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Abstract

Background: Gender-specific differences in hypothalamus–pituitary–adrenal (HPA) axis activity have been postulated
to emerge during puberty. We conducted a systematic review and meta-analysis to test the hypothesis that
gender-specific differences in HPA axis activity are already present in childhood.

Methods: From inception to January 2016, PubMed and EMBASE.com were searched for studies that assessed
non-stimulated cortisol in serum or saliva or cortisol in 24-h urine in healthy males and females aged ≤18 years.
Studies that conform with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
statement were reported. Standardized mean differences (95% CIs) were calculated and analyzed using fixed-effect
meta-analysis stratified for age: <8 years (prepubertal) and 8–18 years (peri-/postpubertal). For comparison, we ran the
same analyses using random-effects models.

Results: Two independent assessors selected 413 out of 6158 records (7%) for full-text screening, of which 79 articles
were included. Of these, 58 (with data on 16,551 subjects) were included in the meta-analysis. Gender differences in
cortisol metabolism differed per age group. Boys aged <8 years had 0.18 (0.06; 0.30) nmol/L higher serum and
0.21 (0.05; 0.37) nmol/L higher salivary cortisol levels, while between 8 and 18 years, boys had 0.34 (0.28; 0.40)
nmol/L lower serum and 0.42 (0.38; 0.47) nmol/L lower salivary cortisol levels. In 24-h urine, cortisol was
consistently higher in boys, being 0.34 (0.05; 0.64) and 0.32 (0.17; 0.47) μg/24 h higher in the <8- and 8–18-year
groups, respectively. However, gender-differences in serum cortisol <8 years and between 8 and 18 years were
absent when using random-effects models.

Conclusions: Gender differences in cortisol metabolism are already present in childhood, with higher salivary
cortisol in boys aged <8 years compared to girls. This pattern was reversed after the age of 8 years. In contrast,
the gender-specific difference in cortisol production as assessed through 24-h urine did not change with age.
Although differences were small, and analyses of gender differences in serum cortisol were inconclusive, they
might contribute to gender-specific origins of health and disease.
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Background
The hypothalamus–pituitary–adrenal (HPA) and hypo-
thalamus–pituitary–gonadal (HPG) axes are closely con-
nected. Animal studies demonstrated that corticotropin
releasing hormone (CRH) inhibits the HPG axis at all
levels, while testosterone inhibits the HPA axis at the
hypothalamic level. Additionally, estrogens stimulate the
HPA axis at both the hypothalamic and adrenal levels.
Moreover, CRH levels were dependent on the phase of
the menstrual cycle, with the highest concentrations oc-
curring during the follicular phase [1, 2].
Human studies suggested that estrogens decrease the

hepatic A-ring reduction of cortisol, albeit not in the short
term [3], and increase the production of corticosteroid-
binding globulin (CBG), thereby affecting the bioavailabil-
ity of cortisol [1, 4, 5]. The latter is being enhanced by the
use of oral contraceptives. Furthermore, HPA-axis re-
sponses to acute psychological stress were different de-
pending on the phase of the menstrual cycle [2, 4].
Due to an increase in sex steroid concentrations, gen-

der differences in HPA axis activity have been postulated
to emerge during puberty [6, 7]. However, more recent
evidence suggests that gender differences in HPA axis
activity are already present early in life [1, 8, 9]. Putative
mediators of these prepubertal gender differences are
the postnatal reproductive hormone surge, also known
as mini-puberty [10], and sex-specific effects of styles in
parental care, such as psychosocial stress reactivity to
maternal over-controlling behavior [11]. However, physio-
logical gender differences in cortisol concentrations dur-
ing childhood have not been studied yet.
Therefore, the question was raised whether gender dif-

ferences in unstimulated HPA axis activity emerge dur-
ing puberty or whether they are already present earlier in
life. Accordingly, we conducted a systematic review and
meta-analysis with the hypothesis that gender-specific dif-
ferences in unstimulated HPA axis activity are present in
early life and are subsequently influenced by puberty.

Methods
Search strategy
From inception up to 14 January 2016, PubMed and
EMBASE.com were searched (by BvdV and JCFK) for
studies that reported non-stimulated cortisol in serum
or saliva or cortisol in 24-h urine for healthy boys and
girls aged ≤18 years separately. Additional file 1 presents
the full search strategy, which was based on the following
index terms or free-text words: “cortisol” or “glucocorticoid”,
and “sex difference” or “sexual characteristics”, and “child”
or “adolescent”. Studies in children with (psycho) pathology,
on synthetic glucocorticoids, or with risk for abnormal HPA
axis activity (e.g., a history of maltreatment) were excluded.
An English language restriction was applied for abstracts of
published articles. No restrictions for year of publication or

study design, apart from reviews and case reports, were
applied. The review protocol was based on the Preferred
Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) statement.

Data collection
Two independent assessors (BvdV and JJH) screened 6158
titles and abstracts without consideration of outcomes.
Studies were not assessed blindly. Disagreement between
assessors was discussed until consensus was reached.
When gender differences were analyzed without reporting
on cortisol levels for boys and girls separately or when
data were only presented in graphs, authors were re-
quested for additional quantitative data. Data were stratified
into two age groups: <8 years (prepubertal) and between 8
and 18 years (peri-/postpubertal). Ideally, stratification
would have been based on pubertal staging according to
Tanner. Unfortunately, only a minority of the included
studies reported on the subjects’ Tanner stages. Because
pubertal onset before age 8 years is considered to be
pathologic [12], we chose 8 years as cut off for stratifi-
cation. When articles reported on serial cortisol measure-
ments, we included only data on the youngest assessment
age. When cortisol levels were reported prepubertally as
well as peri-/postpubertally within the same individual, we
included one sampling moment for each stratified group.
When articles reported on the same study population, we
included the article with the lowest bias risk. When arti-
cles reported on dynamic tests of HPA axis activity, we
only included baseline cortisol. We only included the
control subjects of case-control studies. If known, we
excluded female subjects on oral contraceptives. When
gender differences were described but not quantified,
the articles were included in the descriptive analysis ra-
ther than the meta-analysis.

Meta-analysis
When necessary, we converted serum and salivary corti-
sol levels into nanomole per liter (nmol/L) and 24-h
urine cortisol levels into microgram per 24 h (μg/24 h).
When means ± SDs were not reported, the SD was cal-
culated based on the following assumptions: the 95% CI
is 3.92 SDs wide (2 × 1.96); the inter-quartile range is
1.35 SDs wide; the range is 4 SDs wide; the SD is the SE
multiplied by the square root of the sample size [13]. To
assess parametricity, we assumed that a normal distribu-
tion extends no more than 2 SDs from the mean [14],
i.e., when normally distributed, the mean minus 2 SDs
should be >0 nmol/L. Data analyses were performed
using Review Manager (RevMan) version 5.3.5, 2014. For
each study, the standardized mean gender difference (95%
CI) in cortisol concentration was calculated by combin-
ing the SD with the sample size. Subsequently, fixed-
effect meta-analyses were performed first, which assumes
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that the effect estimate of the group differences was fixed
across studies. Second, the results of these analyses
were compared with random-effects meta-analysis,
which weigh studies of variable sample sizes more
equally. We reported any source of bias from each in-
cluded article conform the PRISMA statement and
assessed selection, performance, detection, and other
biases (Additional file 2). Bias was assessed as low, unclear,
or high. A sensitivity analysis was done by excluding
studies that had ≥1 high bias risks. Heterogeneity of the
data was assessed by the I2 statistic, with significance
defined as I2 > 50%. Publication bias was assessed through
funnel plots.

Results
Figure 1 shows the flowchart of the descriptive analysis
and meta-analysis. Of the 6158 titles and abstracts, 414
(7%) were eligible for full-text screening, from which 79
articles (19%) were included. Thirty-one authors of arti-
cles with insufficient quantitative data were contacted, of
whom 12 responded: six provided the necessary quanti-
tative data, five did not have access to the raw data any-
more, and one was not willing to participate. Two articles
reported the cortisol production rate assessed through
24-h serum sampling, which hampered inclusion in the
meta-analysis. The authors of 27 articles that only

provided gender-specific data in figures were contacted,
but could not be reached. Subsequently, these articles
were excluded. Finally, 21 articles were included only in
the descriptive analysis, and 58 articles (with data on
16,551 subjects) had sufficient data for inclusion in the
meta-analysis.

Description of included studies
Studies were conducted in Europe (n= 36), North America
(n= 37), Asia (n= 3), South America (n= 2), or Africa (n= 1)
and were published between 1973 and 2016. Sample sizes
ranged from 11 to 2824 subjects, with seven studies having a
sample size >500 subjects. Study designs were as follows:
randomized placebo-controlled (n= 2), prospective observa-
tional (n= 29), non-randomized intervention, i.e., stress tests
(n= 15), cross-sectional (n= 16), longitudinal (n= 11), and
case-control (n= 6). All studies that assessed serum or saliv-
ary cortisol used immunoassays, except for one that used
high-performance liquid chromatography (HPLC). Studies
that assessed 24-h urine cortisol used immunoassays (n= 4),
gas chromatography–mass spectrometry (n = 3), HPLC
(n = 1), and liquid chromatography–UV detection (n = 1).
Twenty-two studies (28%) did not collect morning sam-
ples, of which 11 did not report the time of collection and
11 described specifically that samples were collected in
the afternoon. Additional file 3 presents the data extracted

Fig. 1 This flow chart presents the different phases of the systematic review and meta-analysis, conform the
PRISMA-statement. (www.prisma-statement.org)
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from the articles included in the meta-analysis. Three out
of 21 studies (14%) included in the descriptive analysis
had no high bias risk (Table 1), while 16 out of 58 stud-
ies (28%) included in the meta-analysis had no high bias
risk (Fig. 2).

Gender-specific differences
Descriptive analysis
Table 1 summarizes the data on the 21 studies included in
the descriptive analysis. The majority (90%) of these stud-
ies reported no significant gender differences in cortisol
levels. Before age 8 years, one study [15] found signifi-
cantly lower salivary cortisol levels for boys at awaken-
ing. Between ages 8 and 18 years, one study [8] found
significantly lower morning salivary cortisol levels in boys.

Meta-analysis
Nine articles (16%) did not report mean and SD values,
which were therefore calculated. Figure 3 shows the re-
sults of the fixed-effect meta-analysis of serum and
salivary cortisol. Compared to girls, boys <8 years had
0.21 (0.05; 0.37) nmol/L (P = 0.01, I2 = 48%) higher salivary
and 0.18 (0.06; 0.30) nmol/L (P < 0.01, I2 = 94%) higher
serum cortisol levels. Between ages 8 and 18 years, boys
had 0.42 (0.38; 0.47) nmol/L (P < 0.01, I2 = 94%) lower sal-
ivary and 0.34 (0.28; 0.40) nmol/L (P < 0.01, I2 = 97%)
lower serum cortisol levels. In contrast, free cortisol in
24-h urine was 0.34 (0.05; 0.64) μg/24 h (P = 0.02, I2 =
55%) higher in boys aged <8 years and 0.32 (0.17; 0.47)
μg/24 h (P < 0.01, I2 = 8%) higher in boys between ages
8 and 18 years (Fig. 4). The sensitivity analyses did not
significantly change the results, although it decreased

Table 1 Summary of studies included in the descriptive analysis

Group First author (year) N (% girls) Age (years) Sample protocol Assay Result Biasa

Saliva <8 years Klug (2000) [35] 119 (46%) 0 3-point day curve Immunoassay No gender differences 2

Eiden (2015) [36] 257 (?) 0.75 Laboratory temperament
assessment

Immunoassay No gender differences 3

Plusquellec (2011) [37] 466 (?) 1.6 ± 0. 1 Morning sample Immunoassay No gender differences 2

Spinrad (2009) [38] 84 (49%) 4.5 Preschool laboratory
assessment

Immunoassay No gender differences 2

Hatzinger (2007) [15] 102 (42%) 4.9 ± 0. 4 CAR Immunoassay Cortisol levels were lower
in boys at awakening
(P < 0.1)

1

Saliva 8–18 years Safarzadeh (2005) [39] 100 (58%) 6–14 Morning sample Immunoassay No gender differences 1

Isaksson (2015) [40] 68 (50%) 9 Morning sample Immunoassay No gender differences 2

Kjölhede (2014) [41] 231 (50%) 9.5 ± 1.5 Morning sample Immunoassay No gender differences 1

Vaillancourt (2008) [8] 154 (52%) 12.3 ± 0.8 Six samples standardized
across time and day

Immunoassay On Saturday morning,
boys had significantly
lower morning levels.
On Monday and
Thursday, no significant
gender differences were
found.

1

Gunnar (2009) [42] 82 (49%) 9–15 TSST Immunoassay No gender differences 1

Serum <8 years Fadalti (1999) [43] 72 (49%) 0–2 Morning sample Immunoassay No gender differences 0

Ballerini (2010) [44] 319 (45%) 0–5 Surplus serum Immunoassay No gender differences 2

Parker (1978) [45] 106 (43%) 2–12 Morning sample Immunoassay No gender differences 2

Serum 8–18 years Kulasingam (2010) [46] 419 (?) 0 – 15 Surplus serum Immunoassay No gender differences 3

Soldin (2005) [47] 376 (?) 0–18 Surplus serum Immunoassay No gender differences 1

Karbasy (2015) [48] 711 (?) 0–19 ? Immunoassay No gender differences 1

Fadalti (1999) [43] 82 (49%) 6–18 Morning sample Immunoassay No gender differences 0

Barra (2015) [49] 120 (45%) 12.4 ± 3 Morning sample Immunoassay No gender differences 1

Chalew (1997) [50] 15 (73%) 12.7 ± 2.2 24-h blood withdrawal Immunoassay No gender differences 1

Linder (1990) [51] 82 (58%) 8–17 24-h blood withdrawal HPL No gender differences. 0

Urine <8 years –

Urine 8–18 years Dorn (1996) [52] 20 (55%) 15.2 ± 1.1 24-h urine sample Immunoassay No gender differences 1
aNumber of high risks of bias out of four bias categories (selection, performance, detection, and other biases)
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the heterogeneity: boys <8 years had 0.40 (0.11; 0.69)
nmol/L (P < 0.01, I2 = 55%) higher salivary, 0.45 (0.30;
0.61) nmol/L (P < 0.01, I2 = 94%) higher serum, and 0.28
(−0.04; 0.61) μg/24 h (P = 0.08, I2 = 33%) higher 24-h urine
cortisol; boys 8–18 years had 0.20 (0.13; 0.26) nmol/L
(P < 0.01, I2 = 47%) lower salivary, 0.10 (0.02; 0.18) nmol/
L (P = 0.01, I2 = 33%) lower serum, and 0.24 (0.02; 0.47)
μg/24 h (P = 0.04, I2 = 24%) higher 24-h urine cortisol.
Additional file 4 shows the results of the comparison

between fixed-effect vs. random-effects meta-analyses.
When analyzed by the random-effects method, the effect
estimates of serum cortisol <8 years and between 8 and
18 years became non-significant (P = 0.46 and P = 0.62,
respectively). This also applied to salivary cortisol <8 years
(P = 0.06) and urinary cortisol <8 years (P = 0.12), although
trends in the same direction were observed.
Funnel plots showed no evidence of publication bias

(Additional file 5).

Discussion
The results from this meta-analysis suggest that gender-
specific differences in HPA axis activity are already present
early in life. They also support previous observations which
show that cortisol metabolism diverges between genders at
pubertal age. Before age 8 years, cortisol in both serum and
saliva was higher in boys compared to girls, at least in
fixed-effect meta-analysis. These patterns were reversed
after age 8 years. In contrast, gender differences in 24-h
urine cortisol remained consistent with age, with higher
cortisol levels in urine for boys before and after age 8 years
(Additional file 6).
Total serum cortisol and free salivary cortisol reflect

the balance between cortisol production and degradation,
i.e., the bioavailability. Our meta-analysis suggests that pu-
berty induces gender-specific changes in the bioavailability
of cortisol, as reflected by similar changes in both total
serum and free salivary cortisol levels, at least in fixed-
effect models. Even though associations were absent for
total serum cortisol in random-effect models, the change
in free salivary cortisol could not be explained by an

estrogen-induced increase in the production of CBG [4].
Moreover, the gender difference in cortisol in 24-hr urine
(i.e., non-metabolized, free cortisol, representing cortisol
production rate) remained consistent with age. Conse-
quently, sex-hormone dependent effects on the hepatic
metabolism of cortisol are more likely to explain our ob-
servations. Cortisol is metabolized reversibly by 11βHSD2,
and irreversibly by α- and β-ring reductases and CYP3A.
Animal studies showed a lower bioavailability of glucocor-
ticoids in females due to decreased 11βHSD1 [16–18] and
relatively increased 11βHSD2 activity [18], as compared to
males. In addition, previous observations in humans sug-
gest that estrogens could alter hepatic cortisol metabolism
through increased CYP3A activity [19, 20] and decreased
A-ring reduction [3, 21]. In contrast, sex-specificity in
the activities of 11βHSD isozymes is debated in humans
[3, 21, 22]. Since analyses of gender-specific differences
in total serum cortisol were inconclusive in random-
effects models (Additional file 4) and only one of the
included studied had assessed CBG levels next to corti-
sol, we cannot exclude a gender-specific influence of
CBG [4] on the serum cortisol level.
The HPA axis set point can be modified through an

altered balance between mineralocorticoid and gluco-
corticoid receptor expression [23]. Animal studies have
suggested that patterns in receptor expression develop
in a gender-specific manner from birth onwards [24].
In humans, behavioral patterns that impact a child’s stress
vulnerability have been associated with gender-specific
changes in cortisol levels from age 1.5 years onwards
[11, 25]. Therefore, even in our sample of normal chil-
dren, gender-specific effects of stress exposure could be
an explanation for our results [9].
Even subtle disturbances in HPA axis activity have

been associated with cardiovascular disease and its risk
factors [26–28]. Cardiovascular disease susceptibility is
gender-specific [7, 29], which has been suggested to be
due to gender differences in HPA axis activity, stress
vulnerability, and responsivity [4, 30–32]. Early in life,
developmental plasticity offers the child the capacity to

Fig. 2 Risk of bias graph presenting a summary of the judgements of the accessors concerning risk of bias across all studies included in the
meta-analysis. Bias risk is presented as percentage of total studies (n = 58)
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Fig. 3 Forest plots of gender differences per subgroup. a Salivary cortisol (nmol/L) <8 years of age. b Salivary cortisol (nmol/L) 8–18 years of age.
c Serum cortisol (nmol/L) <8 years of age. d Serum cortisol (nmol/L) 8–18 years of age
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change his HPA axis set point based on stress experiences
[9, 33]. This ability offers opportunities to withstand
early-life challenges, but it has also been suggested to
affect disease risk later in life. Accordingly, although
the gender differences found in our study were small,
these patterns might contribute to gender-specific origins
of health and disease [9].
The major strength of this study is our systematic ap-

proach and the effort to contact all authors of eligible
publications, enabling us to include the data on 16,551
healthy children. Moreover, articles with a lack of quan-
titative data were included in our descriptive analysis
with the aim to be as complete as possible. The large
sample size enabled us to perform a sensitivity analysis,
which decreased the heterogeneity between studies. Fur-
thermore, we accounted for this heterogeneity by calcu-
lating standardized mean differences, based on the
intervention effects relative to the variability observed
[13]. Additionally, we chose fixed-effect meta-analysis,
because the studies with a large sample size were most
likely conducted with greater methodological accuracy
[13]. Fixed-effect meta-analysis has the advantage of in-
creasing the impact of large studies on the effect esti-
mate. For comparison, results of random-effects meta-
analyses, which put more weight on studies with small
sample sizes, were also included (Additional file 4).
A limitation of this study is that only a subset of stud-

ies (16%) considered gender differences as the primary
outcome. In addition, in 22 studies (28%), samples were

not collected specifically during mornings. Both could
have led to a selection or performance bias, which we
accounted for in our sensitivity analysis. Furthermore, 21
articles with data on 3985 subjects could not be included
in the meta-analysis due to lack of gender-stratified quan-
titative data, while most of these articles reported no sig-
nificant gender differences. However, funnel plots of the
articles included in the meta-analysis were not suggestive
of publication bias. Instead, the plots seem to indicate that
most articles reported on the nonexistence of gender
differences, which might be a result of the common idea
that gender differences are nonexistent at this early age.
Nonetheless, our meta-analysis shows that significant gen-
der differences are already present early in life. Another
limitation is that almost all studies that reported on saliv-
ary or serum cortisol used immunoassays. Due to its
superior specificity, liquid chromatography–tandem mass
spectrometry is the method of choice for steroid hormone
analysis [34]. Furthermore, we stratified studies based on
the mean age or age range of the study group. Since study
samples differed in age range, we have probably included
some subjects <8 years of age in the 8–18-year groups,
and vice versa. An overview of the age ranges of studies
included in the meta-analysis is presented in Additional
file 6. Moreover, only a minority of the included studies
assessed Tanner’s pubertal staging. Therefore, we were un-
able to address the question at which maturational stage
the direction of the gender-specific dimorphism in cortisol
changes.

Fig. 4 Forest plots of gender differences per subgroup. a 24-h urine cortisol (μg/24 h) <8 years of age. b 24-h urine cortisol (μg/24 h)
8–18 years of age
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Conclusions
In conclusion, gender differences in HPA axis activity are
present early in life, with higher salivary cortisol concen-
trations in boys. A gender-specific evolution of cortisol
metabolism is suggested to be induced by puberty, result-
ing in lower bioavailability of cortisol in boys. Although
results from random-effects analyses were inconclusive
for serum cortisol, the gender difference in cortisol pro-
duction seems to be consistent between genders and age.
Future research should take gender differences in HPA
axis activity into account, regardless of age. Whether gen-
der differences in stress-induced cortisol levels also exist
is unknown and remains to be explored.
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