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Abstract

Sex-related differences in the occurrence of autoimmune diseases is well documented, with females showing a
greater propensity to develop these diseases than their male counterparts. Sex hormones, namely dihydrotestosterone
and estrogens, have been shown to ameliorate the severity of inflammatory diseases. Immunologically, the beneficial
effects of sex hormones have been ascribed to the suppression of effector lymphocyte responses accompanied by
immune deviation from pro-inflammatory to anti-inflammatory cytokine production. In this review, we present our
view of the mechanisms of sex hormones that contribute to their ability to suppress autoimmune responses with an
emphasis on the pathogenesis of experimental autoimmune encephalomyelitis.
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Introduction
The normal function of the immune system is to protect
organisms against invading pathogens. When such a re-
sponse is directed against self-tissues, autoimmunity
may ensue. However, healthy individuals can have signa-
tures of autoimmune response as evidenced by the
detection of low levels of antibodies and T cells against
autoantigens that may reflect formation of natural anti-
bodies or idiotypic networks [1–4]. Autoimmune diseases
(AIDs) are clinically manifested when autoimmunity leads
to tissue damage disrupting the functions of affected
organs [5, 6].
AIDs are generally noted to be the leading causes of

deaths in young to middle-aged women in the USA [7].
Estimates indicate a large variation in both the incidence
(less than 1 per 100,000 persons to more than 20 per
100,000) and prevalence (less than 5 per 100,000 to
more than 500 per 100,000) of these diseases [8]. Ap-
proximately 50 million Americans may have some form
of an autoimmune disease and of these, more than 75%

are women [7]. The chronic nature of many of these dis-
eases such as multiple sclerosis (MS) can significantly
impact medical costs and quality of life [8].
MS is a chronic inflammatory and demyelinating dis-

ease of the central nervous system (CNS), and it affects
approximately 2.5 million people worldwide showing a
female preponderance (2 to 3:1). Within the USA alone,
MS affects approximately 400,000 people with 10,000
new cases diagnosed annually [9–11] resulting in the
loss of ~ 2.5 billion to the economy [12, 13]. While, the
disease can be seen in people of any age, it is commonly
diagnosed in the age group of third to fifth decades. Al-
though, no known causes are identified, it is commonly
believed that a combination of genetic susceptibility and
environmental factors trigger the disease-onset [9, 11].
Traditionally, four types of MS have been identified.
These include relapsing-remitting MS (RRMS), second-
ary progressive MS, primary progressive MS, and
progressive-relapsing MS (PRMS) [14], with RRMS being
the most common (~ 85%) and PRMS the rarest of all
(~ 5%) [11]. A recent classification emphasizes combin-
ation of active or inactive, and/or stable or progressive
nature of the disease course [15]. The pathological diver-
sity of lesions in the white and grey matter with
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differential mechanistic signatures provides an additional
layer to the variable clinical phenotypes [16, 17]. Given
this complex nature, it is a challenge to study the patho-
genetic events in humans, and therefore, various animal
models of experimental autoimmune encephalomyelitis
(EAE) are routinely used in MS research.
EAE can be induced in a wide-range of species (ro-

dents: rabbits, rats, and mice; and non-rodents: monkeys
and pigs) [14, 18–22]. The two hallmarks of EAE are in-
flammation and demyelination, and the disease is typic-
ally mediated by autoreactive T cells [23, 24]. While
EAE-induction by active immunization involves the use
of myelin antigens or their immunogenic peptides in
complete Freund’s adjuvant (CFA), the disease can be
transferred to naïve animals by adoptively transferring
myelin-reactive T cells. Three main myelin antigens have
been identified to induce EAE, namely myelin basic pro-
tein (MBP), proteolipid protein (PLP), and myelin oligo-
dendrocyte glycoprotein (MOG), and their disease-
inducing peptides are also identified. These include MBP
1-11 that induces EAE in B10.PL or PL/J mice (H-2u);
PLP 139-151-induced EAE in SJL mice (H-2s) and MOG
35-55-induced EAE in C57BL/6 mice (H-2b) [14, 25]. Of
these models, sex differences have been well noted with
the PLP 139-151-induced EAE in SJL mice. In this
model, while females show chronic relapsing-remitting

paralysis, the disease-course is restricted to the mono-
phasic form in male mice [26]. These phenotypes resem-
ble some of the clinical features of MS making the SJL
model of EAE to be helpful for studying sex differences
in the CNS autoimmunity [26]. Here, we review the sali-
ent features of sexual dimorphism of AIDs with an em-
phasis on the role of T cells in the pathogenesis of EAE.

Sexual dimorphism in the occurrence of infectious
diseases vs. AIDs
It has been known for a long time that susceptibility to
various diseases differs by sex. While males are more
susceptible than females to viral, bacterial, and parasitic
infections, the tendency to develop autoimmune diseases
is higher in females than males [27] (Fig. 1).

Infectious diseases
Females are generally more resistant than males to viral
infections due to the higher antibody production [28],
especially during the period between puberty and meno-
pause [27], but the conflicting reports may question this
notion. While males appear to contract certain viral in-
fections at a higher rate—such as human immunodefi-
ciency virus, west Nile virus, hepatitis B virus, influenza
virus, and Hantavirus [28, 29]—females with the same
viral load as males can be at a higher risk of developing

Fig. 1 Sexual dimorphism with the disease occurrence, and its underlying potential immune mechanisms. It is generally believed that males are
more prone to infectious diseases than females, but the latter group have a preponderance to develop autoimmune diseases. These phenotypes
are shown with elbow arrows (favorable), and arrows with inhibitory lines (unfavorable). The hormonal environments in females (estrogens) and
males (androgens) have been shown to influence both innate and adaptive immune cell functions. Additionally, hormonal actions on immune
cells in the respective sexes can potentially be influenced by transcriptome profiles in the sex chromosomes and epigenetic modifications.
Nonetheless, genetic susceptibility and exposure to environmental microbes, including alterations in the gut microbiota, if any are still the key
players to trigger AIDs, but their outcomes can be modulated by sex hormones
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acquired immune deficiency syndrome [30]. Similarly,
during the 2009 H1N1 avian influenza pandemic in
Canada, women were found to be at two- to six-fold
higher risk of dying than men [31]. Conversely, emerging
evidence suggests that mortalities are more common in
males than female individuals affected with coronavirus
disease-19 that can be ascribed to other confounding
factors such as smoking and behavioral changes [32–34].
Generally, women are known to mount higher anti-viral
immune responses than men which may be beneficial to
clear the virus, but prolongation of such a response can
lead to increased disease-severity [31, 35]. For bacterial
infections however, males were found more susceptible
than females to Mycobacterium tuberculosis (M.tb), Heli-
cobacter pylori, Coxiella burnetii, Pseudomonas aerugi-
nosa, and Salmonella typhimurium infections [36–40].
Additionally, the proportion of adult males found to
have symptomatic M.tb infections was two-fold higher
than in females [36]. Conversely, women are more likely
than men to survive from sepsis [41]. Females have a
lower incidence of malaria than males [42] and experi-
mentally, female mice also were found to be more resist-
ant than males to Plasmodium chabaudi infection [43].
These data suggest that sex differences may vary from
disease to disease of infectious origin.

AIDs
It is well conceived that most autoimmune diseases are
more prevalent in females than males [44, 45]. This
phenomenon has been well documented especially with
AIDs mediated by autoantibodies such as Sjögren’s syn-
drome (female to male ratio of 16:1), systemic lupus ery-
thematosus (SLE) (7:1), Hashimoto’s thyroiditis (19:1),
and Grave’s disease (7:1), in which, about 80% of the pa-
tient population was female [46]. In the middle tier of
diseases, which includes rheumatoid arthritis (RA) (3:1)
and MS (2:1), the sex distribution has been 60–75% in
women relative to men [46]. In fact, a study involving
Danish cohorts revealed the risk for developing MS was
increased more than two-fold in females, whereas in
males, the disease remained unchanged over a period of
25 years [47]. Likewise, neuromyelitis optica spectrum
disorder (NMOSD) is also characterized by a high fe-
male predominance and the disease-outcomes can also
be influenced by the sex [48]. Interestingly, this differ-
ence is much higher in NMOSD associated with AQP4-
antibodies, and less in seronegative NMOSD without
pathogenic autoantibodies [49, 50]. However, for other
diseases such as inflammatory bowel disease and type 1
diabetes (TID), the prevalence rates are similar for both
sexes [51]. Conversely, Guillain-Barre syndrome appears
to be occurring at equal or higher rates in males than fe-
males [51], whereas myasthenia gravis shows a female
predominance in the early-onset as opposed to a male

predominance in the late onset of the disease [52]. Like-
wise, myocarditis is more frequently reported in young
men than their female counterparts [53]. Of note, male
patients with later onset MS have a higher risk for faster
disability progression suggesting that sex-differences
may also be seen in the disease course [54].
Furthermore, occurrence of AIDs appears to be influ-

enced by the reproductive cycles in affected individuals.
For example, pre-pubertal cases of MS are extremely
rare, with only 3–5% cases reported in individuals younger
than 18 years of age. The finding that sexual dimorphism
is seen mostly in post-pubertal women suggests that pu-
berty is a critical risk factor [55]. For example, the female-
to-male ratio for SLE is found to be 2–6:1 prior to puberty
(9–14 years for boys and 8–13 years for girls), as opposed
to 9:1 after puberty (≥ 15 years for boys and ≥ 14 years for
girls) [56]. Additionally, disease severity can be influenced
by pregnancy, as shown with MS, where the clinical signs
of the disease are suppressed during pregnancy, especially
during the third trimester. However, the risk of MS re-
lapse is increased in the first 3 months of post-partum and
returns to the pre-pregnancy level by 6 months after deliv-
ery [57, 58]. In the case of RA however, symptoms can be
low or completely suppressed during gestation, whereas
women with SLE often have exacerbated symptoms dur-
ing pregnancy [56]. While, these observations point to a
possibility that the sex hormones may determine the clin-
ical outcomes of AIDs, primary triggers of these diseases
remain largely unknown.

Factors that influence the development of AIDs
Two major factors have been implicated in the induction
of AIDs. These include genetic susceptibility and expos-
ure to environmental factors and the readers may find
excellent reviews on these topics elsewhere [59, 60]. Fur-
thermore, transcriptome profiles of sex chromosomes,
specifically X, and epigenetic variations also appear to
influence the occurrence of autoimmunity (Fig. 1). One
such transcript is KDM6a where the animals deficient
for this gene were found resistant for the development
of EAE [61]. Other potential candidates include Fork-
head box P3 (FoxP3) and Toll like receptor (TLR) 7
[62]. Likewise, epigenetic modifications (DNA methyla-
tion, histone modifications, chromatin remodeling, and
non-coding RNAs) at major histocompatibility complex
(MHC) loci may influence sex differences in MS [51, 63]
(Fig. 1). Additionally, polymorphisms in the interferon
(IFN)-γ and interleukin (IL)-12 receptor β genes were
noted with sex differences in susceptibility to MS [64,
65]. Deficiency of the Fas/CD95 death receptor was as-
sociated with decreased apoptosis of inflammatory cells
in the CNS with enhanced EAE severity. Such an associ-
ation was also seen in women with MS [66], suggesting
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that the cellular responses might be different between
sexes.
Additionally, it has been recently shown that the sex

differences in autoimmunity can be influenced by the
gut microbiota (Fig. 1). For example, specific pathogen-
free non-obese diabetic (NOD) mice show a female pre-
ponderance to develop TID, but the germ-free mice lose
such a bias [67]. Furthermore, gut flora differ between
sexes, a trend reversed by male castration suggesting
that androgens can influence the gut microbiota [67].
Likewise, colonization by commensal microbes led to el-
evated serum testosterone levels and protection of male
NOD mice from developing TID [68]. Importantly,
transfer of gut microbes from adult males to immature
females altered the microbiota in females leading to re-
duced islet inflammation and autoantibody production
and protection from TID occurring in conjunction with
increased testosterone levels [68]. These data suggest
that the gut microbiota can be an important determinant
of the outcomes of sexual dimorphic nature of auto-
immune diseases in those affected. In support of this
preposition, microbiota composition revealed diverse
microbial populations in association with chronic-
progressive and chronic relapsing-remitting type of par-
alysis as evaluated in two mouse strains namely, C57Bl/6
and SJL mice [69]. However, existence of sex-specific al-
tered microbiota, if any that can potentially contribute
to the sex bias in EAE phenotypes, needs further investi-
gations. Taken together, the data indicate that the im-
mune microenvironments in males and females might
be uniquely influenced by sex hormones.

Immune mechanisms of sex hormones
Expression of sex steroid receptors in immune cells
Physiologically, estrogens are responsible for female sex-
ual characteristics, similar to androgens in males [70].
Estrogens include estrogen (E1), estradiol (E2), and es-
triol (E3), of which E3 is produced only during preg-
nancy [71]. Their effects are mediated through estrogen
receptor alpha (ERα) and estrogen receptor beta (ERβ)
through the formation of homodimers or heterodimers.
ERα has been detected in dendritic cells (DCs), mono-
cytes, macrophages, natural killer (NK) cells, mast cells,
B cells, and T cells [72–77]. Even though CD4 T cells
express more ERα than ERβ, CD8 T cells and monocytes
express low amounts of both ERs. On the contrary, B
cells express higher amounts of ERβ than ERα [78].
Androgens mediate their effects predominantly by

binding to androgen receptors (AR) located intracellu-
larly [79], but they also can be expressed in a non-classic
form on the cell surface [80]. Several immune cells like
neutrophils, macrophages, B cells, and T cells have been
shown to express AR [79, 81]. In thymic T cells, only
classic AR has been detected, whereas both forms have

been noted in the splenic T cells [82]. Likewise, while
both macrophages and B cells can express classic AR,
non-classic AR is expressed only in macrophages [83].
Since most terminally differentiated immune cells ex-
press sex hormone receptors, their functionalities can be
potentially modulated by sex hormones.

Effect of sex hormones on innate immune cells
Several reports indicate significant differences in the in-
nate immune responses between sexes (Fig. 1). For ex-
ample, healthy female macaques have increased counts
of most leukocyte subpopulations in their peripheral
blood than their male counterparts [84]. Similarly,
healthy female mice have higher numbers of leukocytes
in the pleural and peritoneal cavities than do male mice
[85]. Circulating NK T cells can also be more numerous
in healthy women than men [86]. Male healthy mice,
however, appear to have more neutrophils than do fe-
males [87]. Such variations also have been noted in the
ability to respond to microbial products. For example, in
the airway inflammation model of asthma, greater num-
bers of macrophages and DCs were found to migrate
from lungs to the draining lymph nodes in females as
compared to males [88]. Human monocytes from males
after lipopolysaccharide (LPS) stimulation can produce
more of IL-1β, tumor necrosis factor (TNF)-α, and IL-12
than those from females [89]. Similarly, compared to fe-
male neutrophils, male neutrophils release greater
amounts of TNF-α in response to LPS stimulation. This
hyper-responsiveness of male neutrophils to LPS has
been suggested as a potential mechanism in making
males more susceptible than females to sepsis [90]. Fur-
thermore, higher levels of TLR 7 detected in females
compared to males can have implications in their ability
to respond to virus infections, because TLR-7 is involved
in the recognition of single-stranded viral RNA mole-
cules [91].

Effects of sex hormones on antigen-presenting cells
Most antigen-presenting cells express both ERα and ERβ
[74, 92]. Estrogens can regulate the functions of mono-
cytes/macrophages and DCs in various ways (Fig. 1). For
example, E2 inhibits expression of IL-1, IL-6, and TNF-α
in activated macrophages [93]. DCs pretreated with E2
can suppress antigen-presenting functions by enhancing
their ability to produce the anti-inflammatory cytokines
IL-4 and IL-10 [94]. However, it also has been reported
that E2, acting via ERα, can promote differentiation of
DCs [92]; the E2-treated DCs have superior antigen-
presenting function with increased major histocompati-
bility complex (MHC) class II expression [95]. Similar
effects also were noted with testosterone-treated macro-
phages [96]. Although male mice appear to have lower
numbers of Langerhans cells (LC) than female mice,
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androgens can influence DC development [97]. Topical
application of testosterone or its metabolite dihydrotes-
tosterone (DHT) can result in a significant decrease in
the density of LCs in both normal females and orchiec-
tomized males [98]. However, DHT appears not to pro-
mote granulocyte macrophage colony-stimulating factor-
driven DC differentiation [92]. Furthermore, estrogen or
progesterone can activate macrophages and promote
wound healing through angiogenesis and tissue remodel-
ing [99]. Androgens also can modulate inflammatory re-
sponses during acute wound healing, as evidenced by
the observation that castration or blockage of androgens
can result in suppressed recruitment of macrophages
[100, 101], as well as the experimental observation that
AR-deficient mice show accelerated wound healing [79]
(Fig. 1). These observations suggest that the innate im-
mune functions can be modulated by estrogens or an-
drogens similarly.

Effect of sex hormones on adaptive immune cells
Adaptive immune responses are mediated by B cells and
T cells. While some of the common lymphoid progeni-
tors originated in the bone marrow can be educated
within bone marrow to become B cells, some progeni-
tors go to thymus and mature to become CD4 or CD8 T
cells. T cells and B cells recognize self-antigens in the
corresponding primary lymphoid organs. While strong
recognition of self-antigens leads to the death of imma-
ture lymphocytes by negative selection, weak recognition
favors positive selection of developing lymphocytes, indi-
cating that the lymphocytes present in the peripheral
repertoires must have seen the self-antigens. Conversely,
if the self-antigens are not expressed in the generative
lymphoid organs, then the developing lymphocytes can
escape central tolerance. This has been clearly demon-
strated in the case of PLP 139-151 as the naïve reper-
toire of SJL mice contain a significant proportion of PLP
139-151-reactive T cells [102]. Mechanistically, this
phenomenon has been ascribed to the thymic expression
of truncated form of PLP, called DM-20 isoform that
contains a deletion in the coding region, representing
the motif, PLP 139-151 [102–104]. Furthermore, in
addition to repressive effects on lymphopoiesis, estro-
gens and testosterone can directly modulate the expres-
sion of autoimmune regulator (AIRE) protein that has a
pivotal role in the thymic expression of self-antigens
[105]. While estrogen suppresses AIRE via epigenetic
changes [106, 107], androgens promote AIRE’s expres-
sion, an effect that can be abolished by castration [106,
108]. Whether enhanced expression of AIRE in the male
thymus can be directly related to their low susceptibility
to autoimmune diseases needs further clarifications.
Additionally, sex hormones have been shown to

modulate lymphocyte development (Fig. 1). AR can

inhibit T cell development in the thymus, as castrated
animals exhibit thymic enlargement and increased num-
bers of lymphocytes that can be reversed by androgen-
replacement therapy [83, 109, 110]. E2 has been shown
to decrease B cell lymphopoiesis, since pregnancy levels
of estrogens have been correlated with both a significant
reduction in B cell numbers and activity of B lymphocyte
precursors in the bone marrow [111]. Experimentally,
formation of B cells was reduced in the bone marrow of
mice treated with E2, while castration or ovariectomy
led to increase in B lymphopoiesis ER-dependently [112,
113]. In addition, E2 can dampen B cell receptor (BCR)
signals and favor the generation of marginal zone B cells
and survival of autoreactive B cells [114, 115]. Similar
suppressive effects were noted with androgen on B cell
development. Assessment of B cell progenitors in the
bone marrow of castrated mice revealed a dramatic in-
crease in late pro-B cell levels, leading to an increase in
the numbers of peripheral B cells, but to a lesser degree
in pre-B and immature B cell populations [116, 117]. Es-
trogens can block T cell development and cause thymic
atrophy in an ERα-dependent manner [118].
As to the peripheral repertoires, both human and ma-

caque females appear to possess a higher number of cir-
culating CD4 T cells, including CD4/CD8 ratios, than
males [89, 119]. Likewise, human peripheral blood CD4
T cells from females produce relatively higher levels of
the T-helper (Th) 1 cytokine, IFN-γ, than from males
[120]. As to MS, although autoantibodies contribute to
the disease pathogenesis, no sex-specific variations have
been noted with antibodies in affected individuals. How-
ever, the peripheral repertoires of female humans and
non-human primates can contain a relatively high pro-
portion of activated B cells [84, 121], suggesting that
lymphocyte responses can be potentially dictated by the
inherent production of hormones specific to each sex.

Effects of sex hormones on the effector lymphocyte
responses
Sex hormones have been shown to exert anti-
inflammatory effects (Fig. 1), and therapeutically, estro-
gens and DHT and their derivatives have been used in
various diseases (Table 1). Specifically, as to MS, reduced
brain lesions and relapse rates were noted with estrogen
therapy accompanied with reduced inflammatory cyto-
kines (Th1 and TNF-α) [122, 123]. Likewise, DHT treat-
ment was associated with decreased fatigue and increased
gray matter volume with a corresponding decrease in CD4
T cell infiltrates and IL-2 production, and increase in
TGF-β1 secretion [124, 125]. Experimentally, low doses of
estrogens have been shown to stimulate Th1 responses,
whereas high doses equivalent to pregnancy levels can
promote Th2 response in primary cultures [126, 127].
Estrogens also can stimulate the production of regulatory
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T cells (Tregs) by upregulating the expression of FoxP3
[128, 129], and other non-FoxP3-expressing Treg subsets
such as B regulatory cells (Bregs), CD8+CD122+ Treg cells,
and CD11b+ CD206+ ARG-1+ M2 like macrophages,
among others [130]. EAE mice treated with E2 or E3 show
reduced disease severity through inhibition of Th1 and
Th17 cytokine production with a corresponding increase
in Th2 cytokines [126, 131]. Similarly, testosterone also
ameliorates EAE severity with a Th2 bias, as androgen-
treated T cell lines, as opposed to untreated cultures, se-
crete a lower amount of IFN-γ compared to IL-10 [132–
134]. Although testosterone appears not to promote dif-
ferentiation of murine Treg cells, high testosterone and
low estrogen conditions may promote skewing of Th1/
Th17 responses toward Treg cells [135]. Recent reports
suggest that males possess high frequencies of innate
lymphoid cells (ILC) 2, and IL-33 produced from mast
cells facilitate induction of non-pathogenic Th2 rather
than encephalitogenic Th17 cytokines in the females
[136]. But determination of antigen-specificity of these Th
subsets has remained a major challenge in the field.
In our research, we made efforts to understand the

cellular basis for sex bias in the occurrence of EAE in
SJL mice by testing the hypothesis that the EAE-
phenotypic differences between sexes are due to defects

in antigen-specific, CD4 T cell responses. To this end,
we created MHC class II (IAs) tetramers and dextramers
for PLP 139-151 that can detect antigen-specific T cells
with a high degree of specificity and sensitivity [137]. By
enumerating the precursor frequencies of PLP-specific
CD4 T cells flow cytometrically, we noted that the
lymph node cells derived from male and female SJL mice
responded equally to PLP 139-151, suggesting no defect
in their ability to respond to self-antigens. We have also
verified this phenomenon for an environmental
microbe-derived epitope that cross-reacts with PLP 139-
151 [138]. Furthermore, dextramer staining analysis of
CNS infiltrates also did not reveal any significant varia-
tions between sexes with PLP-specific T cells as evalu-
ated by flow cytometry (Fig. 2, top panel). Next, we
established a novel in situ dextramer staining method to
localize PLP-specific CD4 T cells in the brains of EAE
mice by laser scanning confocal microscopy (LSCM)
[139]. By evaluating brains obtained from male and fe-
male mice affected with EAE, we found the PLP dextra-
mer+ cells to be scattered all through the tissues with
equal proportions in both male and female mice, ruling
out defects in the migration of antigen-specific T cells
into the CNS (Fig. 2, bottom panel). Finally, T cells har-
vested from the brains of EAE mice and the T cell

Fig. 2 Enumeration of PLP 139-151-specific CD4 T cells in the CNS infiltrates from EAE mice. Male and female SJL mice were immunized with PLP
139-151, and brains and spinal cords were harvested from EAE-mice that showed paralytic signs. Mononuclear cells isolated from these tissues
were stained with PLP 139-151 (specific) or control (Theiler’s murine encephalomyelitis virus [TMEV] 70-86) dextramers and the dextramer+ CD4+

cells were then analyzed. Representative flow cytometric plots are shown (top panel). By establishing in situ dextramer staining technique using
LSCM, PLP 139-151-specific, CD4 T cells were analyzed in the brains harvested from male and female mice (bottom panel). CD4 T cells, green;
dextramers, red; merged (circles, dext+ CD4+ T cells; insets represent enlarged views of dext+ CD4+ T cells). Original magnification × 1000; bar =
20 μm. Mean ± SEM values are shown (n = 3)
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cultures stimulated with PLP 139-151 in vitro showed
comparable expression of most of the positive and nega-
tive regulators of T cell activation in both male and fe-
male mice (unpublished observations). Based on these
findings, we envision a scenario in which equal numbers
of PLP-reactive, pathogenic T cells infiltrate into the
brains in both male and female SJL mice, but their sur-
vivability may differ between sexes raising a question
whether differences exist in the biochemical pathways
between DHT and estrogen.

Biochemical mechanisms of sex hormones
Sex hormones mediate their cellular functions through
both the genomic/nuclear and nongenomic/membrane
signaling pathways, with the expected end result being
transcriptional regulation [140, 141] that may affect cell
proliferation or cell death [142–144]. For example, in
breast cancer cells, E2 stimulates cell growth by aug-
menting transition from G1 to S phase, leading to activa-
tion of cyclin-dependent kinase and retinoblastoma
protein phosphorylation [145, 146]. Whereas other
groups have also demonstrated that E2 is capable of in-
ducing apoptosis in breast and prostate cancer cells, thy-
mocytes, monocytes, macrophages, neuronal cells, and T
cells [147–150]. Similarly, androgens also can regulate
apoptosis in breast and prostate cancer cells, human
renal tubular leukemic and primary cells, including
monocytes and macrophages and T cells [151–153]. Re-
cently, autophagy-associated cell death has been de-
scribed that involves the upregulation of autophagy flux,
its machinery and the accumulation of autophagosomes
[154]. A relationship has been shown recently between
sex hormones, apoptosis, and autophagy. For example,
pregnancy levels of E2 and progesterone exert stimula-
tory effects on autophagy in mammary epithelial cells by
suppressing mammalian target of rapamycin (mTOR)
activation that occurs in association with apoptotic cell
death [155]. Additionally, E2 may regulate transcription
factors targeted by autophagy, miRNAs, and histone
modifications [156]. Likewise, E2 was shown to inhibit
osteoblast apoptosis by promoting autophagy via the
mTOR pathway [157]. But, less is known about andro-
gens, and they were shown to promote prostate cancer
cell growth through the induction of autophagy, in part
through the production of reactive oxygen species [158].
Because both autophagy and apoptosis are well-
controlled biological processes that play important roles
in tissue homeostasis and disease, dissecting the cross-
talk between the two, if any in the context of sex hor-
mones, may lead to identification of molecules that
affect both processes [159, 160].
To address the above theme, we established an in vitro

system to determine the mechanistic basis for DHT-
mediated effects in autoreactive T cells, since DHT has

been successfully used to treat EAE. Unexpectedly, we
noted that DHT reduced the proliferative responses to
PLP 139-151, but the effects were not selective, since
both proliferating and non-proliferating cells were
equally affected [161]. Likewise, using MHC class II dex-
tramers, we failed to note any immune deviation toward
Th2 phenotype in antigen-specific T cells; rather, cells
capable of producing all major inflammatory cytokines
(Th1 and Th17), including Th2 cytokines, were reduced
in DHT-treated cells. We also showed that DHT-
mediated effects involved the induction of cell death,
which also was associated with autophagy in autoreactive
T cells [161]. Although our data did not support the no-
tion that DHT-mediated effects accompany the appear-
ance of IL-10-producing cells [132–134], production of
IL-10 by non-T cell sources in vivo or in mixed T cell
cultures in response to DHT-treatment cannot be dis-
counted. Previous reports indicate that DHT can ameli-
orate EAE when administered either during induction or
in the effector phase of the disease process [132, 134].
Our observation that DHT induces cell death of both
proliferating and non-proliferating T cells may mean
that the DHT-mediated effects might have occurred due
to cell death. Importantly, we have also demonstrated
that cell death can occur in conjunction with autophagy
in DHT-treated cells [161], suggesting that common sig-
naling cascades, or crosstalk, may exist between the two
processes. Although dissecting this complexity is a chal-
lenge, using model systems that are deficient for apop-
tosis and autophagy machineries, such as caspase-3- and
ATG-deficient mice, may be helpful. These studies may
then provide avenues to identify molecules responsive to
DHT that can affect both apoptosis and autophagy
processes.

Perspectives and significance
As discussed above, autoimmune diseases are more
prevalent in females than males and such a discrepancy
also exists in the animal models, as shown with PLP
139-151-induced EAE in SJL mice [60, 138]. Essentially,
PLP-reactive T cells generated in males can induce EAE
in males comparable to the EAE-phenotype in females
induced by cells generated in the female SJL mice [138].
Conversely, cells from males can induce only mild dis-
ease in females [138], suggesting that the microenviron-
ment of recipients may determine the EAE-outcomes.
By investigating the underlying mechanisms, we had pre-
viously noted that the EAE-resistant, male B10.S mice
possess higher frequencies of Treg cells specific to PLP
139-151 than SJL mice, and depletion of Treg cells en-
abled B10.S mice to develop severe EAE [162, 163].
While these observations provide a cellular basis for
EAE-susceptibility and EAE-resistance phenotypes, male
hormones appear to play a critical role in the
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suppression of EAE. In support of this notion, a number
of studies [124, 125, 132, 136, 164–166] indicate thera-
peutic benefits of testosterone by ameliorating the EAE-
severity or clinical remissions in MS patients that are ac-
companied with increased gray matter volume, reduced
Th1/Th17 inflammatory cytokines (IFN-γ, IL-2, and IL-
17A), skewness of Th1/Th17:Treg ratio toward Tregs,
shift of immune response toward Th2 type (IL-10), in-
creased NK cell populations, and significant reductions
in CNS infiltrations containing CD4 T cells [124, 125,
132, 135, 164, 165, 167]. Based on our observations with
DHT [161], we did not recognize the phenomenon of
immune deviation from pro- to anti-inflammatory cyto-
kine switch; rather, DHT was found to suppress T cell
responses regardless of their antigen-specificity that in-
volve apoptosis and/or autophagy as the possible under-
lying mechanisms [161]. Additionally, we performed a few
pilot experiments and determined that estrogens mediate
effects similar to DHT (data not shown). Whether all sex
hormones mediate their functions through common path-
ways such as apoptosis and autophagy is currently un-
known. Proving this concept to be true may then widen
the applications of sex hormone-dependent molecules as
drug targets for a range of diseases, including metabolic
syndromes, aging, and osteoporosis. Such discoveries also
may potentially reduce the need to use small molecules
like selective androgen receptor modulators. As a result, it
may be possible to minimize side effects observed with sex
hormones.
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