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Abstract

47 XXX (N =30), 48 XXXY (N =5), and 49, XXXXY (N =6).

Background: Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or
more additional sex chromosomes in an individual's karyotype; they affect around 1 in 400 individuals. Although
there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we
investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls
46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47 XYY (N =29), 47 XXY (N =58), 48 XXYY (N =20),

Methods: We investigated CC morphometry using local and global area, local curvature of the CC boundary, and
between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along
a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and
supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum
based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48 XXYY, 47 XXY, 48 XXXY, 49, XXXXY, 46,XX, 47 XXX. We
similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics
were analyzed using permutation tests consisting of 5,000 iterations.

Results: Several subregional areas, local curvature, and BLDs differed between groups.
Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome
counts. BLD was strongly associated with X chromosome count in both male and female groups.

Conclusions: Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our
knowledge, this is the first study to compare CC morphometry across these extremely rare groups.
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Background

As a result of nondisjunction® during meiosis, around
1:400 individuals are born with supernumerary sex chro-
mosomes aneuploidies (sSCA) [1]. Viable sSCA kar-
yotypes include 47,XYY, 47,XXY, 48XXYY, 48XXXY,
49,XXXXY, and 47,XXXP. sSCA prevalence decreases
exponentially as karyotype count increases. Historically,
aneuploidies of the X chromosome have received a great
deal of interest due to the large number of X-linked
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genes expressed in the brain [1,2] which are strongly as-
sociated with cognitive disorders [3].

In typically developing human females, a process of X
inactivation occurs to prevent overexpression of X-linked
genes; this silences genes from one of the two X chromo-
somes [4]. Similarly, in the presence of supernumerary X
chromosomes, all but one X chromosome is silenced
[5-8]. Around 15% of the genes in the silenced chromo-
some remain active [9]; they may contribute to sexual
dimorphism. However, in sSCA, the accumulation of unsi-
lenced genes from supernumerary chromosomes and
aberrant inactivation patterns may contribute to the char-
acteristic deficits presented in sSCA subtypes.
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Physical and cognitive phenotypic variation among
sSCA subtypes is high due to complex interactions of
chromosome dosage, mosaicism®, and sex hormone ab-
normalities. However, certain phenotypic characteristics
are commonly reported. Mean IQ is 0.5-1 standard de-
viations lower for every additional chromosome present
in the subject’s karyotype [1]. Interestingly, subjects with
a single supernumerary chromosome (i.e., 47,XXY,
47,XXX, or 47,XYY) usually test within the average IQ
range but significantly lower than a typically developing
sibling. Verbal 1Q is severely affected while performance
IQ is relatively spared [10,11].

Magnetic resonance imaging (MRI) studies of individ-
uals with X-variant sSCA (sSCAx) tend to reveal lower
total brain volumes (TBV) and higher ventricular vol-
umes [12-14]. Diffusion tensor imaging studies have also
reported lower fractional anisotropy in 47,XXY [15].
People with Y-variant sSCA (sSCAy) show an apparently
opposite effect: higher TBV [16]. White matter (WM)
hyperintensities® have been reported for both sSCAy and
sSCAx [14]. Taken together, these findings suggest a
chromosomally driven, dosage-dependent spectrum of
brain morphometry. Table 1 summarizes sSCA pheno-
types and their effects on MRI measures.

Here, we investigate the morphological variation of the
corpus callosum (CC): (1) between the various sSCA
subtypes, (2) as a function of Y:X chromosome ratio,
and (3) as a function of X and Y chromosome number

Table 1 SCA phenotypes
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within sex. We investigate the CC as it is the most
prominent WM bundle in the brain, responsible for
communication between homologous brain regions.
WM projections through the CC to distinct cortical re-
gions are topographically organized, and local abnormal-
ities in CC morphometry may reflect abnormalities in
cortical development [17-19].

To investigate these aims, we used two approaches:
area and shape analysis. Most studies report on area ef-
fects, but shape-based methods offer an added dimen-
sion of description.

Studies of CC morphometry in sSCA karyotypes are
sparse and often limited to case studies. However, previ-
ous studies of sSSCA cohorts have indicated varying de-
grees of morphological abnormalities of the CC in these
disorders. In a study of 42 47,XXY subjects, Giedd et al.
[20] identified no changes in the cross-sectional area of
the CC. An ultrasound case study of a 47,XYY fetus re-
vealed agenesis of the CC. In a multi-center study of 95
48,XXYY subjects (35 of which received an MRI scan),
Tartaglia et al. [21] identified a wide array of WM abnor-
malities including agenesis of the CC in two subjects
and CC lipomas in three others. Several studies have
identified abnormalities of the CC in the 49,XXXXY
karyotype. Blumenthal et al. [22] identified thinning of
the CC along with various other WM lesions in a cohort
of 14 49,XXXXY subjects relative to 42 46,XY controls.
In a case study of a 3-year-old male with 49,XXXXY

Karyotype MRI measure Somatic phenotype Cognitive phenotype
47 XYY Increased GM/WM volume [57] Increased height Decreased 1Q [14]
Decreased insular and frontotemporal Increased head circumference [1] Antisocial traits [14]
volume [57]
48 XXYY Enlarged ventricles Hypogonadism Developmental delays
Diffuse WM abnormalities [21] Tall stature Learning disability
Mild craniofacial dysmorphia [51] Decreased 1Q [21]
47 XXY Decreased TBV [14] Hypogonadism Decreased 1Q
Increased ventricular volume [13] Tall stature Higher incidence of schizoid
personality traits [1]
WM hyperintensities [14] Testicular scarring
Decreased fractional anisotropy [15] Low testosterone [1]
Decreased GM volume [52]
48 XXXY Decreased WM/GM [1] Tall stature Decreased 1Q
Decreased testicular volume Irritability
Facial dysmorphism [51] Passivity [20]
49 XXXXY Decreased TBV Decreased height [51] Severe developmental delays [22]
WM lesions [22] Mild craniofacial abnormalities [22]
47 XXX Decreased TBV [14] Increased height [1] Anxiety and impulsivity [22]

Radio-ulnar synostosis

Decreased 1Q [14]
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syndrome, Haeusler [23] identified enlarged ventricular
volumes and hypoplasia of the subject’s CC. To our
knowledge, this is the first study to investigate the
shape-based morphological differences of the CC for
these exceedingly rare karyotypes.

Methods
Subjects
Our test subjects consisted of individuals with the fol-
lowing karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,
XXYY (N =20), 48 XXXY (N =5), 49, XXXXY (N =6),
and 47,XXX (N =30). All subjects were gonadally male
with exception of the 47,XXX karyotype who were all
gonadally female. We define sex based on the subjects’
gonadal statuses as the sex chromosomes of our subjects
vary between groups. Only non-mosaic subjects were in-
cluded. Mosaicism status was confirmed with karyotype
testing on all subjects. High-resolution G-band karyotyp-
ing was performed on phytohemagglutinin-stimulated
patient peripheral blood cultures. A minimum of 50
metaphases were analyzed and 3 karyotypes per patient
were produced (all karyotyping was performed by Quest
Diagnostics or the Cytogenetics Laboratory, Department
of Obstetrics and Gynecology, Georgetown University
Hospital). Several subjects were undergoing hormonal
therapy while others had either previously undergone
therapy or never undergone therapy. Hormonal therapy
status was not factored into our analyses. Table 2 shows
demographic and clinical details for the participants.
The control group consisted of 46,XY males (N =99)
and 46,XX female (N =93). Subjects were matched for
age, handedness and socioeconomic status (SES).
Written consent was obtained from the adult partici-
pants and verbal or written assent from the child partici-
pants. Where relevant, written consent from the parents
was obtained for participation in this study. The study
protocol was approved by the National Institute of Men-
tal Health Institutional Review Board.

Scanning parameters

All images were acquired on a General Electric 1.5-T Signa
scanner (General Electric Medical Systems, Waukesha,
WI, USA), located at the NIH Clinical Center in
Bethesda, Maryland. A sagittal T1-weighted spin-echo
sequence was acquired with 5 mm thickness and 1.5-mm
gap (FOV =300 mm, acquisition matrix 256 x 128, TR =
400 ms, TE =14 ms). A three-dimensional spoiled
gradient-recalled echo sequence in the steady-state se-
quence was used to acquire 124 contiguous 1.5-mm thick
slices in the axial plane (TE =5 ms; TR =24 ms; flip angle,
45°, acquisition matrix =256 x 192; number of excitations,
1; field of view, 240 mm; acquisition time, 9 min, 52 s).
Only images with minimal or no motion artifact were ac-
cepted for the study.
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Corpus callosum tracing procedure

All CC images were acquired from manual tracings of
the raw images. Manual tracing of the CC was per-
formed by a single rater, BW, with a high intra-rater reli-
ability (ICC >0.95 for repeated area measures). Tracing
was performed in the mid-sagittal slice of the image
using the MIPAV software (Medical Image Processing,
Analysis and Visualization version 4.3.1 http://mipav.cit.
nih.gov/). Prior to tracing, all images were aligned to a
standard orientation using methods previously reported
in [24]. To extract a binary representation of the CC, an
elliptical region of interest (ROI) tightly bounding the
CC was thresholded such that image intensities consist-
ent with WM were set to a value of 1 (white) while all
other intensities were set to 0 (black). Within this ROI,
the rater manually removed all non-CC WM such as
WM associated with the lamina terminalis and fornix.

Parametric boundary

To obtain the boundary of a given CC, its binary repre-
sentation was read into MATLAB®. Using the Image
Processing Toolbox, the function bwboundaries was
used to obtain the x-y coordinates of the CC boundary.
The elements of each x- and y-component vector, u and
v, were first downsampled to 100 elements each and
subsequently low-pass filtered with a Gaussian filter
(height =6, sigma =3) to smooth the boundaries of the
CCs. We corrected for primary axis tilt by setting the
vertical coordinates of the most anterior point in the
genu to equal the posterior most point of the splenium.
Finally, the parameterized boundaries were translated to
place their centroid at the origin to ensure spatial nor-
malization. Figure 1 illustrates the procedure for ex-
tracting the parameterized callosal boundary. For each
subject, this callosal boundary was used as the structural
shape representation of the CC and was analyzed using
the morphometric methods described below.

Callosal morphometry
We examined the effects of dosage on different morpho-
logical predictors derived from the boundary. Prior studies
have performed CC morphometry using well-established
methods that have studied boundary thickness [25] or
areas of regional parcellations [26-29]. Thickness and area
depend on the local width and global size of the callosal
boundary and are related to the physical dimensions of
the CC. Different from the size or area approach is the
shape-based approach that analyzes only the geometric in-
formation present in the boundary by removing the con-
founding variables such as scale and pose (location and
orientation).

For the thickness and area-based approaches, brain
volume and orientation are standardized by first register-
ing the T1-weighted structural images to each other or


http://mipav.cit.nih.gov/
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Table 2 Demographic and MRI measures

47 XYY Typically developing 48,XXYY 47 XXY 48, XXXY 49, XXXXY 47 XXX
controls (TDC)

N =29 N =192 N =20 N =58 N =5 N =6 N =30

Mean sD Mean sD Mean sD Mean SD Mean SD Mean SD Mean SD
Demographic measures
Age 1258 4.96 1265 5.04 14.23 528 12,62 498 10.16 724 1328 443 12.18 551
Gender (M/F) 29/0 99/93 20/0 58/0 5/0 6/0 0/30
Socioeconomic status (SES)  56.75° 22.14 4841 18.20 4640 22.54 5401 21.50 54.80 20.94 64.66° 18.08 4141 17.13
Handedness (R/L/M) 22/4/3 164/12/16 18/1/1 45/6/7 4/0/1 6/0/0 24/2/4
Full-scale 1Q (FSIQ) 90.58° 1541 114.50 12.56 86.52° 1271 96.78° 16.65 77.33° 472 55.50° 591 95.30° 14.42
Verbal 1Q (VIQ) 87.58° 15.12 114.14 1423 80317 1232 94.70° 16.24 7333° 5.85 59.25° 850 95.20° 14.52
Performance-1Q (PIQ) 95.62° 17.01 111.88 11.59 95.94° 1243 98.96° 16.99 86.66° 7.02 57.25° 330 96.16° 15.00
Testosterone replacement  0/0/0 0/0/192 7/7/13 19/23/35 1/2/3 3/4/2 0/0/0

therapy (TRT; currently
on/ever on/none)

MRI measures (cc3)

91/1/S/3U31U0D/ WO’ [eulnof-psq mmm,//:dny
91§ ¥ LOT sadudIalIq Xas Jo ABojolg b 12 Spem

Intracranial volume (ICV) 153e +06° 131e +05 146e +06 1.29¢ +05 143e +06 1.10e +05 142e +06 142e 405 136e +06 4.53e +04 1.24e +06° 1.03e +05 1.29¢ +06° 1.25e +05
Gray matter volume (GM) 881e +05° 869 +04 843e +05 867e +04 8.17e +05 824e +04 8.14e +05° 6.74e +04 8.08e +05 5.83e +04 7.21e +05° 798¢ +04 7.55e +05° 8.77e +04
White matter volume (WM) 5.18e +05° 6.27e +04 489 +05 591e +04 491e +05 582e +04 475e +05 7.52e +04 446e +05 351e +04 399 +05° 1.23e +04 4.20e +05° 4.20e +05°

?Significant group difference between TDC and diagnostic group.

8l Jo 7 abeyd
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Figure 1 Extraction and parameterization of corpus callosum
boundary. lllustration of the (a) raw SPGR image, (b) extracted
binary callosum, and (c) parametric boundary of callosum as
represented in MATLAB.

to an atlas and then tracing the callosal curves. Alter-
nately, the transformation from the registration process
can be applied to the natively traced callosal boundaries.
This extra step of registration is not needed for shape-
based analysis.

In our work, to account for the variability in brain size,
orientation, and pose, we registered the shapes of the na-
tively traced callosal curves using a shape-space approach
[30]. This approach represents shapes of curves as ele-
ments of an infinite dimensional nonlinear space and
achieves an elastic correspondence using a Riemannian
metric that is fully invariant to reparameterizations of
curves. The process of finding the correspondence be-
tween two shapes involves finding a shortest path or a
geodesic on the shape space. By construction, this geo-
desic is invariant to translation (pose), rotation (orienta-
tion), scale (size), and reparameterization (variability of the
speed of tracing of the curve). For our analysis, we investi-
gated size- and shape-based measures to study low- and
high-level features of the CC and how they are associated
with karyotype. These features were extracted and defined
using the parameterized callosal boundaries. Specifically,
we analyzed area, boundary curvature, and pairwise land-
mark point relationships using between-landmark distance
analysis (BLDA). The latter two metrics, curvature and
BLDA, describe local shape deformations.
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Using diffusion tensor imaging and fiber tractography,
Hofer [27] identified five anatomically separable regions
of the callosum based on the traversing WM’s cortical
termination. They isolated vertically directed segments
of the CC that were intended to represent fibers projecting
to frontal, motor, sensory, as well as parietal, temporal,
and occipital areas. Figure 2a shows the Hofer-Frahm sub-
divisions corresponding to the following WM projections:
(I) prefrontal, (II) premotor and supplementary motor cor-
tices, (IIT) motor, (IV) sensory, (V) parietal, occipital, and
temporal cortices, and the corresponding lengths going
from the anterior to the posterior landmark [27].

Figure 2b illustrates the representation of the Hofer-
Frahm divisions given by our in-house MATLAB scripts.
Appropriate coordinates for the four partitioning lines
along the boundary were obtained by identifying the
nearest x-y coordinates of the boundary satisfying the
proportion of total CC length to the Hofer-Frahm sub-
region. For example, the boundary between regions 2
and 3 occurs at % of the CC length. So, the coordinates

- 1/2 L 1/2 .
a) 1/6, 1/3
L
A P

c)
f 1 ‘w\
KU1 o K1
K2 KL2
—— K U3 KL3

s KU4 K| 4
m— KU5 KL5

Figure 2 Hofer-Frahm divisions and curvature boundary
segments. A depiction of the (a) Hofer-Frahm subdivisions of the
callosum based on diffusion image white matter tractography,

(b) the representation of these divisions on the parametric boundary
in MATLAB, and (c) the ten segments of the callosal boundary used

to measure average local curvature.
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designating this division would be found by identifying
the x coordinates for the upper and lower boundaries
nearest to % of CC length, using the most anterior point
of the genu as the origin. Due to the discretization and
downsampling of the boundary, there is often a slight
horizontal offset in the correspondence of the upper and
lower ends of the boundary. However, this effect is negli-
gible given that a strictly vertical partition of the under-
lying traversing WM fibers is no more probable than
what is given by this artifact.

Callosal area

For calculating the area, we consider the discretized finite
set of vertices given in u and v. Due to its geometry, the
discretized CC becomes a non-self-intersecting, closed
polygon. The area is then found by traversing all edges of
the polygon and by adding the area of the rectangle
(enclosed between the top vertex of the edge and the Y
axis) to the left of the edge when traversing downward
and subtracting the area of the rectangle when traversing
upward. A factor of % times the width of the edge is added
to account for the extra area whenever the edge is not per-
fectly perpendicular to the X axis. MATLAB's polyarea
function implements this algorithm and computes the
area enclosed by the callosal boundary. Both the global
callosal and the Hofer-Frahm subregional area were calcu-
lated from the vertex coordinates in u and v.

Callosal regional curvature

The curvature of a boundary can be thought of as the
degree to which a local segment of the boundary devi-
ates from appearing spatially flat. It encodes the local
rate of change of the line tangent to the local boundary.
Formally, for a two-dimensional, parametrically defined
boundary given by x=x(¢f) and y=y(t), the extrinsic
curvature is defined as,

x/y//_ y/x//

" v

K =

As in the case of area, local curvature was calculated
by partitioning the boundary of the CC into the five
Hofer-Frahm regions along its superior and inferior
bounds, providing a total of ten sections for examination
on each CC. We refer to individual boundary segments
as curvature upper (x,) 1-5 and curvature lower (x;) 1-5.
The constituent points within each section were averaged
to provide a single metric of comparison. Figure 2c illus-
trates the partitions used to compute the local curvature.

Between-landmark distance analysis

Instead of using the Procrustes-based [31] landmark align-
ment, we used a method that analyzes pairwise landmark
distances based on the concept of the Euclidean distance
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matrix analysis (EDMA) [32,33] for landmark-based mor-
phometry of the CC. EDMA analyzes the localized vari-
ation at each landmark compared to the global landmark
shape variation assessed by the Procrustes alignment
procedure. The Procrustes method compares landmarks
across shapes, whereas EDMA first computes a pairwise
Euclidean distance matrix (EDM) for all the landmark
points for each shape, and then compares the EDMs
across multiple shapes. EDMA is invariant to translation
and rotation, but like the Procrustes method, it needs to
be normalized to ensure invariance to scale. EDMA does
define an invariant statistic known as the maximal invari-
ant in the space of EDM landmark configurations, but we
followed a different approach here. We calculated the
Euclidean distance matrix consisting of the pairwise dis-
tances between landmarks (same as EDM) but compared
the distance matrices directly across subjects. This is pos-
sible as the callosal boundaries are already registered to
each other, so one does not need an additional invariant
statistic that is computed in EDMA.

For the CC, 14 landmarks were accurately selected
using an automated method, programmed in MATLAB.
Table 3 lists the landmarks and abbreviations used in
this study, which were chosen for their reproducibility
across subjects and their ease of programming. The
landmarks were based on the intrinsic geometry of the
CC. Eight of the landmarks corresponded to the superior
and inferior divisions of the Hofer-Frahm partitions and
offered insight into the structure’s primary axis thick-
ness. The landmarks anterior genu (AG) and posterior
splenium (PS) corresponded simply to the most anterior
and most posterior points of the CC, respectively, and
were identified by taking the coordinate pairs of the
boundary with the minimum and maximum x values.

Table 3 Landmark abbreviation key

Acronym Landmark

AG Anterior genu

IG Inferior genu

PG Posterior genu

PSG Posterior superior genu
PIG Posterior inferior genu
ASI Anterior superior isthmus
All Anterior inferior isthmus
PSI Posterior superior isthmus
PIl Posterior inferior isthmus
ASS Anterior superior splenium
AlS Anterior inferior splenium
AS Anterior splenium

IS Inferior splenium

PS Posterior splenium
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Together, AG and PS measured the length of the CC.
Posterior genu (PG) and anterior splenium (AS) were lo-
cated by identifying the nearest neighboring y coordinate
to the AG and PS, respectively, on the lower boundary
of the CC curve. Inferior genu (IG) and inferior sple-
nium (IS) were then identified by finding the coordinate
pairs with the minimum y values in the anterior and
posterior halves of the CC. Taken together, the AG-1G-PG
complex anteriorly and AS-IS-PS complex posteriorly
provided a proxy measure for the bulbosities of the genu
and the splenium.

Figure 3 illustrates the location of the landmarks on
the boundary of the CC, the pairwise connections be-
tween each landmark point, and the computed between-
landmark distance matrix (BLDM; 14-by-14 matrix) for
the landmarks. Each unique element of the BLDM con-
stitutes a metric for between-group comparisons.

Definition of the karyotype spectrum

As our sample was not restricted to subjects with super-
numerary aneuploidies of a single type of sex chromo-
some but included subjects with supernumerary X and
Y karyotypes, we needed to define an ordering for the
karyotype spectrum involving both sSCAy and sSCAx
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karyotypes. Based on prior studies of supernumerary Y
chromosomes increasing TBV [16] and the supernumer-
ary X phenotype leading to smaller TBV [12,14], we
ordered our spectrum in descending order of Y:X chromo-
some ratio in each karyotype, yielding a spectrum of the
following order: 47,XYY (2:1), 46,XY (1:1) 47,XXYY (1:1),
47,XXY (1:2), 48, XXXY (1:3), 49,XXXXY (1:4), 46,XX
(0:2) 47, XXX (0:3). The relative ordering of 46,XY ahead
of 47,XXYY was a special, arbitrary case as the ratio of 46,
XY is equal to that of 47,XXYY.

Statistical methods

The Riemannian framework for shape matching of callo-
sal curves [30] can be used to compute invariant statis-
tics such as shape averages and covariances on the
tangent space of shapes. The shape average is computed
by minimizing the sum squared geodesic distances (geo-
desic variance) between all the shapes in the population.
This shape average is computed intrinsically, i.e., without
performing Euclidean averaging, directly on the shape
space. A single callosal shape average was computed for
the entire population, and all the individual shapes were
registered to this average. As the shape average was
computed from the population, there was no bias due

ASI

PSI Ass

PS

Between-Landrlnark Distances

IS
AS
AlS
ASS
Pll+
PSIH
All
ASI
PIG
PSi
PG

Distance
¥
A

0

B
0

IG
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T T T T
46 16 RS a sy Ry uiSsis As s Rs

Figure 3 Between-landmark distance analysis (BLDA) pipeline. (a) The locations of the 14 landmarks on the parametric boundary of the
callosum, (b) example trace distances between pairwise landmarks, and (c) matrix representation of pairwise distance.
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to choosing a template or an atlas callosal shape for
registration.

For each region, we compared the callosal regional
areas across all karyotypes. Curvature was calculated on
the individual shapes after they were registered to the
mean shape. As before, for the group analysis of the
between-landmark distance matrices, there was no expli-
cit landmark registration necessary as the landmarks
were defined on the registered shapes.

We calculated all (Z) =21 possible groupwise

comparisons for each metric, comparing only male con-
trols to male subjects and female controls to female sub-
jects. Because subjects become exponentially rarer as
chromosome count increases, several of the test groups
were small enough to merit concern over the validity of
implementing standard parametric statistical tests. In-
stead, we used non-parametric permutation tests of the
regression slope for each comparison to avoid violating
assumptions of parametric tests. The procedure for this
type of permutation test is as follows. (1) The coefficients
(slopes) of the regression model’s predictor variables are
obtained. (2) Subsequently, the group labels of the
model’s predictors are permuted, resampled without re-
placement, keeping group sizes fixed at their original
sizes. (3) Using the resampled group labels, the model’s
coefficients are recalculated. (4) This process of resam-
pling repeats for k iterations. (5) The significance of the
original model is assessed by identifying the proportion
of resampled coefficients of the main effect that are more
extreme than the original model’s main effect coefficient.
For our purposes, each test consisted of 5,000 permuta-
tions of the slope using in-house R [34] scripts where the
main effect was either, position along Y:X spectrum, num-
ber of X-chromosomes or number of Y-chromosomes
within sex. For each comparison, we report which results
are significant both before and after adjusting for the false
discovery rate (FDR).

We investigated the presence of a dosage ratio effect
in the metrics by regressing each metric against an enu-
meration of the karyotype spectrum. Concretely, each
subject was assigned a number, 1 through 8, based on
their karyotype’s position in the Y:X spectrum where
47,XYY =1 and 47,XXX =8. The coefficient of this Y:X
position after correcting for age and ICV reflects the asso-
ciation of the Y:X spectrum with a given metric. Similarly,
we regressed metrics against the number of Xs or Ys
present in a subject’s karyotype to identify an association
with X or Y chromosome count within each sex.

For all tests, we consider an alpha or FDR-adjusted ¢
value® of 0.05 to be the threshold for significance. FDR
was performed for each family of tests rather than for all
tests at once (i.e.,, we controlled for the number of all
pairwise tests of global area, x,, 1, etc., separately).
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Results

Figure 4 shows the average callosal shapes associated
with each karyotype along the proposed karyotype
spectrum. Visual assessment of the shape averages sug-
gests numerous groupwise morphological deviations:
(1) from the typical 46,XY/XX group, (2) along the karyo-
type spectrum, and (3) between groups not adjacent along
the spectrum. Most area-based variation along the
spectrum appears somewhat linear. However, it is more
difficult to determine from visual inspection whether
shape-based metrics vary linearly along the spectrum.

Area

Global area was significantly correlated with X chromo-
some number in females only prior to FDR correction
(P <0.05; Bs+ x=-26.67) indicating a significantly lower
CC area in 47,XXX females relative to typically developing
46,XX females, see Figure 5a. Several subregions of the
CC were weakly associated with the Y:X spectrum or
individual Y or X chromosome counts. For instance, re-
gion 2 was associated with Y chromosome count in men
(P <0.05; 5; y =11.22) suggesting a general increase in this
subregion in the presence of supernumerary Y chromo-
somes. However, none of these associations survive FDR
correction and, therefore, must be interpreted with cau-
tion. Figure 6 illustrates the pattern of global and sub-
regional CC area by karyotype while Figure 7 reports the
coefficients associated with each pairwise comparison of
global and subregional areas.

Curvature

The boxplots in Figure 8 illustrate the patterns of local
curvature by karyotype. After FDR, «,,; was significantly
associated with the number of X chromosomes in males
(Q <0.001; B4 x=-0.001). K,, 3 was associated with the Y:
X spectrum (Q <0.04; B4 y. x =0.0007). No other regions
of the upper boundary curvature survived FDR correc-
tion; however, x,swas additionally associated with both
X and Y count in males only (P <0.05; s x =0.002 and
P <0.05; B+ y =0.004), see Figure 5c. A substantial num-
ber of pairwise differences were significant in the upper
CC boundary; however, most did not survive FDR. Fol-
lowing FDR, the «,; and x, 4 segments remained sig-
nificantly different between 46,XY and 47,XXY males
(Q <0.05; Bpx =-0.0004 and Q <0.05; Spx =0.0008).

The curvature of the lower CC boundary exhibited
numerous associations with sex-specific chromosome
counts and the Y:X spectrum, Figure 5b. However, while
numerous, these associations were not robust enough to
survive FDR. Despite weak associations with linear
karyotype orderings, numerous pairwise differences in
lower boundary curvature managed to survive FDR.
Only «x;; had no robust pairwise differences. Refer to
Figure 9 for the groupwise differences in curvature.
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The different patterns of curvature differences be-
tween upper and lower boundaries may suggest a differ-
ential effect of chromosome ratio on the upper and
lower boundary of the CC or simply highlight a relatively
lower degree of variation in curvature in the upper
boundary compared to the lower boundary. Alterna-
tively, these differences may arise due to ventricular ex-
pansions in sSCA disorders, which would likely alter the
lower boundary of the CC most readily due to its imme-
diate adjacency to the ventricles.

Between-landmark distance analysis

BLDA revealed numerous local shape variations between
karyotypes. The distances between the IG and both PG
(P <0.05; By . x =0.21) and posterior inferior genu (PIG)
(P <0.05; By . x =0.16) were significantly associated with
the Y:X spectrum prior to FDR but did not manage to
survive FDR, see Figure 5d. Among the female-only
groups, numerous BLDs were significantly associated
with X chromosome count Figure 5e. Most notably, the
distance between the IG and every other landmark was
robustly associated with X count after FDR. Several
other landmark parings remained significantly associated
to X count after FDR, including the AG-PG, AG-PIG,
anterior inferior isthmus-anterior superior isthmus, and
the anterior superior splenium-anterior inferior sple-
nium distances.

The X chromosome count among males was robustly
associated with a large number of BLDs after FDR. Be-
cause the enumeration of all BLDs that survived FDR
would be too extensive, we refer the reader to Figure 5f

for a summary of the results. Y chromosome count
among males was not as strongly associated with various
BLD pairings, with several pairings significant prior to
FDR but none surviving FDR Figure 5g.

An enumeration of the between-group BLDA results
would be too lengthy to report. We instead summarize
this in Figure 10 which employs a circular plotting
model implemented in R version 3.0.2 using an adapted
RCircos package [35]. Here, each landmark is repre-
sented by a tile along the outer ring of the circles.
Where a distance between two landmarks is significant,
a line is drawn between the corresponding tiles. Each
line is color-coded to correspond to the groupwise com-
parisons. Figure 10a depicts all significant comparisons
prior to correction for multiple comparisons. Figure 10b
shows the significant comparisons that survive FDR.

While a large number of pairwise comparisons were
significant prior to FDR, a tractably smaller number sur-
vived FDR. Eight pairwise groups had significant BLDs
passing FDR: (1) 46,XX-47,XXX, (2) 46,XY-48,XXYY, (3)
48 XXYY-47,XXY, (4) 48XXYY-47,XYY, (5) 46,XY-47,
XXY, (6) 47,XXX-47,XXY, (7) 47,XXX-47,XYY, and (8)
47,XXX-48,XXYY. The BLDs remaining significant be-
tween 46,XX-47,XXX were highly numerous. The major-
ity of these BLDs are between the IG and other
landmarks. The anterior inferior isthmus (AIl)-anterior
superior isthmus (ASI) distance is also significant be-
tween these karyotypes. Among the 46,XY-48XXYY
BLDs, the majority of significant parings exist between
the IG and other landmarks as well as the IS and other
landmarks. The PG-IG and PIG-IG distances are
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Figure 5 Summary of chromosome dosage-metric associations. Coefficient matrices of the associations between the (a) area, (b) lower
boundary curvature, (c) upper boundary curvature and (d-g) between-landmark distance and the (1) Y:X ratio spectrum, (2) number of

X-chromosomes within female karyotypes (X#7), (3) number of X-chromosomes within male karyotypes (X#y,), and (4) number of Y-chromosomes

within male karyotypes (Y#,,). The interpretation of the coefficient in each intersection is simply that for every unit increase in the given spectrum,
the metric of interest changes by the amount given by the coefficient (e.g., for every extra X chromosome in the male karyotype, the global area

of the callosum decreases by approximately 8 mm?). A circle is placed in intersections containing coefficients significant at the 0.05 level prior to

correction for multiple comparisons while a triangle is present for coefficients significant after FDR correction.
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significantly different between the 48, XXYY-47,XXY kar-
yotypes. The IG-PIG distance is significantly different
between 48 XXYY-47,XXY while the IS-IG distance is
significant between 46,XY-47,XXY. The comparison of
47,XXX-47,XXY revealed numerous differences between
the IG and various other landmarks. The AID-anterior
superior splenium (ASS) distance was also significantly
different here. The 47,XXX-47,XYY comparison revealed
more varied differences. Several distances stemming
from the IG were significantly different. Additionally, the
PIG-posterior superior genu (PSG), anterior inferior sple-
nium (AIS)-ASS and IS-ASS distances were significantly
different between the groups. Significant differences be-
tween 47,XXX and 48,XXYY consisted of the PG-AG,
PIG-PSG, IS-AIS, and PS-AIS distances.

Discussion

The main finding of this study is the association of callo-
sal morphometry with sexwise dosages of X and Y chro-
mosomes. We have secondarily observed the effects of
the ratio of Y:X chromosomes along a proposed spec-
trum of supernumerary sex chromosome karyotypes. In
addition to detecting morphological changes related to

chromosome dosages, we have also identified numerous
between-group morphological differences in both the
area and shape domains related to karyotype. To our
knowledge, this study is the first to apply such an in-
depth battery of morphological descriptors to the CCs of
this rare set of subjects. The findings have important
bearings on neurological development and chromosom-
ally driven sexual dimorphisms.

With respect to area analyses, we observed modest as-
sociations at the subregional level with sex chromosome
counts and the proposed Y:X ratio. Global area was only
found to be related to X counts in the female-only
groups. Groupwise comparisons of local and global area
demonstrated differential effects of chromosome dosages
on the CC regions. The most notable effect appeared in
CC region 2 which corresponds to WM paths of the pre-
motor, supplementary motor, and primary motor corti-
ces. Interestingly, a number of cases have reported
motor impairments in SCA subjects. The observed re-
ductions we report here may reflect underlying deficits
in the motor functions of these subjects [36-39]. As an-
drogens may have a protective effect on motor neurons
[40], the presence of supernumerary X chromosomes
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Figure 7 Groupwise coefficient matrices of area by karyotype. Groupwise comparisons of area by callosum region. The elements of each
matrix contain the coefficient of Karyotype resulting from the multiple linear regression model Area; =, + 3, Age; + B, ICV;+ 3 Karyotype; + €.
The coefficient is essentially the slope of the least squares line between the areas of the two karyotypes after adjusting for age and ICV. To clarify
the direction of the effect, we print the name of the karyotype with the greatest area in the intersection. A circle is placed in intersections
containing coefficients significant at the 0.05 level prior to correction for multiple comparisons while a triangle is present for coefficients

significant after FDR correction.

and the resultant decrease in androgen levels may ad-
versely affect either the development or long-term health
of motor neurons. In line with this, Ross et al. [41] noted
significant motor deficits in boys with Klinefelter’s syn-
drome (47,XXY). Specifically, 47,XXY boys tested lower
in levels of speed, strength, and agility. Salbenblatt et al.
[42] reported similar deficits in both gross and fine
motor control in 47,XXY boys. Taken together, our find-
ings may provide a neurological basis for these findings.
In addition to the androgen deficits sSCAx males
present, they also suffer from hyperestrogenism which is
thought to similarly contribute to their social and cogni-
tive impairments [43]. Estrogen is well documented to
affect learning, neurological development, and mood
[44,45] in women. However, estrogen has been shown
to affect male cognition as well [46,47] through the

conversion of testosterone to estrogen by brain aromatiza-
tion [48]. As highlighted by recent reports, estrogen has
differential effects on male and female cognition and
physiology [49,50]. In females, estrogen levels have been
linked to neuroprotective properties such as stroke recov-
ery and Alzheimer’s disease resilience [44]. Little is estab-
lished about the role of hyperestrogenism in sSCA, males
as it is often challenging to disentangle the effects of aber-
rant sex hormone levels from other concomitant genetic
abnormalities. Whether estrogen confers additional neuro-
protective properties to these subjects is unknown, how-
ever, it is doubtful.

BLDA complemented the raw area analyses, revealing
local karyotype-specific expansions or contractions of
the CC. Landmarks reflecting the bulbosity of the CC’s
rostrum were most correlated with the Y:X spectrum.
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However, these findings were not robust enough to sur-
vive FDR. The X chromosome count among females was
robustly associated with the bulbosity of the genual re-
gion as well as midline thickness. The significance of the
PS-ASS landmark in females also suggests that the
length of the splenium is also reduced in 47,XXX rela-
tive to 46,XX.

Among the males, we were able to detect BLDs associ-
ated with both the X and Y chromosome counts. We
were able to see widespread effects of X chromosome
dosage among males, and BLDA highlighted many of
these effects. We identified a robust association of the
AG-PS distance with X count, indicating a lengthening
of the CC with additional X’s. The significance of the
AII-ASI and posterior inferior isthmus (PII)-posterior
superior isthmus (PSI) landmark pairings among male X
counts indicates a significant reduction of the mid-body
of the CC with increasing Xs. The absence of significant
BLDs among the AG-IG-PG-PSG landmarks suggests
that the bulbosity of the genu is not strongly affected by
X count in males. Similarly, the landmarks associated
with the bulbosity of the splenium (AS-PS-IS) appear
relatively unrelated to X count. While the significance of
associations between BLDs and Y counts did not survive
FDR, clear trend-level effects were present. Principally,
the BLDs related to Y counts indicated local expansions
of the CC, as was expected. The trend of the PG-AG
BLD was to increase with additional Ys, indicating an

expansion of the genu-rostrum area. Similarly, the IS-
AIS distance tended towards elongation with added Ys
suggesting an increased length of the splenium. How-
ever, the pre-FDR significance of the PII-PSI BLD indi-
cates a shrinkage of the posterior mid-body of the CC.
Taken together, the findings of X and Y count among
males seems to corroborate the original hypothesis of
Y-based expansion and X-based contraction of CC
morphometry.

We performed groupwise BLDA to identify specific
differences in landmark morphology between the sSCA
groups. The most prevalent differences existed between
the 46, XX and 47,XXX groups. Nearly all differences
stemmed from distances between the IG and a variety of
other landmarks. In 46,XX, the distances between the IG
and posterior body landmarks was greater than those in
47, XXX suggesting a possible lengthening of the CC in
controls. Between the 48 XXYY and 46,XY groups, all
significant BLDs indicate an expansion of the 48, XXYY
group relative to controls. Similarly, the comparisons be-
tween 48,XXYY and both 47,XXY and 47,XYY indicate
an expansion of the genu’s bulbosity in the 48,XXYY
group relative to these other sSCA karyotypes. The 46,
XY-47,XXY comparison reveals an expansion in the dis-
tance between the inferior genu and the inferior sple-
nium in the 47,XXY group relative to controls. However,
the overall length of 47,XXY, as given by the AG-PS dis-
tance, was not significantly greater, suggesting that the
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Figure 9 Groupwise coefficient matrices of average local curvature by karyotype. Groupwise comparisons of average curvature by
callosum region. The elements of each matrix contain the coefficient of Karyotype resulting from the multiple linear regression model
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direction of the effect. A circle is placed in intersections containing coefficients significant at the 0.05 level prior to correction for multiple
comparisons while a triangle is present for coefficients significant after FDR correction.

effect may reflect a difference in the rostrum of the
47,XXY group. Distances between the 47, XXX and
47,XXY group consisted primarily of distances paired
with the IG being larger in 47,XXY than in 47, XXX. The
AIS-ASS distance was also larger in 47,XXY indicating a
relatively thicker posterior body of the CC in 47,XXY.
Between 47,XXX and 47,XYY, the distances between the
IG and AG and PG and PIG are all larger in the 47, XXX
group suggesting an increased bulbosity of the genu in
this group relative to 47,XYY. The AIS-ASS distance is
larger in 47,XYY suggesting a thicker posterior body of
the CC. The larger distance between the IG and PS in
the 47,XYY group suggests an overall longer CC length
in the male group. Among the 47, XXX and 48XXYY
groups, the PG-AG and PIG-PSG distances are larger in

48,XXYY suggesting an increased genual bulbosity of the
CC. The IS- and PS-AIS distances are also larger in the
48,XXYY group relative to the 47, XXX group suggesting
a lengthening of the splenium in the male sSCA group.
The local curvature of the lower boundary of the CC
(x;) was most widely predicted by X count in both males
and females prior to FDR. However, these associations
failed to survive correction for multiple comparisons.
The Y:X karyotype spectrum and raw Y count similarly
failed to predict lower boundary curvature profiles after
EDR. However, if we consider these as merely trend-
level effects, it appears that X count does have a wide-
spread affect on the curvature of the lower CC. As
suggested previously, this may be due to ventricular ex-
pansion in sSCA, karyotypes more readily altering the
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Figure 10 Circular representation of significant groupwise landmark distances. Each landmark is represented as a tile on the outer
perimeter of the circle. If a between-landmark distance (BLD) is significantly different between two groups then a line color coded with the
comparison is drawn between the landmark tiles. (a) Significant BLDs prior to multiple comparisons correction. (b) Significant BLDs surviving FDR.
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shape of the lower, rather than the upper, CC. The ef-
fects of chromosome dosage was less widespread in the
upper boundary curvature (x,). However, two associa-
tions managed to survive FDR: increased X count ap-
pears to lessen «x,,; in males while an increased Y:X ratio
is associated with higher degrees of k, 3. The groupwise
comparisons between curvature profiles do not reveal
consistent patterns and is more difficult to interpret at a
functional level. However, this highlights the degree of
variation among these sSCA groups while providing a
valuable morphometric characterization of the spectrum

of karyotypes.

Our study has some limitations that merit discussion.
Primarily, our sample sizes for large supernumerary kar-
yotypes, while large relative to other studies, are still
small. This is an inherent limitation of studying disor-
ders with low prevalence. The small sizes of these
groups, specifically 48,XXXY and 49,XXXXY (N =5 and
6, respectively), necessarily limits our power to make in-
ference. We used non-parametric resampling techniques
to avoid assumptions of sample normality required by
parametric tests, but even resampling does not circum-
vent the issue of having small sample sizes. Some studies
address this issue by pooling similar diagnostic groups
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to boost statistical power. We decided to maintain separ-
ate groups, however, as our subjects were non-mosaic
and these karyotypes exhibit distinct cognitive and som-
atic phenotypic profiles [51]. Large supernumerary kar-
yotypes are very rare, so we thought it more valuable to
explore their characteristics separately.

A second limitation is the use of a low-pass Gaussian
kernel to smooth the callosal boundary. In the process
of smoothing, callosal rostrums that are thin and highly
hooked are rounded off. The fibers of the rostrum are
responsible for connecting the orbital cortices, which
may be affected in SCA disorders. However, when the
CC is extracted in its binary representation, its boundary
is somewhat jagged. It would be favorable to work with
a smooth boundary especially when investigating curva-
ture, which is a second-degree derivative and, therefore,
highly perturbed by sudden changes or noise. We ex-
perimented with a wide range of kernel parameteriza-
tions, observing the tradeoff in smoothness to rostrum
loss and arrived at our present parameterization as best.

Our results agree with the literature on MRI studies in
SCA subjects. These reports primarily focus on 47,XXY
[12-14,52-54] and, to a lesser extent, higher order super-
numerary X karyotypes [22,55,56]. These studies consist-
ently report overall reductions in WM/GM volumes and
higher ventricular volume. A few studies have also inves-
tigated the CC in these groups and indicated a general
trend of lower area, which is consistent with a decreased
WM volume as well as our present results. Far fewer
studies have addressed the phenotypes associated with
supernumerary Y subjects, and the reports have often
been inconsistent. Some studies suggest a higher ICV in
sSCAy [57], but others report little or no change [12]. In
our 47,XYY sample, ICV, WM, and GM volumes were
all significantly larger than 46,XY.

Using BLDA, we observed a significant inverse correl-
ation of CC thickness with the karyotype spectrum. In
fact, many subjects with large sSCAx karyotypes have
noticeably thinner CCs upon visual inspection. In ex-
treme cases, partial agenesis of the CC may occur in
these groups [22]. The bulbosity of the splenium and
genu were also moderately associated with the chromo-
some dosages. Because impaired executive function has
been reported across sSCA groups [1,10,11,58], the ob-
served reduction in the genu’s bulbosity with increased
dosages makes sense as these WM paths connect the
frontal cortices. However, this effect was only present
using BLDA and not simply area-based analysis.

To our knowledge, this is the first study to simultan-
eously investigate this set of sSSCA karyotypes, not only
in relation to each other and matched controls but also
along a dosage-ratio spectrum and by looking at X and
Y counts within sex. Our use of several morphological
descriptors is also novel. While analysis of area is
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intuitive, shape-based metrics further inform us about
morphological profiles for various diagnostic groups.

Conclusions

Our results reinforce several prior findings about the
pattern of CC area reduction in sSCA, while also intro-
ducing several new findings. The size of primary and
secondary motor CC regions appears to be affected by X
dosage. Additionally, the bulbosity of regions associated
with frontal WM seems strongly linked to X dosage.
These findings encourage us to explore whether chro-
mosome dosage has an effect on WM tractography in
other brain regions. Future studies involving DTI and
shape analysis of other subcortical structures in these
karyotypes will be beneficial.

Endnotes

*A failure of homologous chromosomes to separate
after metaphase.

PIn cytogenetic nomenclature, the comma separates the
total chromosome number from the sex chromosomes.

“A condition in which different cells of the same indi-
vidual express more than one karyotype.

4WM hyperintensities often reflect underlying lesions
or other varied pathologies of the WM fibers.

g values are FDR-adjusted p values.
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