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Abstract 

Background  Paraoxonase 2 (PON2) and neuronal uncoupling proteins (UCP4 and UCP5) possess antioxidant, anti-
apoptotic activities and minimize accumulation of reactive oxygen species in mitochondria. While age and sex are risk 
factors for several disorders that are linked with oxidative stress, no study has explored the age- and sex-dependent 
expression of PON2 isoforms, UCP4 and UCP5 in primate brain or identified a drug to activate UCP4 and UCP5 in vivo. 
Preclinical studies suggest that the peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), can 
be neuroprotective, although the mechanism responsible is unclear. Our previous studies demonstrated that piogl-
itazone activates PON2 in primate brain and we hypothesized that pioglitazone also induces UCP4/5. This study 
was designed to elucidate the age- and sex-dependent expression of PON2 isoforms, UCP4 and UCP5, in addition 
to examining the impact of systemic PIO treatment on UCP4 and UCP5 expression in primate brain.

Methods  Western blot technique was used to determine the age- and sex-dependent expression of UCP4 and UCP5 
in substantia nigra and striatum of African green monkeys. In addition, we tested the impact of daily oral pioglitazone 
(5 mg/kg/day) or vehicle for 1 or 3 weeks on expression of UCP4 and UCP5 in substantia nigra and striatum in adult 
male monkeys. PIO levels in plasma and cerebrospinal fluid (CSF) were determined using LC–MS.

Results  We found no sex-based difference in the expression of PON2 isoforms, UCP4 and UCP5 in striatum and sub-
stantia nigra of young monkeys. However, we discovered that adult female monkeys exhibit greater expression 
of PON2 isoforms than males in substantia nigra and striatum. Our data also revealed that adult male monkeys 
exhibit greater expression of UCP4 and UCP5 than females in substantia nigra but not in striatum. PIO increased UCP4 
and UCP5 expression in substantia nigra and striatum at 1 week, but after 3 weeks of treatment this activation had 
subsided.

Conclusions  Our findings demonstrate a sex-, age- and region-dependent profile to the expression of PON2, UCP4 
and UCP5. These data establish a biochemical link between PPARγ, PON2, UCP4 and UCP5 in primate brain and dem-
onstrate that PON2, UCP4 and UCP5 can be pharmacologically stimulated in vivo, revealing a novel mechanism 
for observed pioglitazone-induced neuroprotection. We anticipate that these outcomes will contribute to the devel-
opment of novel neuroprotective treatments for Parkinson’s disease and other CNS disorders.
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Highlights 

•	 PON2, UCP4 and UCP5 possess antioxidant, anti-apoptotic activities and minimize reactive oxygen species accu-
mulation in mitochondria.

•	 Age-associated sex difference exists in  expression of  PON2 isoforms in  adult STR and  SN region of  NHPs 
with higher levels found in females.

•	 Age-associated sex difference exists in  expression of  UCP4 and  UCP5 in  SN region of  NHPs with  higher levels 
found in males.

•	 Pioglitazone is first drug to induce in vivo expression of UCP4 and UCP5 in STR and SN regions.

Keywords  Pioglitazone, Uncoupling protein, Oxidative stress, Nonhuman primate, Striatum, Substantia nigra

Plain language summary 

Parkinson’s disease (PD) is less common in women than men, which may be related to the protective effect of high 
levels of estrogens in women that maintain the activity of neuroprotective proteins in brain mitochondria. Our previ-
ous work suggests that paraoxonase-2 (PON2), uncoupling protein-4 (UCP4) and uncoupling protein-5 (UCP5) play 
vital roles in maintaining the health of brain dopamine neurons that are lost in PD. This work tested the hypothesis 
that female primate brains expresses higher levels of these proteins than males. In addition, this research investigated 
whether estrogen regulates the expression these factors and whether they can be pharmacologically activated 
later in life to protect dopamine neurons at a time when symptoms of PD typically emerge. The results indicate 
that before puberty when estrogen levels in females are relatively low, there is no difference in PON2, UCP4, UCP5 
brain levels between males and females, but in adults PON2 is up to 3 × higher in females compared with males 
in regions relevant to PD, consistent with estrogen activation of PON2. Earlier studies have shown that pioglitazone 
can be neuroprotective in several adverse brain conditions, although the mechanism is not clear. The current research 
demonstrates that pioglitazone transiently activates by about twofold the expression of PON2, UCP4, UCP5 in vivo 
in primate brain, suggesting their involvement in the neuroprotective properties of the drug. Overall, the current data 
provides impetus for further work on activating protective factors that alter mitochondrial dynamics and function, 
leading to improved understanding and treatment of multiple diseases.

Introduction
Parkinson’s disease (PD) is an age-associated neurode-
generative disease characterized pathologically by the 
gradual loss of dopaminergic (DA) neurons in the sub-
stantia nigra (SN), which leads to the depletion of DA 
terminals in the striatum (STR) [52]. Although its eti-
opathogenesis is unknown in most cases, there is abun-
dant evidence to implicate a key role of mitochondrial 
dysfunction and oxidative stress in PD [44]. The involve-
ment of mitochondrial dysfunction in PD has been 
demonstrated by the reduced activity of mitochondrial 
complex I activity in SN of PD patients [47] and in animal 
models, where the parkinsonian-inducing toxins, MPTP 
and rotenone inhibit complex I and produce selective 
nigrostriatal DA neuron degeneration [28, 50]. A rela-
tively high basal level of oxidative stress exists in SN, 
which is thought to contribute to the particular vulnera-
bility of SN DA neurons in PD [19, 20, 39]. Current treat-
ments for PD are limited to amelioration of symptoms 
[51] and treatment strategies that target the progressive 
course of PD are urgently needed. A potential approach 

to this is enhancement of endogenous neuroprotective 
systems and one promising target to combat mitochon-
drial dysfunction and oxidative stress is mitochondria-
based antioxidant and antiapoptotic proteins, such as 
paraoxonase 2 (PON2) and uncoupling proteins (UCPs) 
[3, 26].

PON2 is an ubiquitously expressed enzyme located in 
mitochondria and endoplasmic reticulum that possess 
potent antioxidant, anti-apoptotic and anti-inflammatory 
activities [3, 9]. In in vitro PD models, overexpression of 
PON2 reduces reactive oxygen species (ROS), whereas its 
deficiency increases ROS [40]. Recently, PON2 deficiency 
in mice has been shown to be associated with motor defi-
cits and impact DA-related genes that are important for 
survival of DA neurons, demonstrating a functional con-
sequence of altered PON2 expression [10]. Our labora-
tory has demonstrated a distinct sex-bias in expression 
of PON2 in adolescent non-human primate (NHP) brain 
(mean age 3 years), with greater abundance occurring in 
females [23, 25]. In addition, we reported the existence of 
two PON2 isoforms (i.e., 39 kDa and 41 kDa) in multiple 
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brain regions, with highest expression of both in striatum 
[23]. Like PON2, UCPs are transmembrane proteins pre-
sent in the inner mitochondrial membrane, where they 
control the accumulation of ROS during oxidative phos-
phorylation [19, 20]. Currently, six homologs have been 
identified (UCP1–6) in mammals with UCP4 and UCP5 
being distinguished by their predominant expression in 
central nervous system (CNS) neurons [37]. UCP4 and 
UCP5 work synergistically to maintain oxidative balance 
and ATP production [19, 20]. Thus, stimulating UCP4 
and UCP5 expression is a potential approach to combat 
mitochondrial dysfunction and oxidative stress in PD [17, 
26]. A paucity of data exists on UCP4 and UCP5 protein 
expression at different stages of life and distribution in 
brain, but emerging evidence supports an important role 
for them in protecting DA neurons from ROS. For exam-
ple, UCP4 and UCP5 overexpression in SH-SY5Y cells 
results in better preservation of mitochondrial membrane 
potential, cellular ATP levels, and lower oxidative stress 
under conditions of MPP+-induced neurotoxicity [7, 27]. 
In addition, UCP4 and UCP5 are down-regulated in mice 
lacking DJ-1, a gene associated with an early onset form of 
PD [58]. Therefore, PON2, UCP4 and UCP5 are potential 
neuroprotective targets for PD [4, 26]. However, no study 
has explored whether the expression of PON2, UCP4 and 
UCP5 is dependent on age or sex in STR and SN, which 
influence risk and progression of PD [6, 18].

Recently, we found that the anti-diabetic drug piogl-
itazone (PIO), upregulates PON2 in male adult mice 
and NHP brain [3, 4]. PIO targets the transcription fac-
tor peroxisome proliferator-activated receptor gamma 
(PPARγ), which regulates genes involved in anti-inflam-
matory responses, mitochondrial biogenesis, and oxida-
tive stress defense [24]. Thus, PON2 is a novel target of 
PIO and PPARγ, but it is not yet known whether PIO can 
induce expression of UCP4 and UCP5 in brain and this 
is addressed in the current study. Here, we use PIO as a 
pharmacological tool to stimulate the PPARγ pathway 
rather than to investigate its clinical utility.

The greater prevalence and incidence of PD in males 
compared to females [36, 38] has been at least partly 
attributed to a sex difference in susceptibility of nigros-
triatal DA neurons to oxidative stress, with the female sex 
hormone estradiol thought to convey this protection [12, 
33] and which may involve maintenance of higher basal 
expression of PON2 protein in females [13, 25]. In addi-
tion to an estradiol–PON2 interaction, it is not known 
whether estradiol’s neuroprotective effect is mediated 
through expression of UCP4 and UCP5, if so then there 
should be a male–female difference in their expression in 
adults but not in young animals before the age of puberty. 
This question is addressed in the current study. Since 
humans share much greater similarity with nonhuman 

primates (NHPs) than with rodents in terms of the endo-
crine system, organization of the central DA neurons and 
the pharmacological response to therapeutics [35, 42], 
the present study used NHPs to elucidate the age- and 
sex-dependent expression of the mitochondria-based 
neuroprotective proteins, PON2, UCP4 and UCP5, in the 
STR and SN, in addition to examining the impact of PIO 
treatment on UCP4 and UCP5 expression.

Methods
African green monkeys (Chlorocebus sabaeus) were used 
in all studies. Animals were housed at the St. Kitts Bio-
medical Research Foundation, an AAALAC accredited 
facility. Studies were carried out in accordance with the 
“Guide for the Care and Use of Laboratory Animals”. All 
studies were approved by the IACUC. Euthanasia was 
carried out after injection of an overdose of pentobarbital 
followed by brain perfusion with cold saline, dissection, 
and freezing samples in liquid nitrogen. Tissue samples 
were shipped to New Haven, Connecticut in a cryogenic 
liquid nitrogen vapor shipper and then stored in a freezer 
set to maintain at -80 °C until analysis. Other tissues col-
lected from animals in Experiments 1 and 2 have been 
and will be used in multiple other studies.

Experiment 1: Sex bias in PON2, UCP4 and UCP5 
expression in young and adult NHP brain
Young monkeys aged 11–28  days (female mean = 18.6, 
range 12–26; male mean = 18.2, range 11–28) and adult 
male monkeys (5–7  kg, mean estimated age 6–8  years) 
were used in this study.

Experiment 2: Impact of PIO on UCP4 and UCP5 expression 
in adult male NHP’s brain
We analyzed tissue from an earlier study, where adult 
males monkeys were administered PIO orally at 5 mg/kg/
day mixed with jam for 7 days (n = 5) or 21 days (n = 5). 
Control monkeys received jam only (vehicle control) 
for 7 days (n = 2) or 21 days (n = 3) [4]. The dose of PIO 
used in this study was based on the findings of Swanson 
et al. [53] who reported that repeated administration of 
5 mg/kg oral PIO in rhesus monkeys reduced indices of 
DA neuron damage inflicted by the parkinsonian toxin, 
MPTP. The dose of PIO used in the current study and by 
Swanson et al. produced peak plasma levels in the thera-
peutic range, 1–2 µg/mL [4, 46, 49, 53].

Total protein measurement
Tissue was sonicated in cold lysis buffer (Cell Signaling 
Technology, Danvers, MA) with cOmplete™ Protease 
Inhibitor Cocktail (Roche) and then centrifuged for 
15 min at 8,000 × g at 4  °C. Total protein content in the 
supernatant was determined by the BCA assay (Pierce™ 
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BCA protein assay kit, Thermo Scientific, Rockford, IL, 
USA).

Western blot analysis
Western blot protocol was carried out using Bio-Rad 
(Hercules, CA) equipment and consumables for stain-
free protein quantification, following the manufacturer’s 
instructions. The supernatant was placed in 4 × Laemmli 
loading buffer followed by protein denaturation in a heat-
ing block for 5  min at 100  °C. Protein separation was 
performed on stain-free midi-Protean TGX gels before 
transfer to nitrocellulose membranes using the turbo 
transfer method and imaged with the ChemiDoc imag-
ing system. Membranes were then blocked for 1 h at room 
temperature with 5% nonfat dry milk in Tris buffered saline 
wash buffer containing 0.1% Tween 20. Following this, 
membranes were incubated overnight in blocking buffer at 
4 °C with primary antibody (anti-PON2 antibody (1:1000; 
ab183710, Abcam, Cambridge, MA), anti-UCP4 antibody 
(1:1000; ab183886, Abcam, Cambridge, MA), anti-UCP5 
antibody (1:1000; ab221123, Abcam, Cambridge, MA). 

Membranes were washed and then incubated for 2  h at 
room temperature with anti-rabbit IgG, HRP-linked Anti-
body (1:10,000; #7074, Cell Signaling Technology, USA) in 
blocking buffer. After washing, the antibody complex was 
visualized by Clarity chemiluminescence (Bio-Rad Labo-
ratories) and imaged with the ChemiDoc imaging system. 
PON2, UCP4 and UCP5 expression was normalized to 
total lane protein using Image Lab software (Bio-Rad Lab-
oratories) within ChemiDoc XRS + (Bio-Rad Laboratories, 
Hercules, CA) [23, 25].

Statistical analysis
Data are expressed as the mean ± SEM. The normality of 
each comparison group was assessed and confirmed by 
the Shapiro–Wilk test and homogeneity of variances was 
confirmed using the Brown–Forsythe test for homoge-
neity of variances. In Experiment 1, values from males 
and females in each region were compared by two-tailed 
unpaired Student’s t test. In Experiment 2, the effect 
of PIO treatment in each region was assessed by one-
way ANOVA, followed by Tukey HSD post-hoc test for 

Fig. 1  Young NHP brain has no sex bias in PON2 isoforms expression in STR and SN regions (n = 5). Protein expression of PON2 isoforms, i.e., 39 kDa 
and 41 kDa in STR (A, B) and SN (C, D), respectively. Representative blot showing PON2 isoforms expression in STR (E), and SN (F). Corresponding 
image of total protein in STR (G) and SN (H). Optical density of UCP5 and UCP4 bands were normalized to total protein per lane. The normality 
of infant male and female data was confirmed by a Shapiro–Wilk test. 39 kDa PON2 STR Male (W = 0.97, p = 0.89) Female (W = 0.91, p = 0.50); 
41 kDa PON2 Male (W = 0.96, p = 0.87) Female (W = 0.80, p = 0.09); 39 kDa PON2 Male (W = 0.84, p = 0.18) Female (W = 0.83, p = 0.15); 41 kDa PON2 
SN Male (W = 0.97, p = 0.87) Female (W = 0.97, p = 0.90). Data were expressed as mean ± SEM. Male and female data in each region was compared 
by two-tailed unpaired Student’s t test. 39 kDa PON2 STR (two-tailed t (8) = 0.07, p = 0.94), 41 kDa PON2 STR (two-tailed t (8) = 0.0, p > 0.99), 39 kDa 
PON2 SN (two-tailed t (8) = 0.03, p = 0.97), 41 kDa PON2 SN (two-tailed t (8) = 0.0, p > 0.99)
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multiple comparisons using Prism 9 (GraphPad, La Jolla, 
CA). p < 0.05 was considered statistically significant in all 
analyses.

Results
There is no sex difference in expression of PON2 isoforms 
(39 kDa and 41 kDa), UCP4 and UCP5 in both, STR and 
SN regions of young monkey brains (Figs. 1, 2). In con-
trast, adult monkeys display a sex bias in expression of 
both PON2 isoforms, with greater levels (130–300%) of 
both isoforms existing in STR and SN regions of females 
compared with males (Fig. 3). On the other hand, a sex 
bias in UCP4 and UCP5 expression was seen in adult SN, 
but not in adult STR, with greater levels (130–135%) of 
both proteins existing in SN region of males compared 
with females (Fig.  4). In the pharmacological study, 
repeated PIO administration up-regulated expression of 
UCP4 and UCP5, but the effect was duration depend-
ent. In STR and SN, UCP4 and UCP5 expression was 

170–280% higher than vehicle controls following 1-week 
treatment but not different following 3-week treatment 
with PIO (Fig.  5). This reduction in UCP expression at 
3 weeks was not due to difference in PIO absorption or 
metabolism, as there was no change in plasma and CSF 
concentrations of PIO and its metabolites between the 1- 
and 3-week treatment groups [4].

Discussion
The biggest risk factors for PD are age and sex, and there 
is not a clear understanding of the molecular basis for 
each of these determinants or how their effects might be 
mitigated. Compelling evidence has been accumulated 
to indicate that PON2, UCP4 and UCP5 play a vital role 
in managing redox signaling by regulating ROS accu-
mulation [26, 40], and that these proteins are crucial for 
neuronal survival. The accumulated biochemical impact 
of aging, such as gradually diminishing mitochondrial 
function and the chronic exposure to higher basal level 

Fig. 2  Young NHP brain has no sex bias in UCP4 and UCP5 expression in STR and SN regions (n = 5). Protein expression of UCP4 and UCP5 in STR 
(A, B) and SN (C, D), respectively. Representative blot showing UCP4 and UCP5 expression in STR (E, G), and SN (F, H) region. Corresponding image 
of total protein in STR (I) and SN (J). Optical density of UCP5 and UCP4 bands were normalized to total protein per lane. The normality of Infant 
male and female data was confirmed by a Shapiro–Wilk test. UCP4 STR Male (W = 0.86, p = 0.25) Female (W = 0.96, p = 0.81); UCP5 STR Male (W = 0.78, 
p = 0.057) Female (W = 0.84, p = 0.18); UCP4 SN Male (W = 0.93, p = 0.65) Female (W = 0.86, p = 0.25); UCP5 SN Male (W = 0.88, p = 0.35) Female 
(W = 0.93, p = 0.64). Data were expressed as mean ± SEM. Male and female data in each region was compared by two-tailed unpaired Student’s t test. 
UCP4 STR (two-tailed t (8) = 0.99, p = 0.34), UCP5 STR (two-tailed t (8) = 1.85, p = 0.10), UCP4 SN (two-tailed t (8) = 0.73, p = 0.48), UCP5 SN (two-tailed t 
(8) = 2.23, p = 0.055)
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of oxidative stress in SN are thought to contribute to the 
selective vulnerability of DA neurons and onset of PD 
[55], with effects induced by estrogens considered to pro-
vide relative neuroprotection to females [33].

The observed higher expression of PON2 in STR and 
SN of healthy adult female monkeys is consistent with 
high circulating levels of estradiol in the blood. Healthy 
female mice possess a higher mitochondrial respira-
tion and lower oxidative stress compared to males and 
these differences are suppressed by ovariectomy but 
not orchidectomy [11], pointing to a key role of estra-
diol in the beneficial oxidative stress balance in females. 
Female African green monkeys, similar to rhesus and 
cynomolgus monkeys, reach puberty at about 3  years 
of age and in captivity live as long as 30  years, with 
menopause occurring after the 20 years of age [2, 57]. 
The adult females in this study were cycling normally 
and estimated to be 6–8  years, based on a facility age 
estimation rubric, which was scored by a veterinar-
ian during an evaluation of each animal’s behavior and 
physical condition. The mean estradiol level in adult 

female monkeys of reproductive age is at least ten times 
that in males [34]. Accordingly, it is reasonable to pre-
sume that gonadal hormones contributed to our finding 
of sex bias in PON2 isoforms expression in adult STR 
and SN that does not occur in young NHP.

We observed a greater expression of UCP4 and UCP5 
under normal physiological conditions in SN of adult 
males compared with females, suggesting no effect of 
estradiol on UCP4 and UCP5 in this brain region. The 
literature on the influence of sex of UCP in rodents 
is mixed. For example, older female rats have higher 
UCP4 and UCP5 levels in mitochondria compared with 
similarly aged males [15, 16]. On the other hand, it is 
interesting to note that in male and female rats either 
gonadectomy or exogenous sex hormone (estradiol or 
dihydrotestosterone) treatment for 3–4 weeks does not 
affect the expression of UCP2, UCP4 or UCP5 in brain 
[43]. Consistent with this latter study, we interpret 
the observed greater expression of UCP4 and UCP5 
in adult male SN as a compensatory response to the 
higher basal oxidative stress in adult males [20, 21, 39] 

Fig. 3  Adult NHP brain has sex bias in PON2 isoforms expression in STR and SN regions. STR (n = 5) and SN (n = 4). Protein expression of PON2 
isoforms, i.e., 39 kDa and 41 kDa in STR (A, B) and SN (C, D), respectively. Representative blot showing PON2 isoforms expression in STR (E), 
and SN (F). Corresponding image of total protein in STR (G) and SN (H). Optical density of UCP5 and UCP4 bands were normalized to total protein 
per lane. The normality of infant male and female data was confirmed by a Shapiro–Wilk test. 39 kDa PON2 STR Male (W = 0.84, p = 0.17) Female 
(W = 0.97, p = 0.87); 41 kDa PON2 Male (W = 0.95, p = 0.77) Female (W = 0.92, p = 0.54); 39 kDa PON2 Male (W = 0.92, p = 0.58) Female (W = 0.91, 
p = 0.51); 41 kDa PON2 SN Male (W = 0.87, p = 0.33) Female (W = 0.95, p = 0.73). Data were expressed as mean ± SEM. Male and female data in each 
region was compared by two-tailed unpaired Student’s t test. 39 kDa PON2 STR (two-tailed t (6) = 3.75, p = 0.0095), 41 kDa PON2 STR (two-tailed t 
(8) = 4.87, p = 0.0012), 39 kDa PON2 SN (two-tailed t (8) = 0.03, p = 0.97), 41 kDa PON2 SN (two-tailed t (6) = 2.72, p = 0.034). Asterisks indicate statistical 
significance in comparison with vehicle group, *p < 0.05, **p < 0.01, ***p < 0.001
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that is not present early in life and which is not affected 
by gonadal hormones.

Extensive research during past few decades has iden-
tified PPARs as essential players involved in the control 
of PON2 [4, 5, 14, 31]. Recently, our research group 
demonstrated that the PPARγ ligand, PIO, upregu-
lates PON2 in mouse and NHP brain [3, 4]. UCP gene 
transcription [48, 56] is also regulated by PPARs, yet 
the current study is the first to identify an interaction 
between PPARγ ligands and UCP4 or UCP5. How-
ever, a previous study did document that PIO activates 
UCP2 mRNA expression in mouse skeletal muscle 
[48]. Earlier studies by us and others explored the role 
of UCP2 in brain under physiological and pathophysi-
ological conditions, typically by measuring uncoupling 
activity or UCP2 mRNA, as detection of UCP2 protein 
in brain has proved challenging due to its uneven dis-
tribution and the historical inadequacy of reliable anti-
UCP2 antibodies [1, 8, 21, 22]. Based on a study using 
stem cells before and after differentiation to neurons, 

another explanation for the difficulty in detecting UCP2 
protein in brain is that UCP2 is preferentially expressed 
in cells with high proliferative potential, whereas UCP4 
is strongly associated with non-proliferative highly dif-
ferentiated neuronal cells [45]. Consequently, in terms 
of protecting DA neurons, a shift in focus from UCP2 
to UCP4 and UCP5 as targets for PD therapeutics 
seems appropriate.

Interestingly, it has been demonstrated that UCP4 
and UCP5 are downstream effectors in the established 
NF-κB c-Rel pro-survival pathway [19, 32]. For exam-
ple, NF-κB c-Rel dimers are involved in initiating neu-
roprotective signals and neuronal resistance to stressful 
conditions by inducing the expression of UCP-4, UCP5 
and antiapoptotic genes, such as MnSOD and Bcl-xL 
[30]. Furthermore, in cultured rat cortical neurons PIO 
upregulates expression of anti-apoptotic factor Bcl-
xL and mRNA of NF-κB c-Rel [29]. Consistent with a 
link between DA neuron integrity and the NF-κB/UCP 
pathway, NF-κB/c-Rel deficiency caused PD-like symp-
toms with progressive pathology in mice [41].

Fig. 4  Adult NHP brain has sex bias in UCP-4 and UCP-5 expression in SN but not in STR region. STR (n = 5) and SN (n = 4). Protein expression 
of UCP4 and UCP5 in STR (A, B) and SN (C, D), respectively. Representative blot showing UCP4 and UCP5 expression in STR (E, G), and SN (F, H) 
region. Corresponding image of total protein in STR [I] and SN [J]. Optical density of UCP5 and UCP4 bands were normalized to total protein 
per lane. Optical density of UCP5 and UCP4 bands were normalized to total protein per lane. The normality of infant male and female data 
was confirmed by a Shapiro–Wilk test. UCP4 STR Male (W = 0.80, p = 0.085) Female (W = 0.91, p = 0.52); UCP5 STR Male (W = 0.82, p = 0.13) Female 
(W = 0.95, p = 0.79); UCP4 SN Male (W = 0.85, p = 0.23) Female (W = 0.90, p = 0.46); UCP5 SN Male (W = 0.99, p = 0.99) Female (W = 0.99, p = 0.97). Data 
were expressed as mean ± SEM. Male and female data in each region was compared by two-tailed unpaired Student’s t test. UCP4 STR (two-tailed t 
(8) = 0.84, p = 0.93); UCP5 STR (two-tailed t (8) = 1.78, p = 0.11); UCP4 SN (two-tailed t (6) = 5.57, p = 0.0014); UCP5 SN (two-tailed t (6) = 5.87, p = 0.0011). 
Asterisks indicate statistical significance in comparison with vehicle group, *p < 0.05, **p < 0.01
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Perspectives and significance
Previous evidence indicates that PON2, UCP4 and UCP5 
serve as mitochondrial surveillance factors that mitigate 
the effects of oxidative stress; however, there is limited 
understanding of their endogenous regulation and there 
were no pharmacological tools to enhance their expres-
sion. We report novel findings that (1) an age-associated 
sex difference exists in expression of PON2 isoforms (i.e., 
39 kDa and 41 kDa) in adult STR and SN region of NHPs 
with higher levels found in females (2) an age-associated 
sex difference exists in expression of UCP4 and UCP5 
in SN region of NHPs with higher levels found in males 

and (3) PIO is first drug to induce in vivo expression of 
UCP4 and UCP5 in STR and SN regions. Interestingly, 
PIO activation of UCP4 and UCP5 is transient, similar 
to our previous findings on expression of PON2 follow-
ing PIO administration [4]. The waning of UCP4 and 
UCP5 activation after 3 weeks of daily PIO treatment is 
evidently due to existence of homeostatic mechanisms 
that preclude long-term escalations in their expression 
under physiological conditions. Future studies are now 
warranted to investigate the extent and persistence of 
PIO-induced neuronal UCP4 and UCP5 expression in 
adult female monkeys, and in PD models, in addition 

Fig. 5  Impact of 1-week and 3-week PIO treatment on UCP-4 and UCP-5 protein expression in STR and SN of adult male NHPs (n = 5). Protein 
expression of UCP4 and UCP5 in STR (A, B) and SN (C, D), respectively. Representative blot showing UCP4 and UCP5 expression in STR (E, G), and SN 
(F, H) region. Corresponding image of total protein in STR (I) and SN (J). Optical density of UCP5 and UCP4 bands were normalized to total protein 
per lane. Optical density of UCP5 and UCP4 bands were normalized to total protein per lane. The normality of data in each group was confirmed 
by a Shapiro–Wilk test. UCP4 STR VEH (W = 0.88, p = 0.32), PIO 1 week (W = 0.95, p = 0.78), PIO 3 weeks (W = 0.84, p = 0.16); UCP5 STR VEH (W = 0.91, 
p = 0.51), PIO 1 week (W = 0.96, p = 0.81), PIO 3 weeks (W = 0.81, p = 0.10); UCP4 SN VEH (W = 0.87, p = 0.27), PIO 1 week (W = 0.87, p = 0.27), PIO 
3 weeks (W = 0.93, p = 0.61); UCP5 SN VEH (W = 0.91, p = 0.51), PIO 1 week (W = 0.88, p = 0.34), PIO 3 weeks (W = 0.80, p = 0.08). Data were expressed 
as mean ± SEM. Data from different groups in each region were first analyzed for homogeneity of variance using Brown–Forsythe test (UCP4 STR: 
F (2, 12) = 1.551, p = 0.2518), UCP5 STR: F (2, 12) = 1.492, p = 0.2649); UCP4 SN: F (2, 12) = 1.593, p = 0.2435), UCP5 SN: F (2, 12) = 2.097, p = 0.1655)) 
and then compared by one-way ANOVA followed by Tukey HSD post-hoc test for multiple comparisons. UCP4 STR; one-way ANOVA: F (2, 12) = 9.91, 
p = 0.0029), UCP5 STR; one-way ANOVA: F (2, 12) = 12.94, p = 0.0010); UCP4 SN; one-way ANOVA: F (2, 12) = 22.47, p < 0.0001), UCP5 SN; one-way 
ANOVA: F (2, 12) = 5.06, p < 0.025). Asterisks indicate statistical significance in comparison with vehicle group, *p < 0.05, **p < 0.01



Page 9 of 11Jamwal et al. Biology of Sex Differences           (2023) 14:65 	

to defining the involvement of NF-κB/c-Rel pathway in 
PIO-mediated upregulation of UCP4 and UCP5. The 
outcomes of such investigations should provide clues to 
realizing the potential of UCPs as neuroprotective tar-
gets and lead to strategies to regulate their activity. Over-
all, the current data should provide impetus for further 
work on activating protective factors that have potential 
to alter mitochondrial dynamics and function leading to 
improved understanding and treatment of multiple dis-
eases [54].
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