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Abstract

Background: Since American Indians are predisposed to type 2 diabetes (DM2) and associated cardiovascular risk,
Cherokee boys and girls (n=917) were studied to determine whether BMI Z (body mass index Z score) is
associated with the apoC-lil (apolipoprotein C-lll) content of HDL (high density lipoprotein), a previously reported
predictor of DM2.

Methods: An ad hoc cross-sectional analysis was conducted on a previously studied cohort. Participants were
grouped by gender-specific age groups (5 to 9, 10 to 14 and 15 to 19 years). ApoA-I (apolipoprotein A-l) and HDL
apoC-lIl were assayed by electroimmunoassay. ApoC-lll was measured in whole plasma, and in HDL to determine
the molar proportion to apoA-l. General linear models were used to assess association.

Results: The HDL apoC-lll to apoA-I molar ratio increased by BMI Z quartile in girls aged 10-14 years (p < 0.05 for
linear trend, p < 0.05 for difference in BMI Z quartile IV vs. | to lll) and aged 15-19 years (p < 0.05 for trend). In boys
the increase by BMI Z occurred only at ages 15-19 years (p < 0.01 for trend and for quartile difference).

Conclusions: ApoC-lll showed an obesity-related increase relative to apoA-I during adolescence beginning in girls
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aged 10 to 14 years and in boys aged 15 to 19 years. The earlier changes in girls may alter HDL's protective
properties on the B-cell and contribute to their increased risk for DM2.

Background

It is known that cardiovascular risk factors precede the
onset of DM2 [1], and it has been proposed that CVD
and DM2 share common antecedents [2]. Furthermore
the presence of risk factors leading to the early onset of
DM2 has been increasingly observed in adolescents [3],
especially in American Indian youth [4] stressing the im-
portance of identifying risk markers for enhancing early
detection and prevention in this population.

The hypothesis that a low HDL-C (HDL cholesterol)
plays a role in the onset of DM2 is supported by findings
in the Prospective Cardiovascular Miinster (PROCAM)
study on middle-aged men showing that low HDL-C
was an independent risk factor for DM2 and was inter-
active with BMI [5]. However there is limited informa-
tion on the apolipoprotein content of HDL in relation to
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obesity and possible diabetes risk. This ad hoc cross-
sectional analysis of cardiovascular and diabetes risk fac-
tors in the Cherokee Diabetes Study included HDL
apoC-III, which is of potential significance since it has
recently been shown to predict DM2 in a Turkish popu-
lation in whom the highest tertile conferred a 2.5-fold
risk ratio for one standard deviation increment with a
greater effect in women [6]. The prediction was inde-
pendent of obesity and greater than that due to waist
circumference. Based on their conclusion and hypoth-
esis, we perceived a need for replicating this important
finding. However, in our cross-sectional observations
on the Cherokee children and adolescents we were
limited to investigating association of HDL apoC-III
with the pre-diabetes phenotype manifesting as obes-
ity associated with insulin resistance progressing to a
decline in insulin levels.

It is concerning that an increased prevalence of DM2
has been observed in females in five North American
populations [4]. This is attributed in part to B-cell
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Table 1 Cholesterol, triglyceride and HDL-C by sex, age group and BMI Z quartiles I-1ll and IV

Sex Age BMI Z quartiles
(years) I-11l n v n p
Total Females 5-9 14744235 95 14894253 32 0.7586
cholesterol 10-14 1386+233 138 14754329 46 0.0919
(mg/dl) 15-19 142.1+289 120 15054314 41 0.1336
Males 5-9 1514+275 91 15224282 31 0.8967
10-14 142.1+287 135 14834313 45 0.2425
15-19 14434289 97 15684319 32 0.0513
Triglycerides Females 59 58.1+374 95 85.9+60.0 32
(mg/dl) 10-14 70.3+380 138 108.7+62.8 46
15-19 693+378 120 928+376 4
Males 5-9 4784206 91 782+41.1 31
10-14 62.1+300 135 93.2+439 45
15-19 762+356 97 12234786 32
Log triglycerides Females 5-9 391+054 95 428+0.59 32 0.0026
10-14 4.13+049 138 4.54+0.56 46 0.0001
15-19 4124048 120 446+037 41 0.0001
Males 5-9 3.76+048 91 4244049 31 0.0001
10-14 4.02+045 135 442+ 051 45 0.0001
15-19 4234047 97 4634058 32 0.0007
HDL-C
(mg/dl) Females 5-9 470494 95 395+92 32 0.0002
10-14 432494 138 381475 46 0.0003
15-19 447+86 120 39.1+96 41 0.0018
Males 5-9 510+114 91 393+83 31 0.0001
10-14 448+99 135 375466 45 0.0001
15-19 402+87 97 36.7+88 32 0.0508

The p values are derived from testing the difference in means of those with BMI Z quartiles I-ll vs. IV.

deterioration during adolescence, a critical period of
development, thus increasing risk for DM2 [7]. Since the
markedly increased female incidence of DM2 is unex-
plained, we evaluated gender differences in HDL apoC-III
in American Indian children and adolescents, to de-
termine whether it is differently associated with obes-
ity between sexes.

Methods
With collaboration of the Cherokee Nation of Oklahoma,
a total of 2,205 participants aged 5—40 years volunteered
to participate in the Cherokee Diabetes Study. Eleven sub-
jects with DM2 as defined by a fasting glucose greater
than 126 mg/dl were excluded [8]. 975 non-diabetic male
and female subjects aged 5-19 years were studied allowing
sufficient power for subgrouping and making it unlikely
that rare genetic forms of obesity would have an effect.
Informed consent was obtained from each subject
or his/her legal guardian, following approval of the

Institutional Review Boards of the University of Oklahoma
Health Sciences Center and the Cherokee Nation. Stand-
ard methods for conduction of the study, reporting
and data deposition were adopted according to the
study operations manual.

Body mass index (BMI)

Weight and height were determined using accurate stan-
dardized methods according to the operations manual.
BMI was calculated from the weight in kilograms divided
by the height in meter squared. Since there is a known
close to linear increase in BMI during late childhood and
adolescence, the age adjusted BMI Z score was computed
by formula considering variation from the median.

Lipids and apolipoproteins

Lipid assays included triglycerides, cholesterol, and
HDL-C. An Abbott VP-Super System automatic analyzer
and commercial reagents were used to determine levels of
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Table 2 Apolipoproteins by sex, age group and BMI Z quartiles I-lll and IV
Sex Age BMI Z quartiles
(years) I-11 n v n p
ApoA-I (mg/dl) Females 5-9 1183+141 95 143+177 32 0.2364
10-14 111.8+144 138 1076+128 46 0.0640
15-19 116.3+201 120 1096+175 41 0.0465
Males 5-9 12354161 91 11564122 31 0.0053
10-14 116.7+15.1 135 1099+120 45 0.0029
15-19 1103+154 97 1069+152 32 0.2720
HDL ApoC-lll (mg/dl) Females 5-9 4074097 95 4054128 32 0.9277
10-14 4.08+0.98 138 4.33+1.66 46 03282
15-19 4174123 120 4194127 41 0.9282
Males 5-9 4424101 91 3.77+089 31 0.0014
10-14 410+1.01 135 3744083 45 0.0181
15-19 4.02+1.05 97 463+099 32 0.0036
Log Non HDL ApoC-Hlll Females 5-9 062+050 95 0914053 32 0.0081
10-14 082+047 138 1.16+063 46 0.0012
15-19 0.75+044 120 1054043 41 0.0003
Males 5-9 0.56+0.34 91 0944054 31 0.0010
10-14 0724044 135 1054057 45 0.0008
15-19 092+047 97 1.27 4051 32 0.0009
ClIl Ratio** Females 5-9 242411 95 1.814+1.05 32 0.0059
10-14 1.94+089 138 155+1.04 46 0.0207
15-19 203+0.76 120 1564072 41 0.0007
Males 5-9 266+ 1.04% 91 1644084 31 0.0001
10-14 2.13+0.90+ 135 1454075 45 0.0001
15-19 1.76 +0.86# 97 1394064 32 0.0114

** The ratio of HDL apoC-lll to VLDL + LDL apoC-lIl.

The p values are derived from testing the difference in means of those with BMI Z quartiles I-ll vs. IV.

cholesterol (Boehringer, Mannheim, Federal German
Republic) and triglyceride (Miles Inc., Tarytown, NJ) by
enzymatic methodology. HDL-C was measured following
the heparin-manganese precipitation procedure of the
Lipid Research Clinics program and LDL-C (low density
lipoprotein cholesterol) was calculated by the Friedewald
formula. ApoA-I [9], and apoC-III [10] were determined
by electroimmunoassays.

Glucose and insulin

Fasting insulin levels were determined in the National
Institutes of Health core laboratory at the Endocrinology
Department, University of Chicago, Chicago, IL. Insulin
was measured in serum samples using an overnight com-
petitive double antibody radio-immunoassay [11] using a
modification of the procedure and glucose by an automated
method using glucose oxidase (Alfa Wassermann, Inc.,
West Caldwell, NJ).

Statistical analyses

Data were grouped by sex and categorized by age from
5-9 years, 10—14 years and 15 to 19 years . General lin-
ear models were used to assess the association of BMI Z
with HDL apoC-IIIL.

Results

Lipids

Triglycerides were highest (p <0.01) for participants with
BMI Z scores in the 4™ quartile in both sexes, and HDL-C
values was lowest in 4™ quartile (p<0.01) for both sexes
with the exception of boys aged 15 to 19 years. Cholesterol
was not different (Table 1).

ApoA-I and ApoC-lil

ApoA-I was lower in those within the 4™ quartile for
BMI Z vs 1* to 3rd for girls aged 15 to 19 years
(p<0.05) and for boys aged 5-9 and 10-14 years
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(p<0.01, Table 2). HDL apoC-III was lower for boys less
than 15 years of age (p <0.05) but higher for 15-19 year-
old boys (p<0.01). HDL apoC-III relative to apoA-I
represented by the molar ratio (Figures 1 and 2) showed
an increase in girls aged 10—14 years (p <0.05 for linear
trend, p <0.05 for comparison of those with the 4™ quar-
tile for BMI Z vs 1 to 3", which continued at ages
15-19 years (P<0.05 for trend). In boys the increase
occurred at ages 15-19 years (p<0.01 for trend and
for quartile comparison). Log non HDL apoC-III was
higher (p<0.01) in those with BMI Z in the 4th quar-
tile for any sex-age groups, but the ratio of HDL
apoC-I1II to LDL+VLDL apoC-III (C-III ratio) was
lower in the 4™ quartile (p<0.05) for any sex-age
groups. Multivariate analyses showed that BMI Z was
negatively, while total cholesterol and triglyceride
positively associated with HDL apoC-III after adjust-
ing for age and sex. The effects of fasting insulin and
glucose on the association of HDL apoC-III with BMI
Z score were assessed (data not shown). The results
showed the association was not affected by fasting
glucose for any age groups in both genders. However,
the association was reduced by fasting insulin in boys
but not girls.

Discussion

Obesity-related increases in HDL apoC-III relative to
apoA-I occur earlier in girls from ages 10 to 14 years,
followed by boys at ages 15 to 19 years. Since HDL
apoC-III is a stronger risk factor for DM2 in women [6],
the sex differences are consistent with observations that
girls are less protected from DM2 than boys [4]. It is
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Figure 1 HDL ApoC-lll: ApoA-I molar ratio (x100) by BMI Z
quartiles in boys.* p for trend < 0.05, ** p < 0.05 for difference
between quartiles I-lll and IV, *** p < 0.01 for difference between
quartiles |-l and V.
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Figure 2 HDL ApoC-lil: ApoA-I molar ratio (x100) by BMI Z
quartiles in girls. * p for trend < 0.05, ** p < 0.05 for difference
between quartiles |-l and V.

possible that the earlier increase in HDL apoC-III in girls
is associated with their known earlier pubertal onset and
increased adiposity associated with more insulin resistance
at earlier ages than boys [12]. Sex hormone differences are
also a possible explanation, but our previous analyses have
only documented changes in HDL-C, apoA-I and apoA-II.
In boys, total testosterone and free testosterone are asso-
ciated with decreased HDL-C and apoA-1 during puberty
[13,14], concurring with our observations in the same
Cherokee population that obesity-related decreases in
HDL-C and in lipoproteins containing either apoA-I
or both apoA-I and apoA-II were greater in boys
aged 15 to 19 years than in girls [15].

Since insulin-resistant conditions such as obesity and
DM?2 are associated with low HDL-C and generation of
smaller HDL particles [16-18], the relative increase in
HDL apoC-III may change the HDL particle’s protective
functions. However, it is unknown whether the apoC-III
content of HDL influences efflux function, but this could
be answered by use of a macrophage HDL efflux assay
which has shown cholesterol efflux to be superior and inde-
pendent of HDL-C as a predictor of atherosclerosis [19].

Epidemiological observations supporting a role for
LDL uptake and HDL-mediated efflux in the pathogen-
esis of DM2 have been supported by in vitro studies
showing that addition of LDL to isolated human and rat
islets decreases glucose stimulated insulin secretion and
is attributed to cholesterol uptake by LDL receptors on
the B-cell [20]. Furthermore, the effect of intracellular
accumulation of cholesterol is influenced by HDL-
mediated cholesterol efflux via the adenosine triphos-
phate binding cassette transporter Al (ABCA1). Mice
lacking the LDL receptor and the ABCA1 transporter
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were not protected from effects of added LDL on decreas-
ing beta cell insulin secretion, suggesting that HDL-
mediated efflux plays a critical protective role [21]. Further
studies have revealed that increased cholesterol content in
the beta cell membrane down-regulates insulin secretion
by influencing membrane depolarization, the signal for
calcium influx and calcium-mediated insulin secretion
[22]. These studies provide a plausible explanation for
the role of HDL in protecting the beta cell from
cholesterol-induced toxicity, supporting the hypothesis
that compositional changes in HDL consisting of
decreased cholesterol but increased apoC-III relative
to apoA-I, could result in adverse functional changes.
Although we have previously reported cross-sectional
observations of non-HDL apoC-III in relation to insu-
lin resistance in Cherokee Indian adolescents [23],
HDL apoC-III has not been prospectively evaluated as
a risk factor for type 2 diabetes in any population
other than Turkish adults in whom it was strongly
predictive with a greater effect in women [6]. In the
current cross-sectional analysis we could not investi-
gate the predictive effect of HDL apoC-III on out-
comes such as the onset of type 2 diabetes. Although
the association of HDL apoC-III with BMI Z score
was not affected by fasting glucose, the association
was affected by fasting insulin in boys but not girls.
This may reflect an association with insulin resistance
characterized by increased insulin levels before pro-
gressing to lower insulin levels with the onset of dia-
betes, and is consistent with an effect of insulin
resistance on apoC-III transcription via failed phos-
phorylation of the transcription factor, foxo-1 result-
ing in continued apoC-III transcription [24], thus
increasing total and HDL apoC-III. Further analysis
showed that obesity related increase in HDL apoC-III was
reduced by the effect of insulin in boys suggesting
that insulin excess may reduce the effect in boys
offering them protection.

Increases in HDL apoC-III may result from increased
transfer from surplus non-HDL apoC-III, a particle
which we have previously shown to be associated with
insulin resistance in children [23] and is known to be a
predictor of atherosclerotic lesion progression [25,26].
The apolipoprotein changes with increasing BMI oc-
curred in association with an increased triglyceride and
low HDL-C, the classic derangements in lipid transport
observed in insulin resistant states. Besides preceding
DM2 and occurring in association with the metabolic
syndrome and cardiovascular risk [27,28], the criteria
were independent risk factors for DM2 in the PROCAM
study, and low HDL-C was found to be interactive with
obesity in predicting diabetes [5]. Conversely high levels
of HDL-C were protective against DM2 in Arizona Pima
women but not men [29].
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It is also possible that effects of low or abnormal HDL
on risk for DM2 are compounded by the effects of an
increased BMI, since obesity is a known risk factor and
has a quantitative effect on diabetes prediction in women
[30] and men [31]. Furthermore onset of obesity before
age 21 years compounds diabetes risk [30] and plays a role
in causing insulin resistance mediated in part by increased
free fatty acids and their deposition in liver and muscle
resulting in resistance to insulin’s action on glucose lower-
ing [32]. Evidence from clinical studies supports the role
of a sustained elevation in fatty acids resulting in beta cell
failure and progression to diabetes [33].

Conclusions

Our observations provide evidence for a predominantly
female obesity-related increase in HDL apoC-III relative
to apoA-I, potentially leading to dysfunctional effects on
the B-cell and association with increased risk for DM2.
The observation of an earlier obesity-related change in
girls than in boys is consistent with increased risk for
DM2 in females. These changes add to our previously
observed obesity-related decreases in HDL-C and apoA-I
in both sexes [15] that also may increase risk for diabetes.
The data support the hypothesis that when the apoA-I
and cholesterol content of HDL are lowered in the obese
state, the increase in HDL apoC-III may compound dys-
function and predispose to DM2. The data may provide
rationale for prospective cohort studies to establish
whether HDL apoC-III and associated change in HDL
function predict DM2 and whether lifestyle and pharma-
cological interventions can improve the abnormalities
leading to diabetes prevention in youth and reduction in
the increased female prevalence.
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