fig. 6G, F(2,20) = 6.448, 
p = 0.0069; post-hoc p = 0.0043) 24  h following a 5th 
restraint compared to non-restrained females. Expres-
sion of a different calcium-activated potassium chan-
nel, Kcnmb4, was reduced 24 h following 1 and 5 days of 
restrained compared to non-restrained females [Fig. 6H, 

F(2,20) = 10.17, p = 0.0008; post-hoc p = 0.0084 (1  day), 
p = 0.0006 (5 days)]. Expression of Kcnd2, which encodes 
the second member of the voltage-gated potassium chan-
nel subfamily D, was decreased 24  h following a 5th 
restraint compared to non-restrained females (Fig.  6I, 
F(2,20) = 7.782, p = 0.003; post-hoc p = 0.001). Compared 
to non-restrained females, mRNA expression of volt-
age-gated sodium channel subunit-encoding transcripts 
Scn2a1 (Fig.  6J, F(2,20) = 6.689, p = 0.0063; post-hoc 

NR: no restraint, n = 7; 1D: 1-day restraint, n = 8; 5D: 5-day restraint, n = 8

Table 1  (continued)

Males Mean SEM p value

Gene NR 1D 5D NR 1D 5D NR vs. 1D NR vs. 5D 1D vs. 5D

Kcnj5 0.0140 0.0161 0.0143 0.0013 0.0021 0.0011 0.4352 0.8695 0.4650

Kcnj6 0.0872 0.0748 0.0713 0.0029 0.0028 0.0038 0.0118 0.0063 0.4895

Kcnj9 0.1456 0.1261 0.1103 0.0172 0.0178 0.0094 0.4481 0.0842 0.4452

Kcnk1 0.3452 0.2637 0.3189 0.0160 0.0152 0.0197 0.0039 0.3280 0.0536

Kcnma1 1.0209 1.0620 1.0787 0.0962 0.1175 0.0893 0.7948 0.6667 0.9114

Kcnmb4 0.1986 0.1801 0.1832 0.0129 0.0153 0.0085 0.3786 0.3243 0.8619

Kcnn1 0.0051 0.0047 0.0044 0.0002 0.0003 0.0003 0.3390 0.1165 0.5635

Kcnn2 0.0795 0.0836 0.0754 0.0055 0.0051 0.0038 0.5887 0.5440 0.2178

Kcnn3 0.1135 0.1048 0.1092 0.0070 0.0044 0.0057 0.3046 0.6354 0.5602

Kcnq1 0.0034 0.0028 0.0013 0.0012 0.0008 0.0005 0.6593 0.1035 0.1499

Kcnq2 0.1926 0.1619 0.1599 0.0139 0.0126 0.0112 0.1245 0.0866 0.9086

Kcnq3 0.0111 0.0082 0.0076 0.0014 0.0017 0.0011 0.2157 0.0677 0.7372

Kcns1 0.0011 0.0011 0.0006 0.0003 0.0002 0.0001 0.9076 0.1635 0.0298

Ryr3 0.0207 0.0209 0.0180 0.0016 0.0017 0.0007 0.9265 0.1315 0.1290

Scn10a 0.0114 0.0118 0.0087 0.0026 0.0025 0.0010 0.9313 0.3197 0.2799

Scn11a 0.0007 0.0007 0.0006 0.0002 0.0001 0.0001 0.7959 0.5907 0.7158

Scn1a 0.1185 0.1128 0.1013 0.0108 0.0129 0.0084 0.7427 0.2252 0.4678

Scn1b 0.4505 0.3967 0.3220 0.0709 0.1124 0.0512 0.7025 0.1586 0.5549

Scn2a1 0.8483 0.7664 0.7392 0.0419 0.0546 0.0381 0.2663 0.0757 0.6889

Scn2b 0.6113 0.5373 0.5553 0.0250 0.0166 0.0273 0.0254 0.1590 0.5825

Scn3a 0.1998 0.2069 0.2228 0.0181 0.0243 0.0137 0.8239 0.3215 0.5762

Scn8a 0.0729 0.0608 0.0736 0.0052 0.0045 0.0092 0.0990 0.9512 0.2299

Scn9a 0.0141 0.0153 0.0163 0.0009 0.0011 0.0018 0.4098 0.3050 0.6360

Slc12a5 0.4274 0.3429 0.3209 0.0347 0.0290 0.0260 0.0820 0.0268 0.5806

Trpa1 0.0006 0.0005 0.0009 0.0001 0.0001 0.0001 0.1739 0.0643 0.0044

Trpc1 0.0412 0.0401 0.0396 0.0015 0.0022 0.0024 0.7048 0.6047 0.8756

Trpc3 0.0409 0.0386 0.0300 0.0051 0.0087 0.0035 0.8261 0.0948 0.3769

Trpc6 0.0058 0.0061 0.0058 0.0001 0.0004 0.0004 0.5527 0.9868 0.6085

Trpm1 0.0002 0.0005 0.0003 0.0001 0.0003 0.0001 0.3178 0.1152 0.5850

Trpm2 0.0173 0.0156 0.0148 0.0008 0.0008 0.0007 0.1469 0.0376 0.4636

Trpm6 0.0017 0.0020 0.0019 0.0003 0.0005 0.0003 0.5994 0.6439 0.8532

Trpm8 0.0018 0.0018 0.0016 0.0002 0.0002 0.0002 0.9714 0.5881 0.6049

Trpv1 0.0031 0.0033 0.0029 0.0002 0.0003 0.0002 0.7456 0.3985 0.3266

Trpv2 0.0426 0.0336 0.0345 0.0027 0.0028 0.0015 0.0382 0.0183 0.7590

Trpv3 0.0039 0.0045 0.0049 0.0004 0.0005 0.0005 0.3170 0.1465 0.6086

Trpv4 0.0031 0.0025 0.0011 0.0012 0.0010 0.0006 0.6999 0.1659 0.2792
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p = 0.0032), Scn2b (Fig.  6K, F(2,20) = 7.187, p = 0.0042; 
post-hoc p = 0.0021), and Scn8a (Fig. 6L, F(2,20) = 8.776, 
p = 0.0018; post-hoc p = 0.0009) were increased in 
female rats 24 h following a 5th restraint. Expression of 
Slc12a5, which encodes a potassium–chloride co-trans-
porter, was increased in females 24 h following 5 days of 
restraint compared to non-restrained controls (Fig.  6M, 
F(2,20) = 5.951, p = 0.01; post-hoc p = 0.0056). These 
findings demonstrate that restraint alters the expres-
sion of mRNA transcripts that encode voltage-gated 
ion channels and related proteins in the pPVT. Further-
more, repeated restraint alters the expression of different 
voltage-gated ion channels in males and females. Of the 
channels in which significant differences were observed, 
the expression of most were similarly impacted by either 
1 or 5 days of restraint. Kcnk1 was the only channel that 
displayed altered expression following 1, but not 5, days 
of restraint.

Discussion
Here we demonstrate that pPVT neurons in males and 
females display different synaptic, passive membrane, 
and active membrane properties in response to restraint 
stress. Identification of these differences in PVT neuron 
function represents important progress in our under-
standing of sex differences in the stress response as the 
pPVT is necessary for habituation to repeated restraint 
stress [7, 33]. In general, our findings demonstrate that 
electrophysiological properties of pPVT neurons are 
altered by restraint in males, but females only display 
moderate changes in response to restraint. Changes in 
the mRNA of specific voltage-gated ion channel tran-
scripts within the pPVT are consistent with electrophysi-
ological properties of pPVT neurons that are altered by 
restraint and/or different between males and females. 
Together, these results are the first to identify sex differ-
ences in pPVT neuron function in the context of stress.

Males and females display differences in sEPSCs 
in the pPVT at baseline and following restraint
We examined the effects of restraint on electrophysiolog-
ical properties of pPVT neurons in males and females. 
Electrophysiological properties were assessed 24  h fol-
lowing 1 or 5  days of restraint rather than immediately 
following restraint as we were primarily interested in 
investigating stable changes induced by stress. Exami-
nation of pPVT neurons proximal to restraint is likely 
to identify properties of these cells that are impacted by 
the immediate stress or rapid recovery from the stress. 
While the short-term impact of stress is important to 
study, we chose to examine those properties of pPVT 
cells that are likely to influence the response to stress the 
next day as habituation is influenced by prior experience 

and predictability of stress experiences [1]. We found 
that sEPSC amplitude was lower in non-restrained males 
compared to non-restrained females. Restraint, either 1 
or 5 days, increased sEPSC amplitude in males to be sim-
ilar to that of non-restrained females and had no effect 
on sEPSC amplitude in females. Increased EPSC ampli-
tude can be primarily attributed to increased post-syn-
aptic glutamate receptors. However, other factors may 
also contribute to increases in EPSC amplitude including 
increases in other neurotransmitter receptors with high 
cation conductance or increased pre-synaptic release of 
glutamate. Although we cannot rule out these possibili-
ties, the observed decay times suggest that sEPSCs in the 
pPVT are consistent with those of AMPA receptors [40]. 
Therefore, we hypothesize that restraint increases AMPA 
receptor expression or trafficking to the synapse in male, 
but not female, pPVT neurons.

The sEPSC decay times of 4–10  ms that we observed 
in pPVT neurons were consistent with those of AMPA 
receptors [40], whereas those of NMDA, kainate, and 
metabotropic receptors are significantly longer and in the 
100  ms range [41–46]. We observed that sEPSC decay 
time is increased in non-restrained females compared 
to non-restrained males. sEPSC decay time is increased 
by 1 and 5 days of restraint in males, but decreased by 1 
and 5 days of restraint in females. Increased EPSC decay 
time increases excitatory post-synaptic potential ampli-
tude and increases the probability of action potential 
firing [47]. Therefore, compared to baseline conditions, 
restraint is predicted to increase action potential firing 
in pPVT neurons of males, but reduce action potential 
firing in pPVT neurons of females. Longer sEPSC decay 
times may be attributed to asynchronous glutamate 
release in pre-synaptic axon terminals, increased glu-
tamate release, or slower glutamate reuptake and clear-
ance from the synaptic cleft [48, 49]. Thus, glutamate 
transporter expression or function may be decreased by 
restraint in males, but increased by restraint in females. 
There were no effects of sex or restraint on sEPSC fre-
quency. Together, these findings demonstrate that 
both sEPSC amplitude and decay time are increased by 
restraint in males, but not females. Both of these electro-
physiological properties correlate with increased action 
potential firing probability [47]. This is consistent with 
our recent finding that expression of the neuronal activity 
markers c-Fos and activity-regulated cytoskeleton-asso-
ciated protein (Arc) is increased in the pPVT of male rats 
following 1 or 5  days of restraint [17]. Thus, increased 
sEPSC amplitude and decay time represent two impor-
tant electrophysiological properties that are consistent 
with increases in pPVT action potential firing caused by 
restraint in males. Because pPVT activity is necessary for 



Page 13 of 22Corbett et al. Biology of Sex Differences           (2022) 13:51 	

habituation [7, 17], these electrophysiological properties 
may contribute to habituation in male rats.

Increased EPSC amplitude and decay time might be 
indicative of glutamate-mediated reformatting of pPVT 
neurons. We recently demonstrated that in the pPVT, 
Arc, which is increased by glutamatergic input [50–53], 
is necessary for habituation in male rats. We showed that 
Arc promotes habituation by increasing spine density 
[17]. Arc also regulates long-term depression [51] and 
synaptic scaling [54], a form of homeostatic plasticity 
that prevents increases in overall action potential firing 
rates. Therefore, Arc reformats neurons by increasing the 
strength of some synapses but weakening other synapses. 
We hypothesize that this reformatting of pPVT neurons 
is critical for habituation. Because sEPSC amplitude and 
decay time are similar in males and females following 5 
restraints, these properties in isolation are probably not 
critical mechanisms underlying habituation. However, 
increases in sEPSC amplitude and decay time compared 
to non-restrained controls, which only occurs in males, 
may promote habituation as it may be an important fac-
tor underlying the reformatting of pPVT neurons. In 
female rats, sEPSC amplitude is unchanged by restraint 
and sEPSC decay time is reduced by restraint. These 
findings are predicted to have no effect on pPVT firing 
or reduce pPVT firing, respectively, and may at least par-
tially explain why habituation is impaired in female rats.

Males and females display differences in passive 
membrane properties in the pPVT at baseline 
and following restraint
Resting membrane potential was more hyperpolarized 
in female pPVT neurons compared to males. Although 
the difference in mean resting membrane potential was 
modest, even subtle changes in this basic electrophysi-
ological property could affect action potential firing. 
Resting membrane potential is regulated by differences 
in extracellular and intracellular ion concentrations and 
the permeability of those ions [55, 56]. Therefore, more 
hyperpolarized pPVT neurons in females may be due to 
changes in ion transporters or ion leak channels. Rest-
ing membrane potential in pPVT neurons is complex 
and regulated by a wide variety of conductances includ-
ing those mediated by inward rectifying potassium chan-
nels and TWIK-related acid sensitive potassium channels 
[57]. Thus, increases in the expression and/or membrane 
trafficking of these ion channels and others may under-
lie the more hyperpolarized resting membrane potential 
observed in the pPVT neurons of females compared to 
males. Input resistance was increased by 1 and 5  days 
of restraint in pPVT neurons of male, but not female, 
rats. Increased input resistance is primarily attributed to 
reduced potassium leakage in response to depolarizing 

current. Restraint may reduce the expression, function, 
and/or membrane trafficking of potassium leak chan-
nels in pPVT neurons of male, but not female, rats. 
Reduced potassium leakage in response to membrane 
depolarization is predicted to facilitate EPSC integra-
tion and thus increase the likelihood of action potential 
firing. Together, these findings suggest that compared to 
females, the passive membrane properties of pPVT neu-
rons of male rats make them more likely to fire action 
potentials in response to excitatory inputs. Therefore, in 
addition to restraint-induced increases in sEPSC ampli-
tude and decay time, a more depolarized resting mem-
brane potential and restraint-induced increases in input 
resistance may further contribute to the observation that 
pPVT activity is increased by restraint in male rats [17]. 
Resting membrane potential is more hyperpolarized in 
females compared to males and restraint has no effect on 
input resistance in females. These findings are predicted 
to render pPVT activity less responsive to restraint and 
may contribute to habituation impairments in females.

Males and females display differences in active membrane 
properties in the pPVT at baseline and following restraint
Males displayed higher percentages of single spike 
and burst-firing pPVT neurons than females, whereas 
females displayed a higher percentage of sustained-firing 
neurons. These findings were consistent regardless of 
restraint group. Sustained-firing neurons have a short 
refractory period, allowing them to fire continuously 
in response to prolonged experimental depolarization. 
Because sustained-firing neurons fire action potentials 
with a higher frequency in response to continuous depo-
larization, a higher percentage of sustained firing pPVT 
neurons in females might suggest increased pPVT output 
in females compared to males. However, this would only 
be true if the pPVT is continuously depolarized in vivo. 
Excitatory inputs that depolarize pPVT neurons past 
the action potential threshold may occur less frequently 
in  vivo than the refractory period required for action 
potential firing in burst-firing pPVT neurons. If this was 
the case, action potential frequency in pPVT neurons 
might be similar in males and females, because the limit-
ing factor in firing an action potential would be frequency 
and amplitude of EPSCs. The in vivo refractory period of 
burst-firing pPVT neurons and in  vivo EPSC frequency 
are unknown to the best of our knowledge. Therefore, we 
cannot accurately predict the effect of neuron firing type 
percentages on overall pPVT action potential firing fre-
quency in vivo.

Within each sex, restraint had little effect on the 
percentage of pPVT neurons displaying properties of 
each firing type. Compared to the other female groups, 
the 5-day restraint females exhibited an increased 
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percentage of sustained-firing neurons and a decrease 
in bursting neurons. However, we should note that chi-
square analysis was only significant when all groups 
were included in the analysis. We did not observe dif-
ferences between any two groups within or between 
sexes. Firing patterns of pPVT neurons change from 
day to night phases. pPVT neurons during the light 
phase are more hyperpolarized and primarily single-
spiking, but during the dark phase they are more depo-
larized and tend to be bursting or sustained-firing. 
These changes during the dark phase are regulated 
by reduced potassium currents and increased T-type 
calcium channel currents [57, 58]. We should note 
that these recordings were taken from anterior PVT 
neurons, whereas our recordings were taken from 
posterior PVT neurons and our recordings were con-
ducted during the animal’s light phase. This is nota-
ble, because anterior and posterior subdivisions of the 
pPVT have different functions and anatomical con-
nectivity [20, 29–31]. Furthermore, the effects of sex 
on circadian influence of pPVT neuron firing types is 
unknown to the best of our knowledge.

Following 1, but not 5, days of restraint, the thresh-
old for firing an action potential in pPVT neurons of 
males was modestly depolarized compared to non-
restrained controls. We also observed an overall sex 
effect indicating that action potential firing threshold 
was more depolarized in male pPVT neurons com-
pared to females. These findings suggest that pPVT 
neurons of 1-day restraint males may require more 
excitatory input to fire an action potential compared 
to females. However, the resting membrane potential 
of male pPVT neurons is depolarized compared to 
females, so similar excitatory inputs may induce simi-
lar action potential firing in males and females in vivo. 
This is because the relative difference between rest-
ing membrane potential and the membrane potential 
required for firing action potentials (action poten-
tial firing threshold) is similar in males and females 
(~ 24  mV for each sex regardless of restraint group). 
Action potential half-width in pPVT neurons was 
increased in males restrained for 1, but not 5, days 
compared to non-restrained males. This indicates 
that 1 day of restraint increased the duration of action 
potentials in males, which may increase voltage-sen-
sitive calcium transients in axon terminals and pro-
mote neurotransmitter release from pPVT neurons. 
Afterhyperpolarization potentials (AHPs) were greater 
in females compared to males, regardless of restraint 
group. This suggests that voltage-gated potassium 
channels may remain open longer in female pPVT 
neurons and the action potential refractory period may 
be longer compared to that of males. Although female 

pPVT neurons are more likely to display sustained fir-
ing patterns, greater AHPs may reduce action potential 
firing frequency in female pPVT neurons compared 
to male pPVT neurons with the same firing pattern. 
Together, these findings suggest that active membrane 
properties of pPVT neurons are different in males and 
females at baseline and in response to restraint stress.

Restraint stress has different effects on the expression 
of voltage‑gated ion channel mRNA transcripts in the pPVT 
of males and females
Similar to the timeframes of our studies on the elec-
trophysiological properties of male and female pPVT 
neurons, we examined the mRNA of voltage-gated 
ion channel transcripts 24  h following 1 and 5  days of 
restraint compared to non-restrained controls. This 
allowed us to investigate stable changes in gene expres-
sion that temporally correlate with changes in pPVT neu-
ron electrophysiology. All data were presented relative to 
mean housekeeping gene expression of non-restrained 
controls, so that relative levels of each transcript, and, 
therefore, their influence on neuron function, could 
be inferred qualitatively. Male rats displayed reduced 
expression of Kcnj6 transcripts 24 h following a 5th daily 
restraint. Kcnj6 encodes the G-protein activated inward 
rectifier potassium channel 2. Inwardly rectifying potas-
sium currents are important regulators of the resting 
membrane potential of pPVT neurons [57]. Therefore, 
reduced expression of Kcnj6 may contribute to depolari-
zation of resting membrane potential in males following 
5 days of restraint. Although resting membrane potential 
of pPVT neurons is not changed by restraint in males, 
reduced Kcnj6 expression may be an important factor 
that compensates for other factors that would otherwise 
drive hyperpolarization of resting membrane potential 
following restraint. Wild-type Kcnj6 inhibits dopaminer-
gic tone [59–61]. A Kcnj6 variant has been linked to alco-
hol dependence in individuals exposed to psychosocial 
stress early in life [62]. Single nucleotide polymorphisms 
(SNPs) in the Kcnj6 gene are risk factors for develop-
ing attention–deficit/hyperactivity disorder (ADHD) 
[63]. Addiction [64, 65] and ADHD [66] are both heav-
ily influenced by the rewarding and reinforcing effects 
of dopaminergic neurotransmission. The PVT receives 
dopaminergic inputs [67] and is an important regula-
tor of reward [32, 68, 69] and attention [17]. Therefore, 
reduced Kcnj6 expression could contribute to addiction 
and/or attention deficits in stressed animals.

Male rats displayed increased expression of Kcnh3 
24  h following a 5th restraint. Kcnh3 encodes Kv12.2, a 
voltage-gated potassium channel subunit. Kv12.2 dele-
tions reduce action potential firing threshold [70]. Thus, 
increased expression of Kv12.2 following restraint may 
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contribute to the more depolarized action potential fir-
ing threshold observed in the PVT of restrained male 
rats. Kcnh3 knockout mice display improved memory 
and PFC-mediated attention [71]. Because restraint 
[33] and the pPVT [17] regulate PFC-mediated cogni-
tive flexibility and attention, restraint-induced increases 
in Kcnh3 in the pPVT may impair cognitive function. 
Male rats displayed reduced expression of Kcnk1 mRNA, 
which encodes the two-pore domain potassium channel 
TWIK-1. Little is known about the function of TWIK-1 
in the brain [72]. However, reduced Kcnk1 expression in 
1-day restraint males may contribute to increased action 
potential half-width in 1-day restraint males as reduced 
Kcnk1 expression may impair potassium efflux. Together, 
these findings suggest that changes in the mRNA of cer-
tain voltage-gated ion channels in the pPVT of male rats 
may contribute to restraint-induced changes in the elec-
trophysiological properties observed in the pPVT of male 
rats.

Although restraint did not affect active membrane 
properties in female pPVT neurons, mRNA tran-
scripts encoding 10 different voltage-gated ion channels 
were altered by 5  days of restraint in the female pPVT. 
Some of these channels regulate similar functions, but 
restraint has opposite effects on their expression. There-
fore, changes in the expression of these channels may be 
countered by compensatory changes in the expression of 
other transcripts encoding similar functions. For exam-
ple, 24 h following a 5th daily restraint, female rats dis-
played increased mRNA expression of Kcnb2 transcripts, 
but decreased expression of Kcnd2. Kcnb2 and Kcnd2 
encode the voltage-gated potassium channels Kv2.2 and 
Kv4.2, respectively. These channels regulate delayed rec-
tifier currents during the action potential [73]. In addi-
tion, the expression of Kcnn1 and Kcnn2 transcripts, 
which encode the calcium-activated potassium channel 
subfamily N members KCa2.1 and KCa2.2 [74], respec-
tively, were both increased 24 h following a 5th restraint 
in the female pPVT. These channels augment the afte-
rhyperpolarization phase of the action potential and 
thereby have inhibitory effects in the neurons they are 
expressed in [75]. Kcnn2 overexpression in the amyg-
dala reduces anxiety-like behavior, presumably by reduc-
ing amygdala output [76]. Restraint-induced increases in 
Kcnn2 might impair habituation in females by countering 
restraint-induced effects in the pPVT that would other-
wise increase its excitability. The expression of Kcnmb4, 
which encodes the calcium-activated potassium channel 
subfamily M beta subunit 4, was decreased 24 h follow-
ing 1 and 5  days of restraint in female pPVT neurons. 
It is possible that the opposing expression patterns of 
these calcium-activated potassium channels counter one 

another to prevent restraint-induced changes in afterhy-
perpolarization potential.

Compared to non-restrained controls, the expression 
of Scn2a1, Scn2b, and Scn8a were all increased in the 
PVT of females 24 h following 5 days of restraint. Scn2a1, 
Scn2b, and Scn8a encode the voltage-gated sodium chan-
nel subunits Nav1.2, Navβ2, and Nav1.6, respectively 
[77]. Both Nav1.1 and Nav1.6 contain voltage-sensing 
and pore-forming domains of the voltage-gated sodium 
channel [78]. Navβ2 is an auxiliary subunit for voltage-
gated sodium channels involved in the trafficking of 
voltage-sensitive subunits to the plasma membrane and 
stabilizing it there [78–80]. Although 3 different tran-
scripts that are predicted to increase voltage-dependent 
sodium channel currents were increased in the pPVT of 
females restrained for 5 days compared to non-restrained 
females, no active membrane properties were affected 
by restraint in females. This may be because voltage-
gated sodium channel translation was impaired, traf-
ficking of the channels to the plasma membrane was 
impaired, or compensatory changes in the functional 
expression of other channels that regulate active mem-
brane properties negated voltage-gated sodium chan-
nel function. Compared to non-restrained controls, the 
expression of Kcnk1 was increased in females 24  h fol-
lowing a 5th daily restraint. The expression of Slc12a5, 
which encodes the potassium–chloride cotransporter 
KCC2, was increased in the pPVT of females following 
5 restraints compared to non-restrained controls. This 
channel is the major extruder of intracellular chloride 
in mature neurons, allowing for chloride influx during 
GABAergic neurotransmission [81]. Therefore, increased 
expression of KCC2 could enhance GABAergic chloride 
currents that inhibit PVT activity in vivo. Together, these 
findings indicate that although restraint did not affect 
active membrane properties of PVT neurons in females, 
the expression of 10 voltage-gated ion channels were 
altered by restraint. Changes in some of these transcripts 
may contribute to the restraint-induced changes in firing 
patterns observed in females. Effects of altered mRNA 
expression may be negated by impaired translation, 
impaired protein regulation, or countered by compensa-
tory changes in the expression or function of other volt-
age-gated ion channels as has been reported in rodent 
models of epilepsy [82]. Further studies are needed to 
fully understand how these stress-induced changes in 
expression of voltage gated ion channels may regulate 
functional consequences of pPVT activity in male and 
female animals.
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Table 2  Voltage-gated ion channel mRNA expression in female rats following restraint

Females Mean SEM p value

Gene NR 1D 5D NR 1D 5D NR vs. 1D NR vs. 5D 1D vs. 5D

Accn1 0.1751 0.1158 0.1168 0.0237 0.0103 0.0099 0.0292 0.0310 0.9410

Accn2 0.0617 0.0756 0.0823 0.0083 0.0059 0.0074 0.1745 0.0743 0.4873

Accn3 0.0005 0.0006 0.0006 0.0001 0.0002 0.0001 0.5300 0.5813 0.8412

Best1 0.0007 0.0008 0.0008 0.0002 0.0002 0.0001 0.7402 0.5476 0.8681

Cacna1a 0.0349 0.0211 0.0128 0.0084 0.0022 0.0013 0.1145 0.0229 0.0096

Cacna1b 0.0748 0.0432 0.0298 0.0165 0.0060 0.0032 0.0767 0.0127 0.0711

Cacna1c 0.0013 0.0022 0.0029 0.0005 0.0009 0.0008 0.3552 0.1042 0.5907

Cacna1d 0.0053 0.0076 0.0095 0.0011 0.0014 0.0009 0.1963 0.0077 0.2777

Cacna1g 0.1486 0.1914 0.1925 0.0132 0.0288 0.0221 0.1933 0.1052 0.9771

Cacna1i 0.2557 0.2178 0.2582 0.0385 0.0213 0.0502 0.4052 0.9690 0.4985

Cacnb1 0.0004 0.0006 0.0006 0.0002 0.0002 0.0002 0.4759 0.2995 0.7909

Cacnb2 0.2809 0.2685 0.2148 0.0271 0.0275 0.0324 0.7446 0.1302 0.2268

Cacnb3 0.0657 0.0919 0.1077 0.0315 0.0357 0.0272 0.5794 0.3128 0.7308

Cacng2 0.1404 0.1519 0.1496 0.0128 0.0175 0.0177 0.5957 0.6704 0.9299

Cacng4 0.0606 0.0906 0.1013 0.0186 0.0117 0.0084 0.1746 0.0540 0.4689

Clcn2 0.0110 0.0153 0.0212 0.0037 0.0032 0.0018 0.3803 0.0211 0.1268

Clcn3 0.1296 0.1584 0.1630 0.0143 0.0119 0.0067 0.1311 0.0426 0.7389

Clcn7 0.0317 0.0477 0.0534 0.0064 0.0073 0.0023 0.1117 0.0072 0.4982

Hcn1 0.0010 0.0017 0.0031 0.0004 0.0007 0.0005 0.3918 0.0084 0.1688

Hcn2 1.0199 0.7647 0.7077 0.1448 0.0602 0.0776 0.1072 0.0653 0.5709

Kcna1 0.1321 0.1141 0.1280 0.0305 0.0129 0.0184 0.5736 0.9057 0.5454

Kcna2 0.2605 0.3659 0.4218 0.0490 0.0407 0.0232 0.1217 0.0108 0.2860

Kcna5 0.0044 0.0069 0.0090 0.0011 0.0027 0.0017 0.3963 0.0378 0.5145

Kcna6 0.2098 0.2631 0.3011 0.0185 0.0228 0.0290 0.0842 0.0171 0.3201

Kcnab1 0.2194 0.2096 0.1976 0.0387 0.0192 0.0265 0.8135 0.6344 0.7201

Kcnab2 1.0260 0.6351 0.5864 0.2262 0.0673 0.0678 0.1001 0.0679 0.6186

Kcnab3 0.0955 0.0728 0.0682 0.0135 0.0101 0.0096 0.1819 0.1066 0.7421

Kcnb1 0.3392 0.2701 0.3246 0.0425 0.0265 0.0357 0.1706 0.7893 0.2409

Kcnb2 0.0336 0.0421 0.0521 0.0048 0.0035 0.0024 0.1605 0.0029 0.0336

Kcnc1 0.1273 0.1293 0.1159 0.0159 0.0130 0.0147 0.9193 0.5945 0.5044

Kcnc2 0.1012 0.1690 0.1802 0.0278 0.0355 0.0308 0.1453 0.0701 0.8152

Kcnd2 0.5412 0.4421 0.3501 0.0542 0.0266 0.0157 0.1052 0.0029 0.0100

Kcnd3 0.0107 0.0181 0.0228 0.0036 0.0042 0.0033 0.1867 0.0221 0.3953

Kcnh1 0.0315 0.0342 0.0511 0.0057 0.0049 0.0083 0.7283 0.0670 0.1194

Kcnh2 0.0074 0.0127 0.0157 0.0019 0.0028 0.0026 0.1394 0.0204 0.4467

Kcnh3 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.4259 0.3606 0.1762

Kcnh6 0.0025 0.0028 0.0031 0.0007 0.0005 0.0004 0.7256 0.4128 0.5988

Kcnh7 0.0016 0.0029 0.0040 0.0007 0.0009 0.0011 0.2745 0.0888 0.4573

Kcnj1 NA NA NA NA NA NA NA NA NA

Kcnj11 0.0011 0.0020 0.0031 0.0006 0.0008 0.0009 0.3593 0.0825 0.3694

Kcnj12 0.0459 0.0481 0.0574 0.0034 0.0043 0.0063 0.6878 0.1295 0.2472

Kcnj13 0.0099 0.0048 0.0049 0.0055 0.0031 0.0031 0.4044 0.4192 0.9729

Kcnj14 0.0250 0.0209 0.0269 0.0032 0.0009 0.0043 0.2056 0.7120 0.1895

Kcnj15 0.0001 0.0001 0.0002 0.0000 0.0001 0.0001 0.3565 0.2888 0.5972

Kcnj16 0.2982 0.2624 0.1824 0.0510 0.0215 0.0109 0.5045 0.0454 0.0078

Kcnj2 0.0067 0.0073 0.0077 0.0011 0.0010 0.0009 0.6919 0.4787 0.7864

Kcnj3 0.0558 0.0793 0.0825 0.0071 0.0100 0.0100 0.0708 0.0432 0.8232

Kcnj4 NA NA NA NA NA NA NA NA NA
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Conclusions
These findings are the first to characterize the effects 
of sex and stress on electrophysiological properties and 
voltage-gated ion channel expression in pPVT neurons. 
We found that restraint altered EPSCs, input resistance, 
and active membrane properties that are predicted to 
increase pPVT activity in males, but restraint did not 
have these effects in females. In pPVT neurons of males, 
restraint-induced changes in the expression of certain 

voltage-gated ion channels may contribute to some of 
the changes in active membrane properties that were 
altered by restraint. Restraint modulated the expression 
of 10 different voltage-gated ion channels in pPVT neu-
rons of females, but there were few effects of stress on 
electrophysiological properties. Together, these findings 
suggest that restraint increases pPVT activity in males, 
but only modestly alters pPVT activity in females. These 
findings identify mechanisms through which males may 

NR: no restraint, n = 8; 1D: 1-day restraint, n = 8; 5D: 5-day restraint, n = 8; NA: no amplification

Table 2  (continued)

Females Mean SEM p value

Gene NR 1D 5D NR 1D 5D NR vs. 1D NR vs. 5D 1D vs. 5D

Kcnj5 0.0011 0.0014 0.0017 0.0004 0.0004 0.0002 0.5693 0.2218 0.5382

Kcnj6 0.0127 0.0113 0.0147 0.0012 0.0009 0.0014 0.3485 0.2862 0.0701

Kcnj9 0.6001 0.4530 0.4145 0.1062 0.0535 0.0485 0.2133 0.1155 0.6030

Kcnk1 0.0808 0.1219 0.1527 0.0204 0.0149 0.0082 0.1119 0.0062 0.1102

Kcnma1 0.0398 0.0484 0.0567 0.0176 0.0137 0.0101 0.6955 0.3960 0.6328

Kcnmb4 0.5967 0.3840 0.3054 0.0765 0.0240 0.0318 0.0136 0.0023 0.0684

Kcnn1 0.0031 0.0044 0.0063 0.0005 0.0007 0.0004 0.1499 0.0001 0.0358

Kcnn2 0.0371 0.0496 0.0559 0.0033 0.0036 0.0043 0.0203 0.0042 0.2900

Kcnn3 0.0136 0.0219 0.0314 0.0048 0.0046 0.0030 0.2122 0.0075 0.1206

Kcnq1 0.0027 0.0021 0.0018 0.0006 0.0006 0.0007 0.4491 0.2832 0.7516

Kcnq2 0.0355 0.0526 0.0743 0.0151 0.0152 0.0071 0.4256 0.0282 0.2180

Kcnq3 0.0004 0.0008 0.0012 0.0002 0.0004 0.0004 0.3837 0.0898 0.4585

Kcns1 0.0007 0.0009 0.0014 0.0002 0.0002 0.0003 0.3570 0.0618 0.2056

Ryr3 0.0153 0.0167 0.0195 0.0014 0.0014 0.0009 0.4745 0.0198 0.1235

Scn10a 0.0010 0.0010 0.0014 0.0002 0.0002 0.0003 0.8935 0.2895 0.2872

Scn11a 0.0001 0.0002 0.0003 0.0001 0.0001 0.0001 0.4579 0.2851 0.6279

Scn1a 0.5777 0.4378 0.4425 0.1146 0.0445 0.0391 0.2478 0.2557 0.9371

Scn1b 2.5908 2.0979 1.9782 0.4956 0.2079 0.2676 0.3485 0.2717 0.7292

Scn2a1 0.0186 0.0462 0.0722 0.0041 0.0129 0.0094 0.0768 0.0003 0.1447

Scn2b 0.2662 0.3831 0.4718 0.0478 0.0422 0.0255 0.0783 0.0013 0.0938

Scn3a 0.0141 0.0216 0.0291 0.0045 0.0048 0.0057 0.2557 0.0522 0.3295

Scn8a 0.0852 0.1306 0.1654 0.0143 0.0123 0.0148 0.0315 0.0013 0.1057

Scn9a 0.0108 0.0095 0.0096 0.0020 0.0011 0.0019 0.5430 0.6701 0.9523

Slc12a5 0.0729 0.1907 0.2675 0.0039 0.0511 0.0287 0.0721 0.0001 0.2361

Trpa1 0.0028 0.0026 0.0023 0.0004 0.0005 0.0005 0.7403 0.4882 0.7460

Trpc1 0.0256 0.0317 0.0358 0.0030 0.0016 0.0020 0.0808 0.0100 0.1220

Trpc3 0.0693 0.0676 0.0661 0.0085 0.0085 0.0097 0.8880 0.8015 0.9069

Trpc6 0.0068 0.0073 0.0078 0.0007 0.0009 0.0015 0.6690 0.5567 0.7857

Trpm1 0.0009 0.0003 0.0002 0.0003 0.0001 0.0000 0.0664 0.0940 0.5983

Trpm2 0.0789 0.0534 0.0477 0.0154 0.0068 0.0066 0.1331 0.0696 0.5534

Trpm6 0.0051 0.0059 0.0053 0.0007 0.0007 0.0009 0.4047 0.8921 0.5836

Trpm8 0.0081 0.0060 0.0051 0.0019 0.0009 0.0005 0.3147 0.1309 0.4378

Trpv1 0.0058 0.0064 0.0050 0.0009 0.0010 0.0005 0.6634 0.3947 0.2055

Trpv2 0.0114 0.0142 0.0128 0.0018 0.0026 0.0014 0.3978 0.5365 0.6633

Trpv3 NA NA NA NA NA NA NA NA NA

Trpv4 0.0082 0.0037 0.0032 0.0024 0.0012 0.0008 0.1021 0.0580 0.7375
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habituate to 5 days of repeated restraint but females do 
not. Sex differences in electrophysiological properties of 
pPVT neurons, under baseline conditions and following 
restraint, may underlie impaired habituation in females. 
The increased number of voltage-gated ion channels that 
are altered by restraint in females might reflect compen-
satory changes in channel expression that prevent altered 
electrophysiological function, which might have been 
caused by restraint-induced changes in the expression of 
a few key voltage-gated ion channels. Restraint-induced 
changes in ion channel expression might also represent 
flux in membrane properties that could become apparent 

once females begin to habituate, which is likely to occur 
around day 9 or 10. These changes may also be due to dif-
ferences in estrous cyclicity, which we did not investigate 
here. Future studies will determine the role of estradiol 
on voltage-gated ion channel expression using ovariec-
tomized females and estradiol replacement. Because the 
pPVT is as important for facilitation to novel stress as 
it is for habituation, whether the changes observed here 
contribute to facilitation is not known. For a habitu-
ated animal to facilitate, the reduction in excitation in 
habituated animals would need to be overcome, through 
strong excitatory inputs that are initiated by the novel 

Fig. 6  Restraint stress has different effects on the expression of voltage-gated ion channel mRNA transcripts in the PVT of males and females. Only 
results from males are shown in A–C and only from females from D–M to streamline this figure, since results from females were not significant 
in A–C and results from males were not significant from D–M. Results are not significant A In male pPVT neurons, Kcnj6 mRNA is reduced in rats 
restrained for 5 days compared to non-restrained controls. B In male pPVT neurons, Kcnh3 mRNA is increased in rats restrained for 5 days compared 
to non-restrained controls. C In male pPVT neurons, Kcnk1 mRNA is reduced following 1, but not 5, restraints compared to non-restrained 
controls. Females restrained for 5 days display increased mRNA expression of D Kcnb2, E Kcnk1, F Kcnn1, and G Kcnn2 in the pPVT compared to 
non-restrained controls. Females restrained for 5 days display decreased mRNA expression of H Kcnmb4 and I Kcnd2 in the pPVT compared to 
non-restrained controls. Females restrained for 5 days display increased mRNA expression of J Scn2a1, K Scnb2, L Scn8a, and M Slc12a5 in the pPVT 
compared to non-restrained controls. Bars indicate mean ± SEM. Asterisks indicate Dunnett’s post-hoc differences compared to non-restrained 
controls following one-way ANOVA. *p < 0.01, **p < 0.001. For non-restrained males, n = 7. For all other groups, n = 8
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facilitating stressor. Alternatively, it is possible that the 
PVT cells in which activity is important for habitua-
tion are different than those whose activity is important 
for facilitation. These findings are an important step in 
developing a comprehensive understanding in the genes 
and electrophysiological processes that underlie habitu-
ation in male rats and the mechanisms contributing to 
impaired habituation in females.

Perspectives and insights
Together, our findings suggest that restraint causes dif-
ferent effects on the electrophysiological properties of 
pPVT neurons in males compared to females. Restraint-
induced increases in the synaptic strength of inputs to 
the pPVT may allow male rats to habituate more effec-
tively. Given the importance of the pPVT in regulating 
habituation, our findings may, at least in part, offer an 
explanation as to why male rats habituate more effec-
tively compared to females. Future directions will investi-
gate the anatomical inputs that drive electrophysiological 
changes in male rats. Furthermore, we plan to investigate 
whether these electrophysiological properties in pPVT 
neurons are also important for facilitation of the stress 
response.
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