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Abstract

Background: Infectious diseases and inflammation during pregnancy increase the offspring’s risk for behavioral
disorders. However, how immune stress affects neural circuitry during development is not well known. We tested
whether a prenatal immune challenge interferes with the development of social play and with neural circuits
implicated in social behavior.

Methods: Pregnant rats were given intraperitoneal injections of the bacterial endotoxin lipopolysaccharide
(LPS – 100 μg /kg) or saline on the 15th day of pregnancy. Offspring were tested for social play behaviors between
postnatal days 26–40. Brains were harvested on postnatal day 45 and processed for arginine vasopressin (AVP)
mRNA in situ hybridization.

Results: In males, LPS treatment reduced the frequency of juvenile play behavior and reduced AVP mRNA
expression in the medial amygdala and bed nucleus of the stria terminalis. These effects were not found in females.
LPS treatment did not change AVP mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, or
supraoptic nucleus of either sex, nor did it affect the sex difference in the size of the sexually dimorphic nucleus of
the preoptic area.

Conclusions: Given AVP’s central role in regulating social behavior, the sexually dimorphic effects of prenatal LPS
treatment on male AVP mRNA expression may contribute to the sexually dimorphic effect of LPS on male social
play and may, therefore, increase understanding of factors that contribute to sex differences in social
psychopathology.

Keywords: Lipopolysaccharides, Bed nucleus of the stria terminalis, Medial amygdaloid nucleus, Prenatal, Play
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Background
Children of mothers who were afflicted by an infectious
disease during pregnancy have a higher risk for schizo-
phrenia, autism spectrum disorders, mental retardation,
and other mental disorders [1,2]. Animal models used to
study the effects of infectious disease during develop-
ment often use lipopolysaccharide (LPS), a non-
infectious bacterial antigen derived from the cell wall of
gram negative bacteria to activate the immune system
[3]. For example, mice whose mothers were treated with
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LPS during pregnancy show less aggression and more
social grooming behavior in adulthood [4]. Remarkably,
although many disorders of social behavior emerge
during childhood, very few studies have addressed the
effects of prenatal immune activation on social behavior
during development.
We hypothesized that prenatal immune activation

alters juvenile social play behavior just as it alters adult
behavior, and that it does so by changing neural circuitry
involved in social behavior. We focused on social play,
which in rats is the primary social behavior performed
during pre-pubertal life [5], and on the AVP innervation
of the brain, as this system (or its non-mammalian
homologue vasotocin innervation) has been implicated
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in a wide variety of social behaviors across a broad range
of species [6,7]. Moreover, blocking AVP receptors cen-
trally reduces social play in 35-day-old male rats while
increasing it in females [8], and postnatal stressors that
affect social play in rats modify AVP expression in the
paraventricular nucleus (PVN) and supraoptic nucleus
(SON) [9]. Given that developmental perturbations, in-
cluding LPS treatment, often affect males and females
differently [10,11], and that AVP innervation is highly
sexually dimorphic in rats [12], we compare the effects
of LPS on both sexes. We find that prenatal LPS expo-
sure reduces juvenile play behavior and AVP mRNA ex-
pression in the medial amygdaloid nucleus (MeA) as
well as the bed nucleus of the stria terminalis (BST) in
male but not in female rats. Since the MeA is known to
be important for normal levels of social play behavior in
males but not in females [13], these results suggest a
way in which prenatal immune activation may differen-
tially affect the development of social behavior in males
and females.

Methods
Animals
Adult Wistar rats were obtained from Charles River,
Wilmington, MA, and paired for mating. The day a
sperm plug was found was defined as embryonic day 0
(E0). Males were removed that day, and females were
housed individually in standard rat cages under a 14:10
light:dark cycle with lights off at 10 am. Temperature
was maintained at 22 °C. Food and water were provided
ad libitum. Animals were not maintained under speci-
fied pathogen free (SPF) conditions. All procedures were
conducted in accordance with the NIH Guide for the
Care and Use of Laboratory Animals and approved by
the Institutional Animal Care and Use Committee.

Experimental design
On E15, dams were injected intraperitoneally with
100 μg/kg LPS (E. coli O26:B6; Sigma-Aldrich, St. Louis,
MO) or sterile saline. LPS was chosen as it is one of the
most commonly used immune stimulants, for which
many of the cellular inflammatory cascades have been
worked out; the dose of 100 μg/kg of LPS is commonly
used in studies of prenatal effects of immune stimulation
[14]. Following injection, the dams were monitored
twice daily for two days to check for overt signs of sick-
ness as defined by the National Research Council’s 1996
Guide for the Care and Use of Laboratory Animals.
Within one day after birth, litters were culled to produce
litter sizes between four and six pups, and the number
of males and females was kept equal across treatment.
Litters were weaned at 22 days of age (day of birth being
day 0) and housed in sex-mixed groups at 25 days of
age, resulting in seven saline litters and five LPS litters.
Behavior of offspring was digitally video-recorded on five
different days between 26 to 40 days of age. Animals
were weighed at 35 and 45 days of age. At 45 days of
age, all offspring were killed, their brains removed and
snap-frozen in 2-methyl-butane on dry ice. Brains were
stored at −80 °C. For ease of description, animals from
LPS treated-dams will be called ‘LPS Males’ and ‘LPS
Females,’ the control animals will be called ‘Saline Males’
and ‘Saline Females.’

Play behavior
Play behavior was assessed at the beginning of the dark
phase. Rats were habituated to the testing condition by
moving the home cage into the testing room for three
hours on two consecutive days prior to the tests. All ani-
mals were tested under two different conditions on the
following days: (1) in treatment-matched pairs (LPS pairs
and saline pairs at 26, 37, and 42 days of age), and (2)
treatment-mixed pairs (LPS/saline pairs at 30 and 40 days
of age). Rats were housed individually in a new cage for
1 h before being paired with a sex- and age-matched rat.
Treatment-matched pairs came from the same home
cage. After recording behavior for 10 min, rats were
returned to their home cage. At 35 days of age, 22 rats
were sacrificed, and their brains set aside for future ana-
lysis. A researcher blind to the treatment conditions
used JWatcher software (www.jwatcher.ucla.edu) to
score the frequency of Boxing & Wrestling, Pinning, and
Pouncing, as defined in [15]. Total Play was calculated
as the total of these three frequencies.

In situ hybridization
Each brain was cut transversally at 12 μm into three
series, thaw-mounted onto Colorfrost/plus slides
(Thermo Fisher Scientific, Pittsburgh, PA), and stored at
−80 °C. One series of sections was postfixed in 4 % par-
aformaldehyde for 5 min and rinsed in 0.1 M
phosphate-buffered saline (pH 7.4) for 2 min, both solu-
tions at 4 °C. In situ hybridization was performed as
published previously [16,17] using a mixture of two oli-
godeoxyribose antisense probes. Probe 1 and 2 are com-
plementary to the regions that code for amino acids
127–141 and 143–159 of the AVP prohormone, which
are in the glycopeptide region near the COOH-terminal.
The probes were labeled at the 3’ end with 35 S-dATP
(PerkinElmer, Waltham, MA) using terminal deoxynu-
cleotidyl transferase (Life Technologies Inc., Gaithers-
burg, MD). To locate the hybridization signal, slides
were dipped in Kodak NTB-3 emulsion under safelight
and stored desiccated in light tight boxes at 4 °C. After
four weeks, slides were developed with Kodak D19
developer (1:1 with purified water) and fixed with Kodak
Rapid Fix. Slides were rinsed in purified water, lightly
counterstained with 2 % methyl green, dehydrated with
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50 % ethanol, and coverslipped with Cytoseal 60 (Rich-
ard-Allen Scientific, Kalamazoo, MI).

AVP mRNA analysis
For analysis of sections processed for AVP mRNA in situ
hybridization, cells with a density of silver grains above
background were counted in every third section by two
observers blind to the treatment. Labeled cells in the
bed nucleus of the stria terminalis (BST) and medial
amygdaloid nucleus (MeA) were identified under dark-
field illumination using a 20X objective and counted
only if brightfield microscopy confirmed a methyl green-
stained nucleus underneath the silver grains. As crowd-
ing of labeled cells prevented counting individual cells in
the suprachiasmatic nucleus (SCN), supraoptic nucleus
(SON), and paraventricular nucleus (PVN), AVP mRNA
expression in these nuclei was digitally photographed
throughout their rostro-caudal extent using a 4X object-
ive under bright-field illumination. For each nucleus, we
determined the total area above background and the
integrated optical density (calculated as total area above
background times average gray value (0–255) of thre-
sholded pixels) using Image J software (NIH, Bethesda,
MD).

Volume of the sexually dimorphic nucleus of the preoptic
area
As LPS treatment blunted the sex difference in AVP
mRNA expression in the BST and MeA, we tested
whether LPS had general effects on sexual differentiation
by measuring the volume of the sexually dimorphic nu-
cleus of the preoptic area (SDN-POA) [18]. Sections at
the level of the SDN-POA from the second series of
slides were thawed and allowed to dry at room
temperature for 10 min, delipidated with a graded etha-
nol series and thionin-stained. Sections were cover-
slipped using permount (SP15-500, Fisher Scientific).
Each section containing the SDN-POA was digitally
photographed throughout the rostro-caudal extent of
the nucleus using a 4X objective under bright-field illu-
mination. An experimenter blind to the treatment traced
and measured the area throughout the SDN-POA using
Image J software (NIH, Bethesda, MD). Volume was cal-
culated as the sum of area x 3 x 12 μm.

Statistical analysis
To determine whether play behaviors differed signifi-
cantly across age, paired t-tests were conducted on each
behavioral measure (Total Play, Boxing & Wrestling,
Pinning, and Pouncing) for all pairwise age combina-
tions in matched pairs (P26 vs. P37, P37 vs. P42, and
P26 vs. P42) and Mixed Pairs (P30 vs. P40). Out of these
24 comparisons, only one differed significantly between
age groups (Pouncing at P26 vs. P37, p< 0.05). Because
there was no systematic effect of age, all further behav-
ioral analyses were based on individuals’ mean score
(mean Total Play, mean Boxing & Wrestling, etc.). To
avoid litter effects, behavioral scores and neural mea-
sures for males and females were averaged by litter and
then analyzed using a two-way ANOVA (Sex X Treat-
ment), see ref [19]. Planned comparisons (Fisher’s PLSD)
were performed to evaluate 1) sex differences (Saline
Males versus Saline Females), 2) LPS effects in males
(LPS Males versus Saline Males), and 3) LPS effects in
females (LPS Females versus Saline Females). Analyses
were conducted using Statview 5.0.1 (SAS Institute Inc.,
Cary, NC).

Results
General effects of LPS exposure
Dams injected on embryonic day 15 showed increased
red lachrymal secretions for one day following LPS in-
jection, but no other overt signs of sickness were
observed, and pregnancies were not aborted. LPS did
not affect litter size or sex ratio, and pups showed no
gross abnormalities.

Development of social play behavior
In total, behavior was tested in twentyeight male and
thirtyone female pups derived from seven saline-treated
and five LPS-treated litters. As the data were averaged
by litter, n = 7 per group was used for saline-treated indi-
viduals and n= 5 per group for LPS-treated individuals
in the statistical analysis. In treatment-matched pairs,
maternal LPS injection significantly reduced Total Play
in males but not in females, which was reflected in a sig-
nificant sex X treatment interaction (Figure 1; F
(1,20) = 10.19, p< 0.005). Consistent with previous find-
ings [20,21], Saline Males played significantly more than
Saline Females (Figure 1; planned comparison, p< 0.05).
To determine whether the LPS effect was evident in spe-
cific play behaviors, we analyzed Boxing & Wrestling,
Pouncing, and Pinning separately. Both Boxing & Wrest-
ling as well as Pinning exhibited the same significant sex
X treatment interaction seen in Total Play (Figure 1; F
(1,20) = 14.45, p< 0.002 for Boxing and Wrestling and F
(1,20) = 5.37, p< 0.04, for Pinning). No main effects or
interactions were found for Pouncing (Figure 1). As
males and females have different developmental trajec-
tories, with females reaching puberty earlier, differences
in maturation could contribute to sex differences in LPS
effects. However, females showed no LPS effects at any
of the ages that behavior was measured.
As social play is dyadic, potential effects of LPS in an

animal may also depend on treatment of its partner.
Therefore, we tested LPS effects in mixed-treatment
pairs as well (treatment-mixed pairs). Also in this case,
group means exhibited a similar trend. For example, LPS
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Figure 1 Effect of prenatal LPS on play behavior. Means + SEMs of the number of play events displayed in a ten-minute testing period. (I): in
treatment-matched pairs, there was a significant interaction of treatment X sex for Total Play (ANOVA, p< 0.005), Boxing & Wrestling (ANOVA,
p< 0.002) and Pinning (ANOVA, p< 0.04), with LPS reducing play in males but not in females. *: Planned comparisons confirmed that LPS Males
showed less Total Play (Fisher’s PLSD, p< 0.006) and Boxing & Wrestling (Fisher’s PLSD, p< 0.0008) than did Saline Males. #: Saline Males had
higher scores than did Saline Females for Total Play (Fisher’s PLSD, p< 0.05) and Boxing & Wrestling (Fisher’s PLSD, p< 0.03). In treatment-mixed
pairs, no significant interactions of treatment X sex were found. Planned comparison, however, suggested that LPS reduced Pouncing in males
(Fisher’s PLSD, p< 0.04) but not in females. By definition, when one animal in a pair shows Boxing & Wrestling, so does the other. For that reason,
we show only one differently shaded bar for LPS and Saline animals for Boxing & Wrestling rather than two identically sized bars for males and
females in mixed-treatment pairs.
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marginally reduced Pouncing and Pinning in males
(planned comparisons, p< 0.04 and p = 0.06 for Poun-
cing and Pinning, respectively) but not in females
(Figure 1). Treatment differences in Total Play, however,
were blunted and not significant (Figure 1). Given that
Boxing & Wrestling is by definition displayed by both
animals of the pair at the same time (indicated by the
gray columns in Figure 1), and given also that it com-
prises a large proportion of Total Play, it may have
masked an LPS effect on Total Play in mixed pairs.
Matched and mixed pairs also differed in their familiarity
with the play partner, with matched animals being
paired with a cage mate and mixed animals with an un-
familiar animal. It is possible that differences between
LPS and Saline Males would have been more, or per-
haps less pronounced if treatment-matched animals
would have been tested with unfamiliar cage mates.
Sex differences in LPS effects on play behavior were

clearest in matched pairs. In treatment-mixed pairs,
fewer sex differences were found, perhaps because the
LPS Males might have been less inclined to play, thereby
bringing down the overall score of their Saline Male
partners. In support, in mixed pairs, Pinning was mar-
ginally higher in Saline than in LPS Males (Figure 1
planned comparison, p = 0.06).

LPS effect on AVP mRNA expression
In total, thirty brains were processed for AVP mRNA ex-
pression from male and female pups derived from three
LPS-treated and three saline-treated litters. Due to poor
histology some material could not be analyzed: 1 brain
was excluded for the MeA, 4 for the BNST and SCN, 5
for the SON, and 6 for the PVN. As the data were aver-
aged by litter, n = 3 per group was used for statistical
analysis. Significant effects of LPS treatment on AVP
mRNA expression were only found in the MeA and BST
(Figure 2). Confirming the literature [22], juvenile males
showed more AVP mRNA-expressing cells in the MeA
and BST than females, (Figure 3; F(1,8) = 146.98, p
< 0.0001; F(1,8) = 236.2, p< 0.0001 for MeA and BST,



Figure 2 AVP mRNA expression in the medial amygdaloid nucleus (MeA). Photomicrographs show sections processed with in situ
hybridization for AVP mRNA. Arrows indicate individual cells labeled for AVP mRNA; ot: optic tract.
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respectively). LPS treatment reduced AVP expression in
males but not in females, thereby causing significant
treatment X sex interactions in the MeA and BST
(Figure 3; F(1,8) = 6.11, p< 0.04; F(1,8) = 7.45, p< 0.03
for MeA and BST, respectively). These sex-specific
effects of LPS were restricted to the BST and MeA, as
there were no LPS effects on AVP mRNA expression in
the SON, PVN, or SCN (Figure 4). In accord with what
has been reported for the size of the SON and its AVP
neurons in 60-day old rats [23], we found that volume of
the area expressing AVP mRNA and integrated density
of AVP mRNA expression in the SON are larger in
males than in females (Figure 4; F(1,8) = 12.57, p< 0.008
and F(1,8) = 12.86, p< 0.008 for volume and integrated
density, respectively).

Prenatal immune activation does not impact sexual
differentiation of the SDN-POA
In total, thirtytwo brains were thionin-stained from male
and female pups derived from four saline and three LPS-
treated litters. As the data were averaged by litter, n = 4
(saline) and n= 3 (LPS) per group was used for statistical
analysis. As in adult animals [18] the SDN-POA was
about three times larger in males than in females
(Figure 5; F(1,10) = 78.92, p< 0.0001). LPS treatment
had no effect on this difference.

Discussion
We found that treating rats with LPS on day 15 of preg-
nancy reduced social play of male but not of female off-
spring. Only one other study reports that LPS exposure
on day 9.5 of pregnancy reduces play in male offspring;
no females were studied, and no effects were found on
gross morphology of the brain [24]. We found that, in
addition to social play, LPS reduced AVP expression in
the BST and MeA, again in male but not in female
offspring. Therefore, our findings suggest that the
often-made observation that males are more vulnerable
to prenatal stress than females [25,26] can be extended
to the neural substrate underlying social behavior in
juvenile animals.
Social play as well as AVP expression in the BST and

MeA are more prominent in male than in female juve-
niles [20,22]. As LPS treatment reduced social play and
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AVP expression in males only, LPS treatment may have
interfered with general mechanisms of sexual differenti-
ation. For example, malnutrition or environmental stress
in the last week of pregnancy reduces differentiation of
sexual behavior and SDN-POA volume [27]. A stress-
linked reduction in fetal activity of testosterone may
contribute to this effect [28,29]. As sexual differentiation
of play behavior and AVP expression depends on higher
levels of testosterone in males [30–33], LPS may have
inhibited masculinizing effects of testosterone. Our data,
however, argue against a general effect of LPS on sexual
differentiation, as the volume of the SDN-POA was un-
affected by LPS treatment.
There are several other possible explanations as to

why LPS treatment affected AVP expression in males
but not in females in the present study. Humoral factors
generated as a result of LPS treatment may have differ-
ential access to male and female fetuses. For example,
stress early in pregnancy significantly changes the ex-
pression of genes implicated in the hypoxic response,
cell differentiation, and metabolism in male but not in
female placentas [34]. Immune challenges may have
similar dimorphic effects on the placenta, thereby pos-
sibly differentially affecting the exchange of nutrients,
metabolic waste products, and signaling molecules
across the placental barrier.
LPS treatment may also have made AVP cells less sen-

sitive to the masculinizing effects of gonadal steroids
postnatally. Higher levels of testosterone found in males
increase the probability that developing neurons in the
BST and MeA commit to a vasopressinergic phenotype
[35,36]. Given that LPS effects were only significant in
males, LPS may have interfered with this differentiating
step. Interestingly, sexual differentiation of specific brain
areas and behaviors uses components of signal transduc-
tion pathways that are common to inflammatory pro-
cesses [37–39]. As AVP cells in the BST are affected by
inflammatory processes in adult animals [40], there may
be cross-talk between sexual differentiation and immune
signaling pathways during their development as well.
Several lines of evidence suggest that the LPS-induced

reduction in play behavior and in AVP mRNA expres-
sion in the MeA are causally related. AVP has been
implicated in the control of social behavior [6,41]. More-
over, injecting an AVP receptor antagonist intracerebro-
ventricularly reduces play behavior in males [8].
Furthermore, systemic testosterone can masculinize play
behavior as well as AVP expression in the MeA and BST
by acting on androgen rather than estrogen receptors
[30,33], and intracranial testosterone implants placed
specifically into the amygdala masculinize social play
[31]. It is not yet known whether AVP treatment can re-
verse the reduction in play behavior in LPS Males.
The LPS-induced reduction in AVP mRNA was spe-

cific to the BST and MeA, as levels did not change it in
the SON, PVN, or SCN. Differences in birth date of
AVP neurons may contribute to differences in LPS
effects on various AVP-expressing brain regions in this
study. AVP neurons in the BST and MeA are born on
embryonic days 11 and 12 [42,43] and therefore all of
these cells could be affected by LPS treatment on embry-
onic day 15. In contrast, SCN cells are born on embry-
onic days 14–17 [44], which is, by and large, at or after
the LPS treatment given in this paper. Differences in
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developmental trajectory may also shelter the PVN and
SON, as neurons in these nuclei are born on embryonic
days 12–18. Thus only a fraction of the cells are born by
the time LPS was administered [44].
BST and MeA cells appear to be responsive to immune

challenges in adulthood as well. In adult rats, LPS treat-
ment acutely increases AVP release in the ventral septal
area [45], a projection area of AVP neurons of the BST
and MeA [46], and treatment with the pro-inflammatory
cytokine interleukin-1beta, which is released upon ex-
posure to LPS, increases the firing rate of BST and MeA
neurons [47]. These effects have been linked to AVP’s
role in fever abatement [40]. We propose that LPS treat-
ment early in life may activate these same neurons,
thereby permanently changing their impact on physi-
ology and behavior. A relevant example of such pro-
gramming is found in the administration of LPS early
postnatally, which permanently alters the fever response,
interestingly, more so in males than in females [48].
As of yet it is unclear what molecular mechanisms

underlie LPS-induced changes in AVP expression and
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p< 0.0001). LPS did not affect the volume of the SDN-POA.
play behavior. Most likely, early immune activation
altered the fate of a number of cells, perhaps by chan-
ging epigenetic regulation of AVP gene expression. Such
long-term changes have been shown for the PVN, where
early life stress increases AVP expression while reducing
methylation of CpG sites of a chromosomal region that
controls AVP expression [49]. Related epigenetic
changes might underlie the effects of prenatal immune
activation on social behaviors reported here.
In addition to LPS treatment directly affecting fetal de-

velopment, it may have altered maternal behavior, and
thereby development. Several studies suggest that this is
not likely. For example, dams injected with the same
dose of LPS used in this study, but on embryonic day 15
as well as day 16, did not show changes in parental care
[50]. In addition, stress during fetal development
changes social behavior and expression of oxytocin
mRNA in the PVN of adult male rats, irrespective of
whether they were raised by stressed or unstressed dams
[51]. However, given the role of maternal care in male
sexual differentiation [52], the possibility remains that
changes in maternal behavior may have mediated or
masked potential effects of prenatal LPS.

Conclusions
This study demonstrated that LPS treatment on day 15
of pregnancy affects play behavior in male but not in fe-
male offspring. Likewise, LPS treatment reduces AVP ex-
pression in male but not in female offspring, specifically
in AVP-expressing nuclei that have been implicated in
social behavior. Conditions that activate the immune re-
sponse during pregnancy increase the frequency of diag-
noses for autism, schizophrenia, and depression [1,2].
Interestingly, all these disorders are sexually dimorphic
with respect to onset, course, and incidence. For ex-
ample, schizophrenia is more common in men [53], and
autism is more common in boys [54]. Sex differences in
vulnerability to stress may be due to differences in
neural systems that modulate social behavior, such as
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the AVP system. Indeed, converging evidence suggests
that AVP may be involved in social disorders such as
autism [55,56] as well as in normal aspects of human so-
cial behavior [57,58]. The evidence for involvement of
AVP in social behaviors such as social recognition, par-
ental, and aggressive behaviors is even stronger in la-
boratory animals [7,41,59,60]. Interestingly, AVP
influences social behavior differently in male and female
rodents [61]. The same may be true in humans as well
[57]. If so, developmental perturbation of AVP innerv-
ation is prone to affect one sex more than the other. In
that regard, the influence of LPS on the development of
social play may be a good model for understanding fac-
tors that contribute to sex differences in social
psychopathology.
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