
Shobeiri et al. Biology of Sex Differences           (2022) 13:12  
https://doi.org/10.1186/s13293-022-00422-6

REVIEW

Shedding light on biological sex 
differences and microbiota–gut–brain 
axis: a comprehensive review of its roles 
in neuropsychiatric disorders
Parnian Shobeiri1,2,3,4†, Amirali Kalantari1,2†, Antônio L. Teixeira5 and Nima Rezaei2,4,6*   

Abstract 

Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major 
depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia 
nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neu-
rodegenerative disorders including Alzheimer’s disease, Parkinson’s disease. Genetic factors and sex hormones are 
apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between 
sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the 
development of neuropsychiatric disorders via influencing the gut–brain axis. It is increasingly evident that sex–micro-
biota–brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating 
the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of 
neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbi-
ota–brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for preci-
sion medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative 
underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences 
and gut microbiota on the emergence of particular neuropsychiatric disorders.

Highlights 

•	 The human microbiome is a unique set of organisms affecting health via the gut–brain axis.
•	 Neuropsychiatric disorders, eating disorders, neurodevelopmental disorders, and neurodegenerative disorders 

are regulated by the microbiota–gut–brain axis in a sex-specific manner.
•	 Understanding the role of the microbiota–gut–brain axis and its sex differences in various diseases can lead to 

better therapeutic methods.
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Background
Sex is defined based on biological attributes and fea-
tures (e.g., chromosomes, gene expression, hormone 
levels and function, and reproductive/sexual anatomy) 
of both human and animal species [1, 2]. Sex differ-
ences are prominently reflected in the brain and behav-
ior from birth to adulthood [3]. Sex differences are 
indicated to be among the main contributors to differ-
ences in the frequency of neuropsychiatric disorder, 
brain areas’ structures, and their functionality due to 
the modifications of sex hormones in males and females 
[3]. The differences in the incidence of mental illnesses 
such as major depression and generalized anxiety in 
men and women may enhance the probability of the 
significant effects of sex differences in their prevalence. 
Moreover, sex-specific genes and hormones are slightly 
suggested to strengthen the impact of socioeconomic 
status related to sex and gender in the development of 
neuropsychiatric diseases [3, 4]. Interestingly, the role 
of sex-differentiated genetic features in the prevalence 
of neuropsychiatric and behavioral traits was investi-
gated [5, 6]. Martin et al. [6] demonstrated that genetic 
features could not support the existing sex differences 
in the presentation of neuropsychiatric disorders. Per-
forming the largest genome-wide genotype-by-sex 
(G × S) interaction, Blokland et  al. [5] found consid-
erable overlap in the genetic factors of the two sexes; 
however, regarding schizophrenia, bipolar disorder, 
and major depressive disorder, significant variant- and 
gene-specific sex differences were observed. Yet, recent 
research and evidence imply that additional pathophys-
iological pathways (e.g., sex–microbiota–gut–brain 
axis) are likely to contribute and explain the existing 
differences between men and women in the occurrence 
of brain- and behavior-related disorders [7].

For many years, the dominant models for neuropsy-
chiatric disorders were entirely focused on the nervous 
system [8], and neuro-explanations of mental health have 
conquered the last decades of mental health research 
[9]. Traditionally, microorganisms were not considered 
critical to the development and function of the CNS. 
Nevertheless, in recent years, the discovery of the size 
and complexity of the human microbiome and investiga-
tions into the microbiome–gut–brain axis have shaped a 
critical paradigm shift in neuroscience and mental health 
[10–12]. Furthermore, sex is a critical factor in several 
mental health disorders, so investigating the microbi-
ome–gut–brain axis is better to be sex-specific.

Over the last few decades, scientists and research-
ers have investigated the possible effects of human body 
microorganisms (especially the gut microbiota) not only 
on human digestion or gastrointestinal mechanisms 
but also on the brain and behavior. Gut and brain affect 
each other in a bidirectional manner via immune, endo-
crine, and neural pathways [13]. Experimental and clini-
cal studies have shown potential links between gut and 
CNS, and vice versa, leading to neuropsychiatric dis-
orders [13]. Within this framework of the brain–gut–
microbiota axis, the differential development of various 
neurologic and psychiatric disorders in men and women 
has been suggested [7]. Evidence indicates that sex has 
significantly impacted the human microbiome, and sub-
sequently, ‘microgenderome’ was introduced, referring 
to the interactions between microbiota, sex hormones, 
and the immune system [14–16]. Notably, sex-specific 
features are encountered to alter human microbiota pat-
terns [17]. Sex-specific alterations in gut microbiome 
ecological structure may indicate an adaptation to pre-
serve physiological and behavior differences between 
men and women throughout life because of their differ-
ing nutrient and energy requirements for growth, devel-
opment, and reproduction [18–21]. Regarding the sex 
hormone and microbiota interaction, postmenopausal 
women who consume soy isoflavones (which has struc-
turally estrogen-like metabolites) are more likely to have 
a Bifidobacterium-enriched gut microbiome, whereas 
Clostridiaceae, a previously unknown genus of bacte-
ria, is reduced in abundance [22]. Interestingly, bilateral 
ovariectomy has been linked to an increased prevalence 
of Clostridium bolteae in humans [23]. Adults’ fat distri-
bution and obesity may also contribute to the observed 
sex-dependent microbiome variations. Adult men and 
women, however, show a correlation between fat distri-
bution and Holdemanella and Gemmiger (phylum Fir-
micutes), although in the other pattern [24]. In women, 
android fat ratio was negatively connected with Holde-
manella and positively correlated with Gemmiger, but 
in males, android fat ratio was favorably correlated with 
Holdemanella and negatively correlated with Gemmiger 
[24]. In addition, various alterations in the patterns of gut 
microbiota composition were revealed due to age-asso-
ciated changes in the genes, and the geographical status 
[25].

This narrative review summarizes the current lit-
erature on how sex differences may affect the gut–brain 
axis and the underlying pathways. Then, we discussed 
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psychiatric and mental disorders and the potential effects 
of sex differences in the gut–brain axis, which may play 
an essential role in the pathogenesis of the following con-
ditions based on clinical and experimental studies: neu-
rodevelopmental disorders, mood and stress disorders, 
and stress-related functional gastrointestinal disorders 
(FGIDs). Furthermore, we elaborated on the possible 
interactions of sex and microbiota–gut–brain axis on 
the development of neurodegenerative diseases. At last, 
potential therapeutics based on microbiota-targeted and 
sex-based dietary interventions are described.

The gut–brain axis (GBA)
The gut–brain axis is defined as complex bidirectional 
communications between various components of the 
body, including the brain, the sympathetic and parasym-
pathetic divisions of the autonomic nervous system, the 
endocrine and immune systems, the enteric nervous sys-
tem, and the gut microbiome [26]. The microbiome refers 
to the whole genetic material of microorganisms [27]. 
Several studies reported on the potential mechanisms of 
microbiome–CNS crosstalk, including endocrine [28], 
the vagus nerve [29, 30], immune [31, 32] and neuro-
peptide/neurotransmitter systems [33, 34], and signaling 

molecules. Considering signaling molecules, they mainly 
include short-chain fatty acids (SCFA) [35], branched-
chain amino acids [36], bile moieties [37], and pepti-
doglycans [38]. Many factors regulate the gut–brain axis, 
including sex differences, genetics, diet, etc. We summa-
rize the gut–brain axis regulators in Fig. 1.

Sex differences in the gut–brain axis
Sex differences in the brain
Sexual dimorphism exists in the brain of many verte-
brate species, including primate species and humans 
[39]. Different studies on this matter showed larger total 
brain volume, more cortical surface area and gyrifica-
tion, a greater ratio of white matter to gray matter, less 
gray matter density, and less cortical thickness in males 
compared to females, as well as other differences in 
white matter organization, cerebral blood flow, caudate 
nucleus, and hippocampus size [40, 41]. Different gene 
regulation and gene expression could be an underlying 
cause of this dimorphism [39, 42, 43]. There is an active 
discussion about the magnitude and effect size of sex 
differences in brain structure and function. For exam-
ple, studies have controversy concerning the magnitude, 
location, and direction of sex differences in the human 

Fig. 1  Regulators of gut–brain axis
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brain’s local gray matter volume (GMV) [44]. Trying to 
find an answer, Lotze et al. [45] applied a Gaussian-pro-
cess regression coordinate-based meta-analysis including 
16 voxel-based morphometry studies in a well-powered 
sample (n = 2838). They found more GMV in medial and 
lateral prefrontal areas, the superior temporal sulcus, the 
posterior insula, and the orbitofrontal cortex in women 
than men, while more GMV in subcortical temporal 
structures, such as the amygdala, hippocampus, tempo-
ral pole, fusiform gyrus, primary visual cortex, and motor 
areas (premotor cortex, putamen, anterior cerebellum) 
in men than women. Ritchie et al. [46] found that males 
have higher raw volumes, raw surface areas, and white 
matter fractional anisotropy; females have higher raw 
cortical thickness and higher white matter tract complex-
ity, with considerable distributional overlap between the 
sexes.

One attractive mouse model for learning potential 
mechanisms of sex differences is using the four core 
genotypes (FCG) model. This model includes mice where 
sex chromosome complement (XX vs. XY) is unat-
tached to the animal’s gonadal sex. The four genotypes 
are XX gonadal males or females and XY gonadal males 
or females. As Arnold et al. stated, this model allows one 
to measure the differences in phenotypes caused by sex 
chromosome complement (XX vs. XY), the differential 
effects of ovarian and testicular secretions, and the inter-
active effects of these two [47]. Using this model could be 
a helpful strategy to investigate whether the role of the 
microbiome and the gut–brain axis on the brain is geno-
type-dependent or not.

Sex differences in the brain are minor at birth, but 
quickly reach adult levels. [48]. Interestingly, hippocam-
pal plasticity was found to be affected by sex-related 
alterations of the microbiome. Darch et  al. [49] studied 
germ-free mice (mice with no microorganisms living 
in or on them) and found that microbiota absence may 
lead to changes in dendritic signaling integrations in the 
CA1 region, which is the first region in the hippocam-
pal circuit, from which a major output pathway goes to 
the entorhinal cortex [50]. Additionally, CA1 has been 
shown to have significant roles in autobiographical mem-
ory, mental time travel, and autonoetic consciousness in 
humans [51]. It could be implied that microbiome altera-
tions can affect these roles in humans, but further studies 
are needed to assess its relationship.

Sex differences in microbiome
A complex community of archaeal and bacterial cells, 
including more than 1000 species, covers the human 
gastrointestinal tract, called the human gut microbiota 
[52]. Bacteroidetes, Firmicutes, Actinobacteria, Verru-
comicrobiota, Fusobacteria, and Proteobacteria are the 

predominant bacterial phyla. The most common species 
are Bacteroides fragilis, Bacteroides melaninogenicus, 
Bacteroides oralis, Enterococcus faecalis, and Escherichia 
coli. Methanobrevibacter smithii and Methanosphaera 
stadtmanae are the dominant archaeal species. Other 
microbes are present, such as protozoans, fungi, bacte-
rias, and viruses [53, 54].

Animal studies on mice show significant differences 
in gut microbiota composition according to sex [55, 56]. 
Lactobacillus plantarum and Bacteroides distasonis are 
more common in B6 female mice than B6 males, while 
Bifidobacterium is more common in BALB/c female mice 
compared to BALB/c males [55]. Human studies show 
that each individual has a unique microbiome composi-
tion with a core microbiota shared in everyone [52, 57, 
58]. Different factors such as sex, age, and body mass 
index (BMI) can affect this composition. Studies show 
that male and female microbiota differs in bacterial phyla 
level, at the genus level, and the species level, with greater 
diversity in females [59–61].

Sex‑by‑diet interactions in microbiome
Diet and the composition of the gastrointestinal micro-
biome affect each other in children and adults [53, 62–
64]. For example, having an animal-based diet increases 
abundance of bile-tolerant microorganisms (Alistipes, 
Bilophila, and Bacteroides) and decreases levels of pol-
ysaccharides metabolizers (Roseburia, Eubacterium 
rectale, and Ruminococcus bromii) [53]. Conversely, 
intestinal bacteria can control preferences, appetite, and 
feelings of satiety [63, 65, 66]. Sex differences also have 
an impact on metabolism. For instance, the presence of 
XX chromosome complement in a cell will result in not 
expressing the 78 protein-coding genes, nor an unknown 
number of noncoding RNAs present on the Y chromo-
some [67]. Chen et  al. [68] demonstrated that both 
gonadal sex and sex chromosome complement had an 
influence on body weight in gonadally intact mice of the 
four core genotypes. Adults were then stripped of their 
gonadal glands, thereby eradicating the acute effects of 
gonadal hormones. Regardless of their initial gonadal sex, 
XX mice, given a conventional mouse chow diet (~ 5% 
fat), had almost twice the fat mass of XY mice. After 
gonadectomy, the difference between XX and XY mice 
was accentuated, with XX mice gaining weight more 
quickly and diverging from XY mice after just three days 
on the high-fat diet. Specific fat depot analysis indicated 
that XX mice had bigger subcutaneous inguinal adipose 
tissue depots than XY mice did. These finding show that 
the sex chromosomal complementation has a role in the 
observed disparities in fat distribution between females 
and males. Other mechanisms also exist, but their details 
are beyond the scope of its context.
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Different murine studies uncovered that the interac-
tion between microbiome and diet is sex-dependent in 
various conditions [69–72]. For example, high-fat diet-
induced body weight gain was higher in male mice than 
females, and only males developed hepatic steatosis, 
insulin resistance, glucose intolerance, and thigh muscle 
loss [69, 70]. Moreover, male mice treated with antibi-
otics before a high-fat diet developed insulin resistance, 
whereas female mice had a higher fasting glucose level. 
Male mice’s gut microbiota was significantly different 
from that of female mice, regardless of their diet. More 
Lactobacillus, Bifidobacterium and Parabacteroides gen-
era were found in females than in men. Short-chain fatty 
acid-producing bacteria such as Roseburia and Lachno‑
spiraceae NK4A136 group were less abundant after HFD 
feeding, which had an effect on the gut microbiota com-
position. Antibiotics followed by HFD altered the gut 
microbiota in distinct ways in men and females, show-
ing that antibiotic susceptibility is sex-dependent [69]. 
In this regard, Bolnick et  al. [21] experimented on fish 
species. They reached several findings: (1) some differ-
ences in microbial populations among individuals can be 
explained by their diet, and (2) dietary impacts are highly 
dependent on sex. Moreover, men’s and women’s micro-
biota have distinct effects on each other regarding food, 
whether we investigate across microbial PCoA (princi-
pal coordinate analysis) axes or individual OTUs (opera-
tional taxonomic units). Furthermore, they revealed that 
microorganisms responded more strongly to the food of 
stickleback females than to the diet of males. Accord-
ing to their findings, the microbial taxa displaying diet 
(or sex*diet) impacts in the lab were not the same as the 
microbial taxa showing diet (or sex*diet) effects in the 
wild (natural) stickleback [73]. Interestingly, even while 
nutrition may influence the microbiome in a predictable 
way, and while certain bacteria found in the intestines of 
various people can alter particular dietary components 
in a predictable way, many food-microbe interactions are 
unpredictable and unique [74, 75].

Sex hormones and gut microbiota interactions
Sex differences in gut microbiota significantly appear 
after puberty [1]. This supports the idea that sex hor-
mones may play a role in the gut microbiota composition 
[14, 76]. In an experimental study, male and female mice 
did not show any significant differences in gut microbi-
ota before puberty, while male mice revealed deviations 
in the gut microbiota components after puberty. Moreo-
ver, castration in male mice to remove androgen sources 
caused gut microbiota composition in castrated male 
mice to become similar to female ones [76]. Castration 
also changes metabolism and feeding behavior, in ways 
that are dependent and independent of androgen. All of 

these systemic adjustments may also have an impact on 
the composition of the gut microbiota [77, 78]. In addi-
tion, fecal microbiota transplantation (FMT) corrobo-
rates the role of sex in the gut microbiota composition. 
Accordingly, results of an investigation into the Dena-
turing gradient gel electrophoresis (DGGE) and termi-
nal restriction fragment length polymorphism (T-RFLP) 
profiles of fecal microbiota from specific pathogen-free 
(SPF) and human flora associated (HFA) rats indicated 
that variance over time was less important than varia-
tion between individuals, and that phylogenetic profiles 
aggregated according to the sex of the rats studied [79]. 
It has been suggested that commensal bacteria affect the 
metabolism in male species by regulating the production 
and utilization of testosterone [1].

Notably, gut microbiota and estrogen are believed to 
have bidirectional interactions [80]. Several reports on 
bilateral ovariectomy reveal that it may lead to microbial 
dysbiosis in mice and increased Clostridium bolteae [23, 
56, 81]. Furthermore, the abundance of fecal Clostridia 
(e.g., non-Clostridiales and three genera in the Rumi-
nococcaceae family) is positively associated with non-
ovarian systemic estrogen levels [80]. Interestingly, gut 
microbiota regulates estrogen levels by mediating its 
metabolism in the enterohepatic circulation [80]. Other 
than sex hormones, diet, drugs, body mass index, and 
colonic transit time are factors that enhance the influence 
of sex differences on human gut microbiota [1].

Common mechanisms of interaction
Interactions between the CNS and gut microbiota
Stress affects the composition of the gut microbiota in 
two directions: emotionally and physiologically. The Lac‑
tobacillus population was decreased in a mouse model 
after only two hours of social disturbance [82]. Interest-
ingly, the Lactobacillus abundances in the feces of rhesus 
monkeys dropped after they were separated from their 
mothers at the age of 6–9 months [83]. In another inves-
tigation, Lactobacillus concentration in feces was shown 
to be lower in stressed students than in less stressed 
individuals [84]. Intestinal microbial reproduction is 
boosted by prebiotics and dietary fibers, yet stress affects 
mucus production patterns [85]. In dogs, the gastroin-
testinal postprandial motility is affected by audio stress, 
which results in a decline in gastric evacuation [85]. Also, 
stress-induced alterations in intestinal motility and gut 
microbiota structure are observed in mice when their 
mothers are separated from them [86]. Stress media-
tors increase intestinal permeability, which in turn alters 
the germ characteristics, causing local immunological 
activation [87, 88]. Bacteroides and Clostridium species 
were decreased in the cecum of adult mice exposed to 
prolonged stress. Additionally, the immune system was 
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stimulated, with increased levels of interleukin-6 and 
C–C chemokine ligand 2. When acute stress triggered 
the release of corticotropin-releasing hormone (CRH) 
in the CNS, mast cells, which have a high affinity for 
CRH, were activated. This enhanced gastrointestinal and 
blood–brain permeability [89]. Toxins and lipopolysac-
charides (LPS) found in the gut may reach the systemic 
circulation and the CNS when mast cells are activated by 
chronic stress.

Gut microbiota affecting the CNS
Immune regulation  When gut microbiota cause an 
infection, the infected cells may reach the CNS and trigger 
inflammatory responses. The immune system is impaired 
further when cytokines are produced into the blood-
stream as a result of chronic low-grade inflammation. 
Inflammatory chemicals may be found in the gut microbi-
ota. LPS and peptidoglycan, for example, are two common 
inflammation-inducing agents. The Toll-like receptor-4 
(TLR-4), found on a broad variety of brain cells includ-
ing monocytes, macrophages, and microglia, recognizes 
LPS. For instance, the gut microbiome has been shown to 
activate TLR-4-mediated inflammatory responses in IBS 
patients who are also depressed [90, 91]. Proinflamma-
tory and anti-inflammatory cytokines may be altered by 
the actions of gut microbes and probiotics on the innate 
immune system, which has a direct influence on brain 
processes. For example, macrophages were activated and 
infiltrated by E. coli, which led to an increase in the pro-
duction of IFN-γ [92].

Modulation of afferent nerves  The vagus nerve may be 
activated by the gut microbiota, and this stimulation has 
a significant impact on the brain and on the way people 
behave. The vagus nerve is a vital element of the sensory 
route that connects the gastrointestinal tract to the brain. 
The evidence that the gut microbiota impact the vagus 
nerve is progressively growing. Gram-negative bacteria 
have an outer membrane that is mostly composed of LPS. 
A cytokine known as IL-1β is activated by LPS, which in 
turn causes the vagus nerve to become inflamed. Moreo-
ver, vagotomy prevents the production of cytokines [93, 
94]. There is a surge in c-Fos expression (an indicator of 
neural activity of vagal sensory ganglia and solitary neu-
rons) in mice following C. jejuni injection, as shown by 
Goehler et al. [95] In the mentioned study, neural activ-
ity rose quickly after being infected with C. jejuni, but 
there was no rise in proinflammatory cytokines at the 
same time. This shows that bacteria can significantly 
affect behavior and attitude through the vagus nerve. Ear-
lier research has shown that Campylobacter can cause 
anxiety-like behavior if it is caught early. This is because 
vagally mediated neural circuits are affected [96]. Bravo 

et  al. found that the vagus nerve plays a significant role 
in the bidirectional connection between the brain and 
the gastrointestinal tract [29]. The probiotic Lactobacil-
lus rhamnosus decreased anxiety and depression in rats 
and mice, and this reduction was associated by a decrease 
in gamma aminobutyric acid (GABA) receptor subunit 
mRNA expression and corticosterone concentrations. 
However, Lactobacillus rhamnosus therapy had no impact 
on the rats or mice that had been vagotomized.

Tryptophan metabolism  Tryptophan is a precursor 
amino acid that is required for the synthesis of seroto-
nin and kynurenine. A deficiency of tryptophan has been 
linked to clinical depression [97]. Tryptophan metabolism 
seems to be influenced by gut microbiota. In comparison 
to regularly colonized mice, germ-free animals had higher 
serum levels of tryptophan and lower levels of serotonin, 
indicating that tryptophan hydroxylase expression in the 
intestines may be decreased [98, 99]. Studies on animals 
have shown that supplementation with the probiotic Bifi‑
dobacterium infantis increases levels of inflammatory 
markers as well as tryptophan and decreases the kynure-
nine to tryptophan ratio [100].

Microbial metabolites (short‑chain fatty acids)  Short-
chain fatty acids (SCFAs) such as acetic acid, propionic 
acid, and butyric acid are produced by the gut micro-
biota. These SCFAs act as histone deacetylase inhibitors 
[101] and bind to G protein-coupled receptors to acti-
vate intracellular signaling [102]. SCFAs therefore serve 
as intermediaries between the brain and the microbiota 
and contribute to the processes through which gut micro-
organisms influence brain physiology and behavior. The 
microbial-derived SCFAs butyric acid and propionic acid 
stimulate the gene expression of tyrosine hydroxylase, an 
enzyme that controls the rate of synthesis of dopamine 
and noradrenaline, and dopamine-β-hydroxylase, an 
enzyme that converts dopamine to noradrenaline [103]. 
GABA, serotonin, and dopamine levels were reduced 
in germ-free rats after long-term therapy with propi-
onic acid [104]. Thus, microbial-derived SCFAs have a 
direct impact on both physiology and behavior because 
of their involvement in a neuronal circuit. Glyconeo-
genesis gene expression was triggered through an inter-
intestinal circuit involving the fatty acid receptor FFAR3 
in the gut and the brain [105]. Glial cells, such as micro-
glia and astrocytes, may be affected by SCFAs produced 
by gut microbes, although the exact mechanism by which 
SCFAs alter CNS function is still unknown. Butyric acid 
has been shown to have an anti-inflammatory effect on 
LPS-induced microglial cells in rats [106]. Additionally, 
microglial malformation and immaturity were restored in 
SCFA-treated germ-free mice after activation of FFAR2 
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[107]. de Almeida et  al. demonstrated that GFAP (glial 
fibrillary acidic protein) was elevated in cultured astro-
cytes in rats treated with propionic acid [108]. Also, 
cognitive and sensorimotor impairments were observed 
when rats were injected with bacteria-derived propionic 
acid [109].

Microbial neural substrates  Bacteria are capable of pro-
ducing a variety of neurotransmitters and related chemi-
cals. Certain types of intestinal microbiota are capable 
of producing and releasing neurotransmitters such as 
GABA, serotonin, catecholamine, and histamine on a 
local level. These neurotransmitters generated from bac-
teria can communicate with the CNS  through entero-
chromaffin cells and enteric nerve receptors.

GABA, a significant inhibitory neurotransmitter in the 
CNS linked with depression, anxiety, autism, and schizo-
phrenia, is generated effectively in the human intestines 
by Lactobacillus brevis and Bifidobacterium dentium 
[110]. Takanaga et al. hypothesized in their animal inves-
tigation that gut bacteria-produced GABA passes the 
blood–brain barrier (BBB) and reaches the CNS [111]. 
Lactobacillus rhamnosus has been shown to alleviate 
anxiety and depression-related behaviors in mice and to 
boost the hippocampus’s GABA levels [29, 112]. Intesti-
nal microbiota may indirectly influence GABA signaling 
through the vagus nerve, given that such effects are only 
visible when the vagus nerve is intact.

Microorganisms  in the gastrointestinal tract synthe-
size dopamine and noradrenaline, two neurotransmitters 
that affect the CNS. Germ-free mice exhibit significantly 
lower amounts of noradrenaline and dopamine in their 
cecums vs SPF mice, suggesting that the gut microbiota 
may provide catecholamine [113]. Moreover, the rate-
limiting enzyme for the production of noradrenaline 
and dopamine, tyrosine hydroxylase, is found in several 
bacterial species [114]. Dopamine is synthesized in cul-
tured Lactobacillus bacteria [115]. Dopamine formed in 
the periphery cannot pass the BBB, hence there is no evi-
dence that microbes produce catecholamines that effect 
the CNS. While tyrosine (the rate-limiting substrate for 
noradrenaline and dopamine synthesis) levels are lower 
in germ-free animals as compared to those in ex-germ-
free mice, this indicates that the gut microbiota raises 
dopamine levels in the brains of germ-free mice [116]. 
Ex-germ-free mice had higher amounts of catechola-
mines in their brains than germ-free mice, but the gut 
microbiota was able to adjust these levels via dopamine 
and noradrenaline metabolism in the brains of these ani-
mals [117].

Histamine, a neurotransmitter and immunomodulator, 
has a role in the control of critical activities such as wak-
ing, cognition, circadian rhythm, and neuroendocrine 

regulation [118]. Certain gut microbiota are capable of 
producing histamine. Lactobacillus reuteri produces 
histamine through the expression of the histidine decar-
boxylase gene [119]. Not only does histidine boost his-
tidine decarboxylase expression in Lactobacillus reuteri 
cultures, but it also increases histamine synthesis. Addi-
tionally, via generating histamine, Lactobacillus reuteri 
suppresses the proinflammatory cytokine TNF-α in mye-
loid progenitor cells. Histamine has been shown to have 
an immunomodulatory effect on intestinal lymphoid 
organs, where it is involved in the regulation of Yersinia 
enterocolitica infection [120]. Furthermore, it has been 
shown that blocking the H2 receptor decreases mucus 
production and exacerbates intestinal barrier dysfunc-
tion, which may lead to microorganisms being trans-
ported into the intestinal lumen through the circulatory 
system [121].

Psychiatric disorders
Definition and classification
A mental or psychiatric disorder is described as an illness 
with psychological or behavioral manifestations that can 
cause substantial distress and Functional impairment. 
No objective tests are available for the decisive diagno-
sis of mental disorders, and we measure these disorders 
in terms of deviation from some normative concept [122, 
123]. It is not always easy to define normality and abnor-
mality, but different criteria have been proposed, pri-
marily relying on signs, symptoms, and other subjective 
measures [124, 125]. Various ways exist to classify differ-
ent types of mental disorders, such as the 5th edition of 
the Diagnostic and Statistical Manual of Mental Disor-
ders codes (DSM-5 codes) maintained by the American 
Psychiatric Association (APA) [126] or the clinical modi-
fication of the 10th revision of the International Classi-
fication of Diseases (ICD-10-CM) supported by World 
Health Organization (WHO) [127]. A mental or psychi-
atric disorder is described as an illness with psychological 
and/or behavioral manifestations that can cause substan-
tial distress and functional impairment. No objective 
tests are available for the diagnosis of mental disorders 
[122, 123], but different criteria have been used, primarily 
relying on signs, symptoms, and other subjective meas-
ures [124–127].

Mental disorders have a significant burden on health 
and economic and social consequences in all countries, 
and approximately 970 million people worldwide were 
affected by it in 2017, with anxiety disorder being the 
top condition [128, 129]. In 2019 depressive disorders 
and anxiety disorders were in the top ten causes of dis-
ease burden worldwide. Their related burden affects 
women more than men [130]. In 2020, the emergence 
of the COVID-19 pandemic led to exacerbated many 
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determinants of poor mental health. Daily SARS-CoV-2 
infection rates and reductions in human mobility were 
associated with a 27·6% increase in the prevalence of 
major depressive disorder and a 25·6% increase in the 
prevalence of anxiety disorders [131].

Effect of the gut microbiome and sex differences 
on psychiatric‑related conditions
Neurodevelopmental disorders and the microbiome
Autism spectrum disorders (ASDs)  Autism spectrum 
disorder (ASD) is a neurodevelopmental disorder that 
includes autism, Asperger’s syndrome, and other non-
specified pervasive developmental disorder [132]. The 
symptoms include a lack of social interaction and com-
munication skills, limitation of activity and interests, and 
repetitive behavior [133]. WHO estimated the worldwide 
prevalence of ASD at around one in 270 people [134], and 
it is more prevalent in males with a male-to-female ratio 
close to 3–4:1 [135, 136].

In ASD patients, the gut–blood barrier is more per-
meable [137]. As a result, bacterial metabolites and 
neurotoxic xenobiotics (compounds foreign to a living 
organism) leak into the patient’s body, setting off new 
responses such as gut inflammation affecting the brain 
through altering cytokine levels or altering metabolism 
[138–140]. GI problems are common in autistic individu-
als, and ASD is also associated with dysbiosis, specifically 
with a higher abundance of Clostridiales and an increase 
of Sutterella and Ruminococcus populations [141]. Still, 
it is not clear whether dysbiosis is a factor causing ASD 
or if the disease is causing microbial alterations [138]. 
Recently, Yap et al. [142] investigated an exciting theme: 
the potential confounding factors related to the gut 
microbiome and ASD. They stated that the microbiome 
has a minor direct association, and instead, ASD findings 
are associated with a less-diverse diet and sequentially 
reduced microbial diversity. Despite scientists’ attempts, 
no significant sex-specific ASD signature has been identi-
fied in humans. However, Wang et al. investigated differ-
ences in gut microbiome-associated epitopes in autistic 
children and found that sex was associated with spe-
cific gut microbiome-associated epitopes. They stated 
that the diversity of the epitopes differed between males 
with ASD compared with normal controls, but it was 
the same in females in the two groups [143]. Some ani-
mal studies provide evidence telling that the alteration in 
gut microbiota is sex-related, with Bacteroides, Parabac-
teroides, Sutterella, Dehalobacterium, and Oscillospira 
genera being the key drivers of sex-specific gut micro-
biome profiles [144]. This alteration can cause broad 
diversity of behavioral deficits that are characteristics 
of ASD in mouse models [145]. Other studies also indi-
cate that dysbiosis creates a vicious cycle, affecting the 

immune system by reducing detoxification and adsorb-
ing toxins, xenobiotics, and neurochemical compounds. 
Some enterotoxins and food-xenobiotics promote male-
specific neurotoxicity, which can account for the higher 
prevalence of the disease in males, along with intrinsic 
male immune system vulnerability [139]. One new study 
on pregnant women found that flu in individuals who did 
not receive an antibiotic during pregnancy significantly 
increased the odds of ASD in the child. In this subgroup, 
the male sex was also associated with increased probabil-
ities of ASD [146].

It may be possible to improve treatment outcomes by 
restoring the balance of the microbiota–gut–brain axis in 
autism. Some studies show promising results for treating 
ASD patients with probiotics or fecal microbiota trans-
plant therapies [141, 147, 148]. One clinical trial in 18 
ASD children involving fecal microbiota transplant led to 
significantly improved GI symptoms and ASD-relevant 
behaviors, which persisted at the 8-week follow-up [149]. 
Still, more clinical trials are needed to assess these treat-
ment methods’ effectiveness [145].

Schizophrenia  Schizophrenia is a severe chronic neu-
rodevelopmental disorder characterized by delusions and 
hallucinations, negative symptoms, and cognitive dys-
function [150, 151]. The global prevalence of schizophre-
nia is estimated at around 0.3% [128]. As for other major 
psychiatric disorders, no laboratory tests are available for 
schizophrenia, and diagnosis is based only on symptoms 
[127].

Different studies have shown altered intestinal micro-
biota is in these patients [29, 107, 152, 153], with changed 
interkingdom interactions between bacteria and fungi 
[154]. An increased abundance of Proteobacteria and 
Chaetomium and a decreased abundance of SCFA-
producing bacteria (e.g., Faecalibacterium and Lachno-
spiraceae) and Trichoderma were recorded [154]. Also, 
the pro-inflammatory and anti-inflammatory cytokine 
levels are high in patients, and robust induction of M1 
cytokines (e.g., GM-CSF and IL-6) and lack of an IL-2 
response point that a bacterial agent could be a trig-
ger [155]. Tracking Intestinal microbiota changes in the 
patients and comparing them with healthy controls may 
be a helpful way to develop a biomarker for diagnosis and 
prognosis, with the genus levels of Eisenbergiella, Rumi-
nococcaceae, and Turicibacter being more efficient as 
biomarkers [156].

Furthermore, intestinal microbiota significantly influ-
ences the oral bioavailability and half-life of antipsychotic 
medication‌, the first-line treatment for schizophrenia. 
This reduced bioavailability may explain, at least in part, 
the poor treatment effect in 30–40% of patients [157]. 
As a result, switching routes of administration (e.g., 
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parenteral antipsychotics) rather than switching drugs 
may be a better solution for increasing treatment effec-
tiveness [157, 158]. Altering the microbiome may be an 
alternative way, but we need clinical trials to evaluate its 
effectiveness [159].

Attention deficit hyperactivity disorder (ADHD)  ADHD 
is a heterogeneous neurodevelopmental disorder with a 
childhood-onset that persists into adulthood [126]. A sys-
tematic review and meta-regression analysis by Polanczyk 
et al. and another meta-analysis by Simon et al. estimated 
the global prevalence of ADHD at around 5% in children 
and 2.5% in adults, with a female to male ratio of 2–3 in 
children and approximately 1 in adults. [160–163]. Sex 
differences are apparent in the prevalence of ADHD and 
types of its comorbid disorders (such as ASD, tics, learn-
ing disorders, rule-breaking behaviors, substance use dis-
orders, mood and anxiety disorders, bipolar disorder, and 
emotional liability) [160, 164, 165].

It has been theorized that dietary patterns can be 
linked to ADHD susceptibility via changes in the gut 
microbiome community. One study revealed that the 
ADHD group manifested a more significant proportion 
of refined grains intake and a lower proportion of dairy 
and vitamin B2. This study also pointed that the relative 
abundance of Bacteroides coprocola is higher in ADHD 
patients, while the relative abundance of Bacteroides uni-
formis, Bacteroides ovatus, and Sutterella stercoricanis 
are lower compared to healthy controls. S. stercoricanis 
showed a significant connection with dairy intake, nuts/
seeds/legumes, ferritin, and magnesium. [166].

Mood and stress disorders and the microbiome
Generalized anxiety disorder (GAD)  Generalized anxi-
ety disorder (GAD) is persistent, inappropriate, and 
excessive worrying, not limited to specific occasions 
[167]. GAD is the most common type of anxiety disor-
der and has a lifetime global prevalence rate of 3.7% [168]. 
The prevalence of GAD is approximately twice in women 
than men, and it is concluded that the condition has a sex-
specific characteristic [169].

Different studies demonstrated that the gut micro-
biome is changed in this disorders, and it has been 
hypothesized that the gut–brain axis could have a role 
in the pathogenesis of the disease [4, 170–173]. Geary 
et al. recently investigated whether gut dysbiosis’ effects 
on anxiety-related behaviors are sex-specific via oral 
administration of a moderate dose of nonabsorbable 
antimicrobial medications (ATMs: neomycin, bacitra-
cin, and pimaricin) on C57BL/6N mice, and by com-
paring the results with controls, they concluded that 
dysbiosis is seen in both sexes, with more substantial 
effects in females. They also found sex-specific effects 

on behavior and neuroanatomy, with males being 
more susceptible than females to microbial modula-
tion of locomotor activity and anxiety-like behavior and 
females being more susceptible than males to impair-
ments in aversive learning and cued recall [174].

The abundance of Firmicutes and Tenericutes phyla 
are lower in GAD patients, and the abundance of 
Eubacterium coprostanoligenes, Ruminococcaceae, 
and Prevotella negatively correlate with anxiety sever-
ity were as the abundances of Bacteroides, Escherichia, 
and Shigella correlate positively with anxiety severity 
[170]. Regarding the microbiome changes in remission 
of GAD patients, some contradictory evidence exists: 
Chen et  al. found that altered gut-microbiome pro-
file contributes to the pathogenesis and remission of 
GAD. At the same time, they remarked that they could 
not establish a causal association between microbial 
changes and disease remission due to the small sample 
size [170]. Navarro‐Tapia et al. proposed that remission 
did not affect the relative abundance of the various taxa 
[172].

Major depressive disorder (MDD)  Major depressive 
disorder (MDD) is characterized by a depressed mood, 
loss of interest or pleasure for at least two weeks [126]. A 
systematic review by Gutiérrez-Rojas et al. estimated the 
lifetime prevalence of MDD ranging from 2 to 21%, with a 
higher prevalence in European countries and lower preva-
lence in Asian countries [175]. The global prevalence of 
MDD was reported at around 2% in 2017 [176].

MDD, like GAD, is also twice as prevalent in women 
than men [177], which reveals a sex-specific characteris-
tic for both conditions. Earlier studies have justified this 
difference by the role of gonadal steroid hormones, and 
sex-linked genes have a role in shaping sexually dimor-
phic brain features [178, 179].

Microbiota changes in MDD patients compared with 
healthy controls include significant reductions in several 
taxa at the family and genus levels, specifically in families 
Prevotellaceae, genus Corprococcus, and Faecalibacte-
rium [180].

One study specifically looked into the sex-specific 
changes of gut microbiota in individuals with MDD. It 
showed that female patients had a higher abundance 
of Actinobacteria and males had a lower abundance of 
Bacteroidia than sex-matched healthy volunteers [181]. 
Another study indicated that exposure to probiotics dur-
ing puberty reduces stress-induced vulnerabilities to 
emotional behaviors later in life, in a sex-specific man-
ner [182]. Also, it is worth noting that there is a high co-
occurrence rate between anxiety, depression, and IBS; 
but the mechanism causing this comorbidity remains 
unclear [183, 184].
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Post‑traumatic stress disorder (PTSD)  Post-traumatic 
stress disorder (PTSD) is characterized by trauma-related 
and stress-related symptoms in four diagnostic clusters 
(intrusion, avoidance, negative alterations in cognitions 
and mood, and alterations in arousal and reactivity), 
which can impair psychosocial functioning notably [126]. 
The lifetime prevalence of PTSD ranges from 6.1% to 
9.2% in the United States and Canada and around 2% in 
middle-income countries [185–188]. The reason for lower 
prevalence outside North America is not fully understood 
[189], but it may involve environmental risk exposure and 
cultural issues [190].

An animal study on BALB/c mice has shown that par-
ticular strains of Bifidobacteria (e.g., Bifidobacterium 
longum) can enhance cognitive processes and affect 
fear learning [191]. The phyla Firmicutes and Bacteroi-
detes are vulnerable to PTSD-eliciting stress, and the 
Firmicutes/Bacteroidetes ratio increases due to stress 
induction in rodents [192]. One new study investigating 
early-life stress in rats subjected to maternal separation 
also confirmed gut microbiota alterations. In both sexes, 
the relative abundance of the Bacteroides genus was 
increased, and the abundance of the Lachnospiraceae 
family was decreased. In contrast, maternal separation 
increased that of Streptococcus genus and decreased 
Staphylococcus genus only in males; simultaneously, the 
abundance of the Sporobacter genus was enhanced, and 
Mucispirillum genus was reduced only in females [193].

Limited human studies have looked into the role of the 
gut microbiome in PTSD, and the findings are conflicting 
[194–196]. One study on cirrhotic veterans with PTSD 
revealed a reduced microbial diversity (with a statistically 
significant difference compared with the control group), 
increased relative abundance of Enterococcus and Pro-
teobacteria, and reduced Ruminococcaceae and Lachno-
spiraceae [197].

Eating disorders
Anorexia nervosa (AN)  Anorexia nervosa is charac-
terized by insufficient food intake and poor diet, which 
leads to very low body weight with an indifference to the 
seriousness of the illness [126]. Anorexia nervosa is more 
widespread in females, with the prevalence rates esti-
mated at around 0.3–1% in women and around 0.1–0.3% 
in men in developed countries [198, 199]. Anorexia ner-
vosa (along with bulimia nervosa) has the highest mortal-
ity rate of any psychiatric disorder and highest suicide risk 
of any eating disorders [200, 201]. In addition, comorbidi-
ties with autism spectrum disorders have been reported 
[202].

Besides external environmental factors, genetics and 
intestinal microbiome may play essential roles in the 
emergence and progression of the disease [203]. Some 

researchers investigated the role of the gut–brain axis 
in anorexia nervosa [204–208]. One study specifically 
revealed high plasma levels of bacterial ClpB (caseino-
lytic proteinase B) in the patients [209]. The gut micro-
biome in these patients differs from healthy individuals 
because of variations in patients’ intestinal environment 
(e.g., chronic caloric restriction, macronutrient imbal-
ance, micronutrient deficiencies, fluctuating food avail-
ability, osmotic perturbation, and high fiber content) 
[210–214]. Most, but not all, microbiome studies in AN 
patients stated dysbioses, such as increased Clostridium, 
Enterobacteriaceae, and M. smithii species and decreased 
Roseburia species [215–219]. Some studies also have 
reported a decreased alpha diversity in AN patients [205, 
206, 220], while others have not [216, 217, 221].

Bulimia nervosa (BN)  Bulimia Nervosa, first described 
in 1979 by British psychiatrist Gerald Russell as a chronic 
phase of anorexia nervosa [222], is characterized by over-
eating and then using compensatory mechanisms, such as 
self-induced vomiting, laxatives, or prolonged periods of 
starvation [223]. National studies conducted in the United 
States estimated the lifetime prevalence of BN rang-
ing between 0.28% and 1.59% [224]. Systematic reviews 
reported the lifetime prevalence of BN to be 0.81% [199, 
225–228]. All eating disorders, including BN, are more 
prevalent among females and young adults, with a female 
to male ratio ranging from 3:1 to 8:1 [229, 230].

It seems that microbiota changes modulate appetite 
regulation in BN patients [231–234]. Unlike AN, a dra-
matic lack of data is evident for BN. Although BN is also 
a life-threatening condition, only one study evaluated the 
role of microbiota in BN, which exclusively focuses on 
bacterial ClpB protein in patients, without investigating 
the difference of the gut microbiome species compared 
with healthy controls [209]. Like AN [235], plasma ClpB 
level was higher in the patients than in healthy con-
trols. ClpB produced by E. coli is competent in mimick-
ing α-MSH and stimulating an autoimmune response 
[236, 237]. The difference of BN with AN (hunger rather 
than satiety) is because of a switch in IgG autoantibody 
epitope that forms the immunocomplex in BN patients 
[233, 238].

Stress‑related functional gastrointestinal disorders (FGIDs)
Irritable bowel syndrome (IBS)  Irritable bowel syn-
drome (IBS) is a chronic functional bowel disorder that is 
a symptom-based diagnosis as recurrent abdominal pain 
and changes in stool frequency or form [239, 240]. The 
global prevalence of IBS is estimated at 11.2% [241]. Sex 
differences are seen in the prevalence and clinical mani-
festations of IBS [242]. Irritable bowel syndrome (IBS) is 
a chronic functional bowel disorder that is a symptom-



Page 11 of 24Shobeiri et al. Biology of Sex Differences           (2022) 13:12 	

based diagnosis as recurrent abdominal pain and changes 
in stool frequency or form [239, 240]. The global preva-
lence of IBS is estimated at 11.2% [241]. Sex differences 
are seen in the prevalence and clinical manifestations of 
IBS [242], but different female to male ratios are reported. 
Some studies claimed a 2:1 ratio, while others claimed a 
near 1:1 ratio [243].

The precise mechanism for IBS is not clear. However, 
evidence show dysregulation of the brain–gut–micro-
biota interaction may be implicated in the pathophysi-
ology of IBS, and changes in bile acid metabolism have 
been reported in the patients compared to the healthy 
population [244–246]. There is evidence of altered 
metabolism of the gut and dysbiosis in IBS patients, 
especially the reduction of genera in Ruminococcaceae 
[247]. Also, using probiotics, prebiotics, symbiot-
ics, dietary interventions, and altering the gut micro-
biota may be an effective way for treating the disease, 
and certain bacteria may be helpful in IBS treatment 
[248–250]. The role of the microbiome is probably 
sex-specific due to shreds of evidence showing that in 
people using antibiotics, women have a higher risk for 
IBS. It is also worth noting that this evidence revealed 
that 12 microbial species differ among IBS patients in 
a sex-specific manner. After correcting environmental 
and intrinsic factors that influence the gut microbiome, 
Akkermansia muciniphila was still associated with 
sex, with higher abundance in females [23]. The role of 
stress, sex hormones, and the trace aminergic system 
on the mucosal and the microbiota–brain–gut axis is 
also an important aspect of IBS [251, 252]. The precise 
mechanism for IBS is not clear. Stress, sex hormones, 
and the trace aminergic system on the mucosal and 
the microbiota–brain–gut axis seem to play an impor-
tant role in IBS [251, 252]. Dysregulation of the brain–
gut–microbiota interaction has been implicated in the 
pathophysiology of IBS, and changes in bile acid metab-
olism have been reported in the patients compared to 
the healthy population [244–246]. There is dysbiosis 
in IBS patients, especially the reduction of genera in 
Ruminococcaceae [247]. Also, using probiotics, prebi-
otics, symbiotics, dietary interventions, and altering 
the gut microbiota may be an effective way for treating 
the condition, and certain bacteria may be helpful in 
IBS treatment [248–250]. The role of the microbiome 
is probably sex-specific, as in people using antibiot-
ics, women have a higher risk for IBS. It is also worth 
noting that this evidence revealed that 12 microbial 
species differ among IBS patients in a sex-specific man-
ner. After correcting environmental and intrinsic fac-
tors that influence the gut microbiome, Akkermansia 
muciniphila was still associated with sex, with higher 
abundance in females [23].

Inflammatory bowel disease (IBD)  Inflammatory bowel 
disease is a chronic inflammation of the gastrointestinal 
tract, including Crohn’s disease (CD) and ulcerative colitis 
(UC) [253]. In 2017, more than 6.5 million people were 
dealing with IBD worldwide [254]. IBD prevalence is sex-
dependent, and different traits are seen in various IBD 
types: UC is 10% more frequent in adult men, whereas 
CD is 20%–30% more frequent in adult women [255–
258]. Interestingly, the prevalence of these two diseases 
in pediatric patients is the opposite of adults, with the 
CD being seen more in boys and UC more in girls. This 
change in the balance of IBDs among male and female 
patients befalls between 14 and 17 years [259]. IBD can 
affect physical, psychological, and social aspects of life. 
As a result, depression, and anxiety are more prevalent in 
these patients [254].

The exact mechanism of IBD is unclear, but IBD has 
been associated with microbiota dysbiosis, abnormal 
inflammatory response, and micronutrients (especially 
vitamin D) deficiency [260]. Dysbiosis in IBD patients 
can be described as a reduced population of butyrate-
producing species (e.g., Eggerthella lenta, Faecalibacte‑
rium prausnitzii, Clostridium groups IV and XIVa) and 
Helicobacter spp., and an increased population of Pas-
turellaceae, Veillonellaceae, Fusobacterium species, and 
Ruminococcus gnavus [260, 261].

Vitamin D plays a role in regulating transcription fac-
tors associated with the immune system responses and 
barrier functions [260], and the Vitamin D receptor is 
the first human gene known to shape the gut microbiome 
[262]. Vitamin D deficiency is a common finding in IBD 
patients, associated with poor outcomes [263]. Murine 
studies also depict that vitamin D receptor variations can 
significantly influence the gut microbiota and could have 
a potential therapeutic role for IBD patients [262, 264]. 
One meta-analysis in humans revealed that Parabacte-
roides is the most significant taxon correlated with the 
VDR gene [262], while a study on Vdr−/− mice revealed 
enrichment in Clostridium and Bacteroides and deple-
tion in Lactobacillus [265].

Microbiota alterations in IBD patients include a 
higher number of bacteria on the mucosal surface, a 
reduction in overall bacterial diversity, and dysbiosis 
[266]. In ulcerative colitis patients, Gammaproteo-
bacteria, the Enterobacteriaceae (e.g., Escherichia coli, 
Klebsiella pneumonia), the Clostridium histolyticum/
Clostridium lituseburense group, the Clostridium coc-
coides/Eubacterium rectale group, the Bacteroides/
Prevotella cluster were predominant; while in Crohn’s 
disease patients, Gammaproteobacteria, Enterobac-
teriaceae, or Bacteroides/Prevotella was predominant 
[267–269]. More studies are needed to investigate 
any sex-specific role of the gut axis in IBD due to 
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contradictory findings: some studies found no sepa-
ration and difference concerning sex [261, 270], 
while other studies found sex-specific differences 
in the microbiome [271] and the association of VDR 
gene single-nucleotide polymorphism with intestinal 
pathologies [264].

Visceral pain perception  Visceral pain is a heteroge-
neous spectrum of conditions, ranging from ingestion 
discomfort to intense renal colic pain [272]. This pain 
has an enormous effect on life quality affecting sleep, 
sexual among other functions [273, 274]. Sensing the 
visceral pain initiates with mechanical stimulation 
of nociceptors, followed by a nociceptive signal gen-
eration that travels within ascending pathways of the 
spinal cord to thalamic and corticolimbic parts of the 
brain to be perceived as pain [275].

Gut microbiomes play a pivotal role in the regula-
tion of visceral pain. Different preclinical studies on 
animals support the role of the gut microbiome in 
enhanced pain signaling [276, 277]. Germ-free mice 
studies showed the necessity of gut microbiome for 
adequate pain sensitivity development since these 
mice had reduced pain perception following inflam-
matory stimulation [278]. One new murine study spe-
cifically proved that ovariectomy-induced visceral 
hypersensitivity is dependent on the gut microbiota, 
and visceral pain is regulated across the estrous cycle 
in a microbiota-dependent way. Surprisingly this trait 
was not seen in female germ-free mice, and these mice 
had similar visceral pain responses to colorectal dis-
tension as their conventional controls [279]. So this 
murine study provides evidence for a significant role 
of female sex hormones and the gut microbiota in the 
sensation of visceral pain in females [279], which can 
also be seen in humans [280].

Some factors such as host genetics, stress, diet, anti-
biotic consumption, infections, or infancy traumas can 
assert their roles on visceral pain via disturbing the 
gut microbiome with an increased population of Lac-
tobacillus (e.g., Lactobacillus paracasei, Lactobacil-
lus reuteri), Bacillus, Bifidobacteria, Clostridium, and 
Eubacterium rectale [281–284]. Clinical studies also 
reported altered gastrointestinal microbiota in patients 
with chronic or recurrent visceral pain (e.g., Inflam-
matory bowel disease, Irritable bowel syndrome) [266, 
285–292]. Other studies on rodents revealed that 
some bacterial species such as Lactobacillus paraca‑
sei and Lactobacillus acidophilus could induce opioid 
and cannabinoid receptors in intestinal epithelial cells, 
which will prevent visceral hypersensitivity and reduce 
pain perception [281, 293, 294].

Effect of the gut microbiome and sex differences 
on neurodegenerative diseases
Alzheimer’s disease
Alzheimer’s disease (AD) is the most common form of 
dementia, with an enormous social and economic burden 
[295, 296]. Alzheimer’s disease and other types of demen-
tia are a significant and growing global health challenge, 
with 40–50 million people currently living with demen-
tia [297]. In 2016, the global prevalence of AD in females 
was 1·17 times the age-standardized prevalence in males, 
with more women dying from this condition than men in 
the same year [297].

The pathological mechanism responsible for AD is 
complex [298], involving aggregation of the beta-amyloid 
peptide and hyperphosphorylated tau protein (also called 
neurofibrillary tangles or NFTs) and loss of neuronal 
connections in the brain, which results in loss of brain 
function [299–302]. Autopsy studies have shown a more 
significant global AD pathology burden in women than in 
men because of higher loads of NFTs [303, 304].

Gut microbiome alteration is somehow involved in 
Alzheimer’s disease, similar to other related neurode-
generative diseases (e.g., Parkinson’s disease) [305].  For 
instance, Vogt et  al. reported that trimethylamine 
N-oxide, a microbiota-derived metabolite, was elevated 
in Alzheimer’s patients [306].

Zhuang et  al. and Vogt et  al. independently looked at 
the gut microbiome of patients with Alzheimer’s disease, 
with a lower abundance of Firmicutes and Bifidobacte-
rium and a higher abundance of Bacteroidetes, Proteo-
bacteria, and Actinobacteria than healthy individuals 
[307].

One murine study specifically looked into microbiome 
alterations sex-specifically, reporting a higher abundance 
of Prevotella and Ruminococcus in female mice and a 
lower abundance of Sutterella than male mice [308].

Parkinson’s disease
Parkinson’s disease (PD) is a neurodegenerative disease 
characterized by bradykinesia, rigidity, resting tremor 
and postural instability [309]. Based on the global burden 
of disease 2016 estimations, 6.1 million (95% UI 5–7.3) 
people suffered from PD worldwide. Of those, 2.9 mil-
lion (47.5%) were women, and 3.2 million (52.5%) were 
men [310]. The primary pathogenesis of PD is suggested 
as the loss of dopaminergic neurons in the basal ganglia 
(especially substantia nigra) and spreading Lewy bodies 
through various brain zones [311].

Several studies have provided evidence on gut 
microbiota alterations in individuals with PD com-
pared to healthy controls [312–314], describing 
reduced abundances of Dorea, Bacteroides, Prevotella, 
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Faecalibacterium, Bacteroides massiliensis, Stoquefichus 
massiliensis, Bacteroides coprocola, Blautia glucerasea, 
Dorea longicatena, Bacteroides dorei, Bacteroides ple‑
beus, Prevotella copri, Coprococcus eutactus, and Rumi‑
nococcus callidus [313]. Also, increased abundances of 
Christensenella, Catabacter, Lactobacillus, Oscillospira, 
Bifidobacterium, Christensenella minuta, Catabacter 
hongkongensis, Lactobacillus mucosae, Ruminococcus 
bromii, and Papillibacter cinnamivorans are reported 
[313].

Interestingly, Braak’s seminal theory stated that an 
unknown neurotropic factor goes through the gut and 
causes progressive increments in Lewy body pathology. 
Moreover, Lewy pathogens spread in the brain via the 
vagus nerve [315]. Several human and experimental stud-
ies elaborated on this theory and showed evidence that 
gut might indeed instigate PD pathogenesis [316].

Sex hormones, primarily estrogens, are thought to 
play an essential role in protecting healthy cells and neu-
rons against oxidative mechanisms, also maintaining 
the dopaminergic system functions [317, 318]. Notably, 
estrogen is assumed to be an origin for existing sex dif-
ferences in PD because of its protective roles [319]. In 
an experimental study by Siani et  al. [320], female mice 
revealed a higher dopaminergic loss in the substantia 
nigra due to ovariectomy compared to controls. Inter-
estingly, exogenous estrogen led to a preserved dopa-
minergic loss, which could be considered as a potential 
therapeutic agent in PD patients. Considering the roles 
of the gut–brain axis in the mechanism of action of levo-
dopa (primary PD treatment) [321] and the roles of estro-
gen, bring us this idea that sex-specific therapeutic agents 
affecting the gut–brain axis may be effective. Apart from 
several studies focusing on microbiome and PD, and sex 
and PD interactions, no studies have not been performed 
to exhibit sex-specific roles of microbiota–gut–brain axis 
in the occurrence and progression of PD.

Multiple sclerosis
Multiple sclerosis (MS) is an autoimmune proinflamma-
tory CNS-demyelinating disease [322] involving genetic 
and environmental factors in its pathology [323, 324]. 
The Global Burden of Disease Study reported that there 
were 2,221,188 prevalent cases of multiple sclerosis in 
2016 globally (95% uncertainty interval [UI] 2 033 866–2 
436 858) [325], which indicates that every 5 min, some-
one, somewhere in the world is diagnosed with MS [326]. 
The global prevalence of MS in adults varies considerably 
by sex, with the sex ratio of 2:1 in favor of women in the 
sixth decade of life [325].

Recent evidence implies that gut microbiota is one of 
the critical environmental factors in MS etiology [327], 
and different studies are done on the microbiome profile 

of MS patients. Zhang et al. find that GI problems (e.g., 
constipation, bloating, fecal incontinence) and small 
intestinal bacterial overgrowth are more common in 
MS patients compared with sex and age-matched con-
trols without MS [328]. Chen et al. reported an increased 
abundance of Pseudomonas, Mycoplana, Haemophi-
lus, Blautia, and Dorea and a decreased abundance of 
Parabacteroides, Adlercreutzia, and Prevotella genera 
in MS patients compared with healthy controls [327]. 
Tremlett et  al. study on pediatric patients revealed sig-
nificant enrichment in the relative abundance of the 
Desulfovibrionaceae (Bilophila, Desulfovibrio, and Chris-
tensenellaceae) and depletion in Lachnospiraceae and 
Ruminococcaceae; however, overall gut bacterial beta 
diversity was not significantly related to the disease sta-
tus [329]. Another study on progressive MS and relaps-
ing–remitting MS found increased Clostridium bolteae, 
Ruthenibacterium lactatiformans, Akkermansia, and 
decreased Blautia wexlerae Dorea formicigenerans, and 
Erysipelotrichaceae CCMM [330].

Regarding the sex differences, one murine study on the 
effect of Alcohol on autoimmune encephalomyelitis (the 
most commonly used experimental model for the human 
inflammatory demyelinating disease) noted that mod-
erate alcohol consumption significantly lessens clinical 
EAE Severity in a Sex-Specific Pattern: alcohol-fed males 
underwent more significant disease remission, male-
specific decrease in microglial density in the cervical and 
thoracic spinal cord in late-stage disease, and sex-spe-
cific alterations in essential microbiota known for their 
immune regulatory roles (including more increment of 
Turicibacter, Akkermansia, Prevotella, and Clostridium 
in females compared to males) [331]. In humans, Chen 
et al. find that the microbes involved in the phytoestro-
gen metabolic pathway (Prevotella, Parabacteroides, 
and Adlercreutzia) are interestingly increased in female 
patients [327]. However, more studies are needed to 
mark the possible role of sex in the microbiome changes 
of MS patients.

Probiotics, prebiotics, and dietary interventions 
based on sex
As diet plays an essential role in forming the gut micro-
biota composition, several clinical trials and cohorts are 
performed to reveal how diet can affect the brain and 
behavior via altering gut microbiota pattern [64]. Probi-
otics including Lactobacillus and Bifidobacterium spe-
cies have been evaluated as therapeutic agents in various 
mental and neurodegenerative disorders [332]. Preclini-
cal studies of the administration of probiotics in ASD 
children revealed promising findings, but a meta-anal-
ysis of human studies showed that these agents might 
not help relieve GI and behavioral symptoms [333]. In 
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addition, another meta-analysis reviewing the efficacy 
of probiotics in patients with schizophrenia failed to 
show any promising outcomes. However, probiotics help 
improve the metabolic effects of antipsychotic medica-
tions [334]. Prebiotics and probiotics have been admin-
istered for depression and anxiety. Aggregated data of 
34 randomized controlled trials supported the potential 
antidepressant and anxiolytic effects of probiotics [335].

Dementia and AD is another neuropsychiatric disor-
der in which the effects of probiotics have been assessed. 
However, based on the results of a meta-analysis, data 
were not adequate to firmly conclude that they have posi-
tive effects [336, 337]. Additionally, daily utilization of 
strains of Lactobacillus and during the exams in students 
decreased diarrhea and increased sleep quality in men 
and relieved stress-related somatic symptoms in women 
[338].

Regarding sex differences, a study on a large sample of 
wild and laboratory fishes, laboratory mice, and humans 
evaluated the interactive mechanism of action of sex and 
diet on the gut microbiota composition. This elegant 
study reported that some species which were responsive 
to sex hormones also responded to foods variations [21]; 
for instance, mice revealed that diet might alter the gut 
microbiota in males and females dissimilarly. Consider-
ing the two natural fish populations, correlations between 
the individual differences and diet disparities among 
subjects were observed [21]. Consistently, a low-fat diet 
caused an increased abundance of Desulfovibrio, Rose‑
buria, and Holdemania in males compared to females 
[339]. Moreover, in line with this idea that dietary-based 
interventions might alter sex hormones levels and regu-
lations, serum levels of estradiol and progesterone were 
contrarily associated with the utilization of dietary fibers 
in women [340]. In addition, male mice supplemented 
with Lactobacillus showed higher testosterone levels and 
matured and larger testicles compared to the untreated 
[341].

Socioeconomic status (SES) and its effects 
on neuropsychiatric disorders
Low socioeconomic status (SES) affects different areas of 
social life. Investigating the role of SES on psychiatric dis-
orders is not something new, and some old studies exist 
on this matter [342, 343]. SES indexes and various soci-
oeconomic status markers are defined for these studies, 
such as position in the labor market, occupation status, 
education status, household income, poverty, material 
wealth, or family affluence [344].

Various studies analyzed the role of sex on this theme. 
Multiple studies did not find any evidence for sex differ-
ences between SES and mental health disorders [345–
347]. Leve et  al. [348] found evidence that girls from 

low-SES families are affected more than boys, while Due 
et al. [349] and Lipman et al. [350] had stated the oppo-
site. One meta-analysis studying the effect of socioeco-
nomic status (SES) on the mental health of children and 
adolescents aged four to 18  years found that socioeco-
nomically underprivileged individuals were two to three 
times more likely to develop mental health problems 
[351]. These contradictory results show the need for 
more large-scale studies in this area.

A recent study revealed that the children of a parent 
with a mental disorder were at more risk of presenting 
mental disorders than those without these problems. 
Interestingly, the mother’s SES and mental disorders 
showed a higher association with the child’s mental dis-
orders than the father’s [352].

The mechanism by which SES affects mental health 
is not entirely understood, but it is suspected that some 
genes and hormones are involved. Epigenetic modifica-
tion, particularly methylation of gene regulatory regions, 
shapes human brain function associated with risk for 
mental illness [353]. As for the role of hormones, Zhu 
et  al. found low-SES children showed an increase in 
pre-bedtime basal cortisol but a decrease in the cortisol 
awakening response [354].

Future directions and conclusion
Considering the effects and specificity of the microbiome 
in human diseases, new therapeutic approaches targeting 
gut microbiota have been developed to improve human 
health. Within the precision medicine framework, the 
microbiome seems an essential element. For personalized 
drug therapies, the microbiome’s effect on the metabo-
lism, availability, efficacy, and toxicity should be taken 
into account.

Although many aspects of the effects of sex differences 
in the brain and gut microbiota composition have been 
revealed, these interactions and their relationship to the 
incidence of neuropsychiatric disorders remain unclear. 
Studies are needed to explore the associations between 
sex differences and microbiota in conditions includ-
ing PD, MS, ADHD, PTSD, GAD, bulimia, and anorexia 
nervosa. In addition, most studies focus on male fea-
tures; thus, experiments revealing female characteristics 
are more needed in this regard. To conclude, sex differ-
ences and gut microbiota are bidirectionally affecting 
each other, and these communications may lead to the 
occurrence and progression of specific neuropsychiatric 
disorders. Furthermore, sex can influence gut microbi-
ota composition and diversity via multiple pathways and 
mechanisms, resulting in different incidence rates of neu-
rologic and psychiatric disorders. Figure  2 summarizes 
sex-related differences in gut microbiota and their possi-
ble relations to various neuropsychiatric disorders.
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